
Comparison-Based Natural Gradient Optimization in High
Dimension

Youhei Akimoto
Faculty of Engineering,

Shinshu University
y_akimoto@shinshu-

u.ac.jp

Anne Auger
INRIA, Research centre
Saclay – Île-de-France
anne.auger@lri.fr

Nikolaus Hansen
INRIA, Research centre
Saclay – Île-de-France

nikolaus.hansen@lri.fr

ABSTRACT
We propose a novel natural gradient based stochastic search
algorithm, VD-CMA, for the optimization of high dimen-
sional numerical functions. The algorithm is comparison-
based and hence invariant to monotonic transformations of
the objective function. It adapts a multivariate normal dis-
tribution with a restricted covariance matrix with twice the
dimension as degrees of freedom, representing an arbitrarily
oriented long axis and additional axis-parallel scaling. We
derive the different components of the algorithm and show
linear internal time and space complexity. We find empiri-
cally that the algorithm adapts its covariance matrix to the
inverse Hessian on convex-quadratic functions with an Hes-
sian with one short axis and different scaling on the diagonal.
We then evaluate VD-CMA on test functions and compare
it to different methods. On functions covered by the in-
ternal model of VD-CMA and on the Rosenbrock function,
VD-CMA outperforms CMA-ES (having quadratic internal
time and space complexity) not only in internal complexity
but also in number of function calls with increasing dimen-
sion.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Global op-
timization, Gradient methods, Unconstrained optimization;
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems

Keywords
Covariance Matrix Adaptation, Natural Gradient, Hessian
Matrix, Information Geometric Optimization, Theory

1. INTRODUCTION
Natural gradients, popularized in the context of machine

learning by Amari [3], have been applied with success in
various contexts like training of multilayer perceptron [4],
variational inference [13], reinforcement learning [15, 16] or

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2662-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2576768.2598258.

black-box optimization [14, 21]. In the setting of black-box
optimization, given a family of probability distributions Pθ,
a stochastic search algorithm is defined by an iterative up-
date on Pθ. (This update should lead to convergence of Pθ
towards a Dirac-delta distribution concentrated on optima
of f .) The natural gradient can be elegantly used to define
this update. Indeed, the original minimization problem of
finding arg minx∈Rd f(x) can be transformed into a joint op-
timization problem defined on Θ equipped with the Fisher
metric. The joint problem can simply be minimization of the
expectation of f over Pθ [7,21]. However this latter criterion
is not invariant under monotonic transformations of f and
can easily lead to unstable behavior. In order to achieve
an invariant algorithm, a better choice for the joint prob-
lem is arg maxθ∈Θ J(θ) with J(θ) :=

∫
x∈RdW ◦ f(x) dPθ,

where W ◦ f is a θ-dependent rank-preserving transforma-
tion of f . The joint problem J is strictly comparison-based
(or solely based on the f -ranks) and therefore invariant to
monotonic transformations of f (see below for the precise
definition) [5]. The natural gradient of J(θ), estimated by
Monte Carlo samples from Pθ, governs the update of θ.

In contrast to some settings in machine learning where it
is required to estimate the Fisher information matrix (FIM)
and perform a numerical inversion in order to compute the
natural gradient (e.g. for multi-layer perceptrons, see [4]
for a discussion), in our context the inverse FIM can be
explicitly derived provided a statistical model with known
FIM is used. Consequently, efficient comparison-based op-
timization algorithms using natural gradients can be de-
rived [1,5,7]. Interestingly, the covariance matrix adaptation
evolution strategy (CMA-ES) [9, 10, 20]—a state-of-the-art
evolutionary algorithm for continuous optimization—derives
from the natural gradient framework sketched above when
using the family of Gaussian distributions [1,5]. The CMA-
ES algorithm was however introduced independently of the
natural gradient approach.

The CMA-ES parametrizes a Gaussian model with full
covariance matrix, i.e. θ encodes a mean vector and full
covariance matrix. It achieves invariance to general lin-
ear transformation of the search space. However in conse-
quence, its space complexity and its internal time complexity
per f -call are quadratic (see details below). For optimizing
functions in higher dimensions, quadratic scaling becomes
quickly too time consuming and linear scaling is desirable.
To achieve linear scaling, several “variants” of CMA-ES have
been proposed compromising on the general invariance to
linear transformation: sep-CMA [18] restricts C to a diago-
nal matrix, MVA [17] and R1-NES [19] parameterize C by

I + vvT. We propose here a novel comparison-based algo-
rithm with linear time and space complexity derived from
the natural gradient. Instead of a full covariance matrix, we
parametrize the covariance matrix as D(I + vvT)D where
D is a diagonal matrix of size d and v a vector in Rd. The
parameter update follows the natural gradient and two fur-
ther techniques from CMA-ES are borrowed: an evolution
path that low pass filters the change of the distribution mean
(additionally used for the natural gradient update) and cu-
mulative step-size adaptation, based on a similar idea. Both
mechanisms enhance the performance of CMA-ES consider-
ably [8].

The reminder of the paper is organized as follows. Sec-
tion 2 is devoted to the introduction to the IGO framework
and the CMA-ES. In section 3, we derive the novel linear
time and space algorithm from the IGO framework combined
with the cumulation concept borrowed from the CMA-ES.
The proposed method is called VD-CMA. In section 4, we
compare VD-CMA with the CMA-ES on a standard bench-
mark testbed, both in terms of function evaluations and cpu
time. It is also compared with other linear time variants of
evolution strategies. We conclude this paper with summary
and further discussion in Section 5.

2. INFORMATION GEOMETRIC
OPTIMIZATION AND CMA-ES

Information Geometric Optimization (IGO) is a general
framework for optimization in arbitrary search spaces. IGO
is based on invariance and consequently leads to comparison
and natural gradient based optimization algorithms [5]. We
give now some background about IGO, explain how parts
of the CMA-ES algorithm are instantiations of IGO on the
family of Gaussian distributions and detail other important
concepts of CMA-ES that we borrow to construct our novel
algorithm. While the IGO framework applies to arbitrary
search spaces, we describe it conveniently on Rd.

2.1 Information Geometric Optimization
Given an objective function to be minimized, f : Rd 7→ R,

and a family of probability distributions, Pθ on Rd with
θ ∈ Θ, equipped with the Fisher metric, a joint optimiza-
tion problem is defined on Θ as the maximization of the
expectation J(θ) of a nonlinear scaling W of the objective
function f over Pθ. More specifically, we consider at a given
iteration t the current parameter θt and define W f

θt
(x) :=

w
(
qf
θt

(f(x))
)
, where w : [0, 1]→ R is a non-increasing func-

tion and qf
θt

(f̄) is the probability of sampling a point from

the current distribution given θt into the sub level set {x ∈
Rd : f(x) ≤ f̄}, defined as qf

θt
(f̄) :=

∫
f(x)≤f̄ pθt(x) dx.

Hence, the function J also depends on θ (denoted by Jθt in

the sequel) and is defined as Jθt(θ) :=
∫
RdW

f
θt

(x)pθ(x) dx.
This q-quantile based transformation of f is invariant under
monotonic transformations of f and leads to comparison-
based algorithms that show the same performance on f as
on any increasing transformation of f , e.g., f(x) = a‖x‖b+c
is equivalent for all a, b > 0 and c ∈ R. The IGO update
consists in the gradient ascent step

θt+δt = θt + δt∇̃Jθt(θ)|θ=θt (1)

where ∇̃Jθt(θ) is the natural gradient of Jθt given by the
product of the inverse of the FIM1 I−1(θ) and the vanilla
gradient ∇Jθt(θ). The gradient ∇Jθt(θ) is computed with
the log-likelihood trick

∇Jθt(θ) =
∫
RdW

f
θt

(x)
(
∇ ln pθ(x)

)
pθ(x) dx . (2)

The update (1) requires to evaluate the integral (2). This
integral is naturally estimated by a Monte-Carlo method
with λ samples drawn from the current distribution Pθt .
Given a set of λ independent samples xi ∼ Pθt , for i =
1, . . . , λ, the quantile function qf

θt
(f(xi)) is approximated by

(rk(xi)+1/2)/λ, with rk(xi) the ranking of f(xi) among the
λ samples, namely, rk(xi) := |{j : f(xj) ≤ f(xi)}|. Hence

W f
θt

(xi) is approximated by wrk(xi) := w((rk(xi) + 1/2)/λ).
With wi := w((i + 1/2)/λ)/λ, the IGO algorithm update
reads

θt+δt − θt = δtI−1(θt)
∑λ
i=1 wrk(xi)∇ ln pθt(xi)

= δtI−1(θt)
∑λ
i=1 wi∇ ln pθt(xi:λ) , (3)

where xi:λ denotes the ith best point ranked according to f .

2.2 The CMA-ES Algorithm
The CMA-ES algorithm [9,10,20], considered as state-of-

the-art method for stochastic numerical optimization, was
recently found to derive from the natural gradient, and more
precisely from the IGO framework described in the previous
section [1, 5]. For CMA-ES, Pθ is the family of Gaussian
distributions N (m,σ2C) parametrized with a mean vector
m ∈ Rd and a covariance matrix σ2C, with σ ∈ R> the
so-called global step-size, and C ∈ Rd×d a positive-definite
symmetric matrix. Because Gaussian distributions are con-
sidered, the FIM and its inverse are well known and the IGO
update (1) can be computed analytically [1]. The update of
θ = (m,σ,C) in CMA-ES combines different ideas. The
update of m and C uses the natural gradient as prescribed
by the IGO algorithm (3), however also using the so-called
cumulation concept that smoothens and accelerates this up-
date without compromising its stability [8]. Then, different
learning rates (corresponding to the step-size δt of the gradi-
ent ascent step) for the mean and the covariance matrix up-
dates are used. Last, the global step-size σ is independently
adapted in order to accelerate the search performance and
prevent premature convergence.

We give in the sequel a compact but thorough definition
of the CMA-ES algorithm. After the initialization of m, σ
and C = I and so-called evolution paths pσ = pC = 0 ∈ Rd,
the CMA-ES repeats the following steps until a termination
criterion is satisfied.

Step 1. Matrix Decomposition. Compute the square
root

√
C of C, where

√
C is symmetric and positive-definite,

and satisfies C =
√
C
√
C.

Step 2. Sampling, Evaluation and Ranking. Sam-
ple λ candidate solutions xi ∼ N (m,σ2C), for i ∈ J1, λK, as
follows. Generate d-variate standard normal random vectors
zi ∼ N (0, I) and compute xi = m+σ

√
Czi. For the later use

we keep {zi} as well as {xi}. Then, evaluate their objective
values f(xi) for all i ∈ J1, λK. Rank the solutions according
to f . In the following steps the subscript i : λ denotes the
index of ith best solution among λ current samples.

1The Fisher information matrix, FIM, is defined as I(θ) =∫
Rd ∇ ln pθ(x)(∇ ln pθ(x))Tpθ(x) dx.

Step 3. Cumulation. Update the evolution paths pσ
and pC as

pσ ← (1− cσ)pσ +
√
cσ(2− cσ)µeff

∑µ
i=1 wizi:λ

pC ← (1− cc)pC +
hσ
√
cc(2−cc)µeff

σ

∑µ
i=1 wi(xi:λ −m).

Here cσ and cc are the inverses of the backward time horizons
for pσ and pC , respectively, and µeff =

(∑µ
i=1 w

2
i

)−1
. We

let hσ = 1 if ‖pσ‖2/d < (2+4/(d+1))(1− (1−cσ)2t), where
t is the iteration number starting from one, and hσ = 0
otherwise.

Step 4. Update Parameters. Compute the natural
gradient and update the parameters as follows:

m← m+ cm
∑µ
i=1 wi∇̃m ln pθ(xi:λ),

σ ← σ exp ((cσ/dσ) (‖pσ‖/χd − 1)) ,

C ← C + (1− hσ)c1cc(2− cc)C︸ ︷︷ ︸
make up for variance loss in case of hσ = 1

+ cµ
∑µ
i=1 wi∇̃C ln pθ(xi:λ)︸ ︷︷ ︸
rank-(µ∧d) update

+c1 ∇̃C ln pθ(m+ σpC)︸ ︷︷ ︸
rank-one update

.

Here cm is the learning rate for the m update, cµ and c1
are the learning rates of the so-called rank-µ and rank-one
updates for C. The damping parameter for the σ update is
denoted by dσ. The symbol χd denotes the expected value
of ‖N (0, I)‖ =

√
2Γ((d + 1)/2)/Γ(d/2) ≈

√
d(1 − 1/(4d) +

1/(21d2)). The approximated value is used in the algorithm.

The natural gradient ∇̃ = (∇̃m, ∇̃C) of the log-likelihood of
pθ w.r.t. (m,C) is computed while σ is considered to be
fixed.

When σ is fixed, the FIM I(θ), where the parameter vec-
tor is θ = [mT, vec(C)T]T, becomes a block diagonal matrix
diag(Im, IC) [2]. The diagonal blocks of I are given by
Im = σ−2C−1 and IC = 2−1(C−1 ⊗ C−1), where ⊗ de-
notes the Kronecker product. The vanilla gradients of the
log-likelihood w.r.t. m and C are respectively ∇m ln pθ(x) =
σ−2C−1(x−m) and ∇C ln pθ(x) = 2−1C−1

(
σ−2(x−m)(x−

m)T − C
)
C−1. Multiplying the inverse of Im and IC with

the gradient ∇m ln pθ(x) and vec
(
∇C ln pθ(x)

)
, we have the

natural gradient ∇̃m ln pθ(x) = (x −m) and ∇̃C ln pθ(x) =
σ−2(x−m)(x−m)T − C. Therefore, the update equations
for m and C read

C← C + cµ
∑µ
i=1 wi

(
σ−2(xi:λ −m)(xi:λ −m)T − C

)
+ c1

(
pCp

T
C − C

)
,

m← m+ cm
∑µ
i=1 wi(xi:λ −m) .

The resulting m- and C-updates are similar to those used in
the cross-entropy method (CEM) for continuous optimiza-
tion [6] if σ = 1 and c1 = 0, except that in CEM the m is
updated first, which invariably leads to smaller variances in
C and aggravates the problem of premature convergence.

The constants appearing in the algorithm are summarized
in the following [8].

λ = 4 + b3 ln(d)c, µ = bλ/2c, cm = 1,

wi = ln((λ+1)/2)−ln(i)∑µ
i=1(ln((λ+1)/2)−ln(i))

, cσ = µeff+2
d+µeff+5

,

dσ = 1 + cσ + 2 max(0,
√

µeff−1
d+1

− 1),

cc = 4+µeff/d
d+4+2µeff/d

, c1 = 2
(d+1.3)2+µeff

,

cµ = min
(

1− c1, 2(µeff−2+1/µeff)

(d+2)2+µeff

)
.

(4)

The internal time complexity is O(d3) for Step 1, O(λd2)
for Step 2, O(µd) for Step 3 and O(µd2) for Step 4. In
practice, the matrix decomposition (Step 1) is done every
d(10d(c1+cµ))−1e iterations reducing the internal time com-
plexity to O(d2) per f -call. The space complexity is O(d2 +
µd).

3. VD-CMA: A LINEAR VARIANT OF CMA-
ES FOR HIGH DIMENSION OPTIMIZA-
TION

We derive in this section a novel comparison-based al-
gorithm using the IGO framework and additional features
of CMA-ES. The algorithm aims at optimizing functions in
high dimensions and should thus scale linearly with dimen-
sion d for its internal time (per f -call) and memory require-
ments. For this purpose we restrict the covariance matrix
of the Gaussian model {N (m,σ2C)} on Rd such that C has
only 2d components to be adapted. More specifically, C is
written in the form

C = D(I + vvT)D , (5)

where D is a diagonal matrix of dimension d and v is a vector
in Rd. This model is able to represent a scaling for each
variable by D and a principle component, which is generally
not parallel to an axis, by Dv. We parameterize the model
by θ = (m ∈ Rd, σ ∈ R, θC ∈ R2d) where θC is composed
of two parts: θD ∈ Rd whose ith element is the ith diagonal
element of D, and v ∈ Rd.

3.1 Preliminaries
To derive the parameter update equation for the model

based on the natural gradient, we first derive the gradient
of the log-likelihood ln pθ(x) and the FIM of the model.
When computing the gradient and the FIM, we suppose
that σ is fixed and the parameter vector considered is θ =
[mT, vT, θT

D]T.
Notations. Let V be the diagonal matrix whose ith diag-

onal element is the ithe component of v. The normalization
of v by its Euclidean norm is denoted by v = v/‖v‖. Anal-
ogously, V = V/‖v‖. The determinant of I + vvT, namely
1+‖v‖2, is denoted γv. Let � denote the element-wise prod-
uct operator and v = v � v. The vector whose elements are
all one is denoted by 1 for any dimension. The vector ei is
the unit vector whose ith component is one and the others
are zero.

Lemma 3.1. Let x ∈ Rd and let y = σ−1D−1(x − m).
The gradients of the log-likelihood of our model w.r.t. m, v

and θD are

∇m ln pθ(x) = σ−2C−1(x−m),

∇θD ln pθ(x) = D−1
[
y � y − γ−1

v 〈y, v〉 y � v − 1
]

∇v ln pθ(x) = γ−1
v

[
〈y, v〉 y − γ−1

v (〈y, v〉2 + γv)v
]
.

Proof idea. It is known from Eq. (20) in [2] that the
partial derivative of the log-likelihood of the Gaussian model
{N (m,Σ)} parameterized by θ given x w.r.t. θi is computed
as

∂ ln pθ(x)
∂θi

= ∂mT

∂θi
Σ−1(x−m)

+ 1
2

Tr
(
Σ−1 ∂Σ

∂θi
Σ−1

[
(x−m)(x−m)T − Σ

])
,

where Tr denotes the trace. Substituting the partial deriva-
tives and simplifying the above equality, we have the gradi-
ents. The details are omitted due to the space limitation.

Lemma 3.2. The Fisher information matrix of our model
is a block diagonal matrix diag(Im, IC), where Im = σ−2C−1

and IC =
[
Iv,v Iv,D
ID,v ID,D

]
, where Iv,D = IT

D,v and

Iv,v = γ−1
v

[
‖v‖2I + (1− ‖v‖2)γ−1

v vvT
]
,

ID,v = γ−1
v D−1V

[
(2 + ‖v‖2)I − vvT

]
,

ID,D = γ−1
v D−1

[
2γvI + ‖v‖2V 2 − V vvTV

]
D−1 .

Proof idea. It is a well-know fact that the ijth element
[I]i,j of the FIM for the Gaussian distribution N (m,Σ) with

parameter θ is [I]i,j = ∂m
∂θi

Σ−1 ∂mT

∂θj
+ 1

2
Tr
(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
.

Remember θ = [mT, vT, θT
D]T and Σ = σ2C = σ2D(I +

vvT)D in our case. The partial derivative ∂m/∂θi = ei if
θi = mi and ∂m/∂θi = 0 otherwise. On the other hand,
∂Σ/∂mi = 0. Therefore, the first term in the above equality
appears only if both θi and θj are the elements of m, and the
second term appears only if neither θi or θj is the element
of m. This proves the block diagonal property of I and
Im = Σ−1 = σ−2C−1 is an immediate consequence. The
rests are derived from the second term by substituting the
partial derivatives w.r.t. v and θD and simplifying it.

To compute the natural gradient, the FIM must be invert-
ible. Since I is block diagonal, the inverse is diag(I−1

m , I−1
C)

if both Im and IC are nonsingular. By Lemma 3.2 we know
that Im = (σ2C)−1 and it is nonsingular as long as C is
nonsingular. The partitioned matrix inversion formula de-
scribed in Theorem 8.5.11 in [12] shows that IC is nonsin-
gular if and only if the Schur complement Sv,v = ID,D −
ID,vI−1

v,vIv,D of Iv,v is nonsingular, where the invertibility
of Iv,v is guaranteed by the Sherman-Morrison formula (e.g.,
Corollary 18.2.10 in [12]) as long as v 6= 0. The Schur com-
plement Sv,v is given in the following lemma, whose proof is
straight forward from the partitioned matrix inversion for-
mula, Sherman-Morrison formula and Lemma 3.2.

Lemma 3.3. The Schur complement of Iv,v in IC ap-

peared in Lemma 3.2 is Sv,v = 2D−1[I − 2V
2

+ vv
T

]D−1.

Unfortunately, Sv,v becomes singular for some v. For ex-
ample, v = ei for any i is a typical case that causes the
singularity of Sv,v. Moreover, Sv,v becomes singular for any
v (hence for any v) in the case of d = 2. Indeed, noting that
‖v‖2 = 1, it is easy to see the determinant of Sv,v is zero.
Thus, the invertibility of IC is not guaranteed. Theoretically

one can use the pseudo inverse of the FIM to define the nat-
ural gradient everywhere. However, due to arbitrarily small
eigenvalues of the FIM around singular points that lead to
arbitrarily long natural gradients, the resulting parameter
update becomes unstable when the parameter approaches a
singular point. Therefore it does not essentially solve this
difficulty.

3.2 Modified Fisher Information Matrix with
Reduced Off-diagonal Blocks

A simple way to avoid singularity of the FIM is to re-
strict it to the principal diagonal blocks. Then, the natural
gradient for each block of parameters is computed indepen-
dently while the other parameters are fixed. In our case,
the block diagonalized FIM is nonsingular since Iv,v and
ID,D are nonsingular according to the Scherman-Morrison
formula, provided v 6= 0 and D is positive definite. How-
ever, this leads to poor behavior, for example, on the rotated
Cigar function defined in Table 1, where the principle com-
ponent of the covariance matrix should not be axis parallel
and v has to be learned adequately. To get nonsingularity
without significantly compromising the performance, we use

diag(Im, I(α)
C) in place of diag(Im, IC), where

I(α)
C =

[
Iv,v αIv,D
αID,v ID,D

]
, α ∈ [0, 1] . (6)

If α = 1, I(α)
C is the original FIM, if α = 0, I(α)

C is block

diagonal, and α must be tuned such that I(α)
C remains non-

singular for any v and D, with α = 1 desired. Since Iv,v is
nonsingular except for v = 0, according to the partitioned

matrix inversion formula I(α)
C is invertible if and only if the

Schur complement Sv,v = ID,D − α2ID,vI−1
v,vIv,D of Iv,v is

nonsingular.

Lemma 3.4. The Schur complement of Iv,v in (6) is Sv,v =

D−1(A+bvv
T

)D−1, where b = −(1−α2)‖v‖4γ−1
v +2α2 and

A = 2I − (b+ 2α)V
2
.

The proof is straightforward from Lemma 3.2 and Scherman-
Morrison formula. Although the necessary and sufficient
condition for Sv,v to be nonsingular is not provided, the next
proposition shows a sufficient α which leads to numerically
stable S−1

v,v.

Proposition 3.5. Let γ = γ
−1/2
v . If we choose

α = min
(

1, [‖v‖4+(2−γ)γv/maxi(vi)]
1/2

2+‖v‖2

)
, (7)

then Sv,v is nonsingular and its inverse is given by

S−1
v,v = D

[
A−1 − (1 + bv

T
A−1v)−1bA−1vv

T
A−1]D .

Proof idea. According to Lemma 3.4 and Scherman-
Morrison formula, Sv,v is invertible if A is nonsingular and

1 + bv
T
A−1v 6= 0. Then, Scherman-Morrison formula pro-

vides the above explicit form of S−1
v,v. Thus, it suffices to

show the nonsingularity of A and 1 + bv
T
A−1v 6= 0 under

condition (7). Indeed, we prove Ai,i ≥ γ and 1+bv
T
A−1v ≥

γ. The necessary and sufficient condition for Ai,i ≥ γ is α2 ≤
[‖v‖4 +(2−γ)(1+‖v‖2)/max(vj)]/(2+‖v‖2)2. If this condi-

tion holds, we have 0 < v
T
A−1v ≤ γ−1∑

i v
2
i ≤ γ−1∑

i vi =

γ−1. Noting that γ ≤ 1, we have that 1+bv
T
A−1v ≥ γ holds

if b ≥ γ(γ−1). The necessary and sufficient condition for b ≥

γ(γ−1) is α2 ≥ [‖v‖4−(1−γ)γ(1+‖v‖2)]/(‖v‖4+2‖v‖2+2).
The α in (7) satisfies both inequalities.

The following theorem provides O(d) computation of the
modified natural gradient of the log-likelihood with α intro-
duced in Proposition 3.5.

Theorem 3.6. The modified natural gradient is computed
as follows. Let y = D−1(x −m)/σ as above. Let α, A and
b be those which appear in Proposition 3.5 and Lemma 3.4.
Compute s and t as follows.

1. s← y � y − ‖v‖2 〈y, v〉 γ−1
v y � v − 1

2. t← 〈y, v〉 y − 2−1(〈y, v〉2 + γv)v

3. s← s− αγ−1
v

(
(2 + ‖v‖2)v � t− ‖v‖2 〈v, t〉 v

)
4. s← A−1s−

(
1 + b

〈
v,A−1v

〉)−1
b
〈
s,A−1v

〉
A−1v

5. t← t− α
[
(2 + ‖v‖2)v � s−

〈
s, v
〉
v
]

Then, ∇̃m ln pθ(x) = x − m, ∇̃v ln pθ(x) = ‖v‖−1t and

∇̃θD ln pθ(x) = Ds.

Proof idea. The modified natural gradient is the prod-

uct of the inverse of diag(Im, I(α)
C) and the vanilla gra-

dient given in Lemma 3.1. The inverse of diag(Im, I(α)
C)

is diag(I−1
m , (I(α)

C)−1). As is shown in Lemma 3.2, Im =
σ−2C−1 and its inverse is I−1

m = σ2C. Premultiplying the
vanilla gradient w.r.t. m by I−1

m , we have ∇̃m ln pθ(x) =

x−m. The inverse of I(α)
C with α in Proposition 3.5 can be

computed by using the partitioned matrix inversion formula
as [

Iv,v αIv,D
αID,v ID,D

]−1

=

[
I−1
v,v 0
0 0

]
+

[
−αI−1

v,vIv,D
I

]
S−1
v,v

[
−αID,vI−1

v,v I
]

The inverse I−1
v,v can be computed by the Scherman-Morrison

formula and S−1
v,v is given in Proposition 3.5. Substituting

them into the above equality and premultiplying the vanilla
gradient given in Lemma 3.1 by the right hand side of the
above equality, we obtain the natural gradient w.r.t. v and
θD. The steps 2 to 7 are just a decomposition of the com-
putation and can be computed in O(d).

3.3 The VD-CMA Algorithm
The overall algorithm is as follows. Initialize m and σ

depending on the problem search space. Initialize D = I
and v ∼ N (0, I/d) and pC = pσ = 0.

Step 1. Sampling, Evaluation and Ranking. Sam-
ple λ candidate solutions xi, for i ∈ J1, λK, as follows. Gener-
ate d-variate standard normal random vectors zi ∼ N (0, I),

compute yi = zi + (
√

1 + ‖v‖2 − 1) 〈zi, v〉 v and xi = m +

σDyi. Then, yi ∼ N (0, I + vvT) and xi ∼ N (m,σ2D(I +
vvT)D). Evaluate their objective values f(xi) for all i ∈
J1, λK. Rank solutions according to f .

Step 2. Cumulation. The evolution paths pσ and
pC are updated in the same way as the original CMA does
(see Sec. 2.2). Note that zi = C−1/2(xi −m)/σ in the orig-

inal CMA whereas zi = (I + vvT)−1/2D−1(xi − m)/σ 6=
C−1/2(xi−m)/σ in our case. We use zi rather than C−1/2(xi−
m)/σ in order to achieve linear time update. Then, compute
hσ in the same way as in the original CMA.

Step 3. Update Parameters. Update the parameters
as follows:

m← m+ cm
∑µ
i=1 wi∇̃m ln pθ(xi:λ),

σ ← σ exp ((cσ/dσ) (‖pσ‖/χd − 1)) ,

v← v + cµ
∑µ
i=1 wi∇̃v ln pθ(xi:λ)

+ (1− hσ)c1∇̃v ln pθ(m+ σpC),

D← D + cµ
∑µ
i=1 wi∇̃D ln pθ(xi:λ)

+ (1− hσ)c1∇̃D ln pθ(m+ σpC).

Here the natural gradients are computed following Theo-
rem 3.6. The (constant) parameters are taken from (4) ex-
cept for cσ, c1 and cµ. Since the degrees of freedom in the
covariance matrix is 2d compared with d(d + 1)/2 in the
original CMA, we expect that the natural gradient estimate
is more reliable and larger values for c1 and cµ can be taken.
The learning rate cσ for σ is modified as well to achieve bet-
ter scale-up with d. Let cold

1 and cold
µ be the settings given

in (4). Then, we set

cσ =
√
µeff

2(
√
d+
√
µeff)

, c1 = d−5
6
cold
1 , cµ = min

(
1− c1, d−5

6
cold
µ

)
.

The internal space complexity decreases to O(µd), the inter-
nal time complexity for each objective function call to O(d)
compared to O(µd + d2) and O(d2) in the standard CMA,
respectively.

4. EXPERIMENTS
We evaluated the new VD-CMA on benchmark functions

described in Table 1, where the number of variables varies
from 10 to 104. The VD-CMA is comparison-based and has
the same performance on any composition of the functions
by a monotonic transformation. The initial mean vector
obeys N (3 · 1, 22 · I), except for fros(x) and frosrot(x) where
m obeys N (0, 22 · I) to avoid the symmetry; the initial step-
size is σ = 2. Runs are terminated as successful when a
function value better than 10−10 is reached, otherwise when
the number of function evaluations reached 105 · d. Only on
the Rosenbrock functions about 15% of the runs were not
successful due to the local minima and these are disregarded
in the presentation. The code is implemented in Octave
(single thread) and run on Debian 6.0 machine with Intel(R)
Core(TM) i7-3770 3.4GHz CPU and 16 GB RAM.

Figure 1 shows a typical result on the 50 dimensional
fellcig function, for which the inverse Hessian is proportional
to D−1

ell (I + (106 − 1)uuT)D−1
ell . First, D becomes propor-

tional to D−1
ell , then v starts to adapt, ending up with vi ≈√

(106 − 1)/d, such that C = D(I + vvT)D finally becomes
closely proportional to the inverse Hessian. The reason of
the later adaptation of v is that the function value is less sen-
sitive to the direction of u than the coordinate-wise scaling
by Dell and the selection bias is only visible after D ≈ D−1

ell .
After learning the inverse Hessian, the speed of convergence
is as fast as on fsph. On the 50 dimensional fellcig, α is al-
most always one, whereas we observed a smaller α on lower
dimensional functions (e.g., varying in [0.75, 1] on the 10 di-
mensional fellcig and in [0.65, 1] on the 10 dimensional fcig).

Figure 2.(a) shows the number of function evaluations and
CPU time in seconds, averaged over 10 independent runs on
eight functions. The number of function evaluations scale
up linearly on fsph, ftab, fcig, fcigrot, and slightly more than
linear on fell, fellcig. On the Rosenbrock functions fros and

Table 1: Test function definitions. R is an orthogonal matrix and u is a unit vector, both are randomly

generated for each run; Dell is a diagonal matrix whose ith diagonal element is 103 i−1
d−1 . The global minimum

point is located at 1, RT1 and 0 for fros, frosrot and all other functions, respectively.

Sphere fsph(x) =
∑d
i=1 x

2
i Tablet ftab(x) = 106x2

1 +
∑d
i=2 x

2
i

Ellipsoid fell(x) = fsph(Dellx) Cigar fcig(x) = x2
1 + 106∑d

i=2 x
2
i

Ellipsoid-Cigar fellcig(x) = fcigrot(Dellx) Rot-Tablet ftabrot(x) = fsph(x) + (106 − 1) 〈x, u〉2

Rot-Ellipsoid fellrot(x) = fell(Rx) Rot-Cigar fcigrot(x) = 106fsph(x) + (1− 106) 〈x, u〉2

Rot-Rosenbrock frosrot(x) = fros(Rx) Rosenbrock fros(x) =
∑d−1
i=1

[
102(x2

i − xi+1)2+(xi − 1)2
]

0 1 2 3

x 10
4

10
−10

10
−5

10
0

10
5

10
10

No. Func. Evals.

0 1 2 3

x 10
4

0

100

200

300

400

v

No. Func.Evals.

0 1 2 3

x 10
4

10
−3

10
−2

10
−1

10
0

10
1

D

No. Func. Evals.

10
3
/sqrt(d)≈ 141

min
i
 f(x

i
)

α

σ

Figure 1: Single run on 50 dimensional fellcig with cigar axis u = (1/
√
d, . . . , 1/

√
d). The minimum f-value at

each iteration, α, σ (left), v values (center), and diagonal elements of D (right) are plotted.

frosrot the scale up is close to quadratic. On the other hand,
it took 1.6e7, 1.0e7, 1.2e7 function evaluations on ftabrot for
d = 10, 20, 50, and 7.1e6, 1.3e7, 2.0e7 function evaluations
on fellrot for d = 10, 20, 50, respectively, whereas the CMA
requires 6.0e3, 1.6e4, 6.6e4 on ftabrot and 6.2e3, 1.9e4, 1.0e5
function evaluations on fellrot. The inverse Hessian of these
functions can not be well approximated by (5). Since the
time complexity for each function evaluation is O(d), the
total CPU time scales d times more than the number of
function evaluations does.

Figure 2.(b) shows the speed up over the standard CMA.
The reason of the speed up in terms of the number of func-
tion evaluations is the (d−5)/6 times larger learning rate for
the C update. The effect is more pronounced on fell, fellcig,
ftab than on fcig and fcigrot, although they all have a Hes-
sian matrix whose inverse can be represented by (5). This
is because the standard CMA excels at learning single long
components of C because of the cumulation in pC . On fsph,
the performance does not differ much from standard CMA
since C does not need to learn the shape and the σ update is
dominative in determining the speed of convergence. When
it comes to the total CPU time, our approach improves over
the standard CMA for d ≥ 50.

Figure 3 shows the scale up of VD-CMA, sep-CMA [18]
and R1-NES [19], which are all linear time and space algo-
rithms based on the same natural gradient principle.2 Ta-
ble 2 shows a comparison with the standard CMA, (1, 10)-
AII [11] and (1, 10)-MVA [17]. The reason of better scale up
of VD-CMA and sep-CMA than R1-NES even on fsph is the
cumulation employed to adapt σ. On fcig and fcigrot VD-
CMA is more efficient than R1-NES, though both Gaussian

2The sep-CMA was introduced independently of the natural
gradient, but later it was found in [2] to derive from the
natural gradient framework.

Table 2: Average number of function evaluations to
reach the target function value 10−9 on 20 dimen-
sional functions among three runs except for MVA,
where the average is computed over 70 runs. Data is
taken from the references. Standard deviations are
smaller than 3% of the average numbers except for
MVA. On fros, no success was observed for MVA in
3.5× 105 function evaluations.

VD-CMA CMA (1, 10)-AII (1, 10)-MVA

fell 9.4× 103 2.0× 104 1.2× 104 no success

fros 2.0× 104 2.1× 104 2.1× 104 5.7× 104

models maintained by VD-CMA and R1-NES can adapt to
the inverse Hessian. This is the effect of the cumulation
for covariance adaptation. On fell, sep-CMA is faster than
VD-CMA simply because the learning rate for the C update
is higher. On the other hand, MVA and R1-NES, both of
which restrict the covariance matrix to maintain only one
long direction, do not solve fell, fellcig and ftab. Since the
model in our approach is richer than those maintained in
sep-CMA and R1-NES, VD-CMA can solve more efficiently
a larger class of functions including fellcig, fros and frosrot

that are ill-conditioned and non-separable.

5. DISCUSSION
Based on the IGO framework, we have derived a comparison-

based stochastic search algorithm, VD-CMA, for continuous
optimization in high dimension. To achieve internal compu-
tational time and space complexity linear in dimension, we
have restricted the covariance matrix of the Gaussian dis-
tribution to D(I + vvT)D. Since this model has singular

10
2

10
3

10
4

N
o
.
F

u
n
c
.
E

v
a
ls

.
/
D

im
. (a)

sph

tab

cig

cigrot

ell

ellcig

ros

rosrot

10
-2

10
-1

10
0

10
1

10
1

10
2

10
3

10
4C

P
U

 T
im

e
 (

S
e
c
)

/
D

im
.

Dimension

sph

tab

cig

cigrot

ell

ellcig

ros

rosrot

10
-1

10
0

N
o
.
F

u
n
c
.
E

v
a
ls

.
/
C

M
A (b)

sph

tab

cig

cigrot

ell

ellcig

ros

rosrot

10
-2

10
-1

10
0

10
1

10
2C

P
U

 T
im

e
 (

S
e
c
)

/
C

M
A

Dimension

sph

tab

cig

cigrot

ell

ellcig

ros

rosrot

Figure 2: (a) Number of function evaluations (FEs) and CPU time [s] divided by d. (b) FEs and CPU time
spent by VD-CMA divided by those spent by the CMA. Shown are average and standard deviation (error
bar), from 10 independent runs.

points where the natural gradient is not defined and leads
to unstable parameter update, we have defined a modified
FIM to avoid the singularity and enable numerically stable
computation of the natural gradient without significantly
compromising the performance. Additionally to the natural
gradient, we have incorporated the cumulation concept from
the CMA-ES to make robust and accelerate the method.

We have shown the advantage of VD-CMA over the stan-
dard CMA in two aspects. One is the linear scaling of the in-
ternal time and memory usage w.r.t. the number of variables
that is desired for optimizing functions in high dimension.
The other is better scaling of the number of function evalu-
ations thanks to the higher learning rates for the covariance
update. The second aspect implies VD-CMA outperforms
the standard CMA even on a low or moderate dimensional
function where the inverse of the Hessian can be approxi-
mated by (5). On the other hand, if the model does not suit
the inverse Hessian of a function, e.g., fellrot and ftabrot, VD-
CMA is inefficient compared to the standard-CMA. Com-
pared to other linear time variants of the CMA-ES, it can
solve a wider class of functions since we have a richer but
linear number of elements of the covariance matrix.

We end with a remark on parallelization. As well as most
evolutionary algorithms, one can benefit from paralleliza-
tion. For the sake of simplicity we assume that λ pro-
cessors are available. Then sampling and evaluation for
each solution are performed in parallel. Moreover, step 2
and step 3 in Section 3.3 are parallelizable by computing
wizi:λ, wi(xi:λ − m) = wi∇̃m ln pθ(xi:λ), wi∇̃v ln pθ(xi:λ)

and wi∇̃D ln pθ(xi:λ) for each xi:λ in parallel. Then, the
number of floating point multiplications at each iteration
on each processor reduces from O(λd) to O(d). The other
computation required is the sorting of O(λ) floating point
numbers for ranking and the sum of O(µ) floating point
numbers for update, both of which are relatively cheap and

can be also parallelized if needed. To further reduce the
runtime, one can set the population size, λ, larger than the
default value, which typically requires more function evalu-
ations but smaller number of iterations. Large population
also helps when the objective function is rugged.

Acknowledgements.
This work was supported by the ANR-2010-COSI-002 (SIMI-

NOLE) and ANR-2012-MONU-0009 (NumBBO) grants of
the French National Research Agency.

6. REFERENCES

[1] Y. Akimoto, Y. Nagata, I. Ono, and S. Kobayashi.
Bidirectional Relation between CMA Evolution
Strategies and Natural Evolution Strategies. In
Parallel Problem Solving from Nature – PPSN XI,
pages 154–163, 2010.

[2] Y. Akimoto, Y. Nagata, I. Ono, and S. Kobayashi.
Theoretical Foundation for CMA-ES from Information
Geometry Perspective. Algorithmica, 64:698–716, 2012.

[3] S. Amari. Natural Gradient Works Efficiently in
Learning. Neural Computation, 10(2):251–276, 1998.

[4] S. Amari, H. Park, and K. Fukumizu. Adaptive
method of realizing natural gradient learning for
multilayer perceptrons. Neural Computation,
12:1399–1409, 2000.

[5] Y. Ollivier, L. Arnold, A. Auger, and N. Hansen.
Information-Geometric Optimization Algorithms: A
Unifying Picture via Invariance Principles.
arXiv:1106.3708, 2011.

[6] P.-T. D. Boer, D. P. Kroese, S. Mannor, and R. Y.
Rubinstein. A Tutorial on the Cross-Entropy Method.
Annals of Operations Research, (134):19–67, 2005.

101 102 103
103

104

105

106

107
Sphere

VD-CMA
Sep-CMA
R1-NES

101 102 103

Tablet

101 102 103

Cigar

101 102 103

Rotated Cigar

101 102 103
103

104

105

106

107
Ellipsoid

101 102 103

Ellipsoid Cigar

101 102 103

Rosenbrock

101 102 103

Rotated Rosenbrock

Dimension

Fu
nc

tio
n

E
va

lu
at

io
ns

Figure 3: Number of function evaluations spent by VD-CMA, Sep-CMA and R1-NES. Shown are average
and standard deviation (error bar), from 10 independe nt runs. Missing data implies it failed to reach the
target within 2 · 107 function evaluations. Note that the error bars are hardly visible since the std. are small.

[7] T. Glasmachers, T. Schaul, Y. Sun, D. Wierstra, and
J. Schmidhuber. Exponential Natural Evolution
Strategies. In Proceedings of Genetic and Evolutionary
Computation Conference, pages 393–400, 2010.

[8] N. Hansen and A. Auger. Principled Design of
Continuous Stochastic Search: From Theory to
Practice. In Y. Borenstein and A. Moraglio, editors,
Theory and Principled Methods for the Design of
Metaheuristics. Springer, 2013.

[9] N. Hansen, S. D. Muller, and P. Koumoutsakos.
Reducing the time complexity of the derandomized
evolution strategy with covariance matrix adaptation
(CMA-ES). Evolutionary Computation, 11(1):1–18,
2003.

[10] N. Hansen and A. Ostermeier. Completely
derandomized self-adaptation in evolution strategies.
Evolutionary Computation, 9(2):159–195, 2001.

[11] N. Hansen, A. Ostermeier, and A. Gawelczyk. On the
Adaptation of Arbitrary Normal Mutation
Distributions in Evolution Strategies: The Generating
set Adaptation. In Proceedings of the Sixth
International Conference on Genetic Algorithms,
pages 57–64, 1995.

[12] D. A. Harville. Matrix Algebra from a Statistician’s
Perspective. Springer-Verlag, 2008.

[13] A. Honkela, M. Tornio, T. Raiko, and J. Karhunen.
Natural conjugate gradient in variational inference. In
Neural Information Processing, 14th International
Conference, ICONIP 2007, pages 305–314, 2008.

[14] L. Malagò, M. Matteucci, and G. Pistone. Towards
the geometry of estimation of distribution algorithms
based on the exponential family. In Foundations of
Genetic Algorithms, pages 230–242. 2011.

[15] A. Miyamae, Y. Nagata, I. Ono, and S. Kobayashi.
Natural Policy Gradient Methods with
Parameter-based Exploration for Control Tasks. In
Advances in Neural Information Processing Systems
23, pages 1660–1668, 2010.

[16] J. Peters and S. Schaal. Natural actor-critic.
Neurocomputing, 71(7-9):1180–1190, 2008.

[17] J. Poland and A. Zell. Main vector adaptation: A
CMA variant with linear time and space complexity.
In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1050–1055, 2001.

[18] R. Ros and N. Hansen. A simple modification in
CMA-ES achieving linear time and space complexity.
Parallel Problem Solving from Nature–PPSN X, pages
296–305, 2008.

[19] Y. Sun, F. Gomez, T. Schaul, and J. Schmidhuber. A
Linear Time Natural Evolution Strategy for
Non-Separable Functions. GECCO’13 Companion,
pages 61–62, 2013.

[20] T. Suttorp, N. Hansen, and C. Igel. Efficient
covariance matrix update for variable metric evolution
strategies. Machine Learning, 75(2):167–197, 2009.

[21] D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber.
Natural evolution strategies. In IEEE Congress on
Evolutionary Computation, pages 3381–3387, 2008.

APPENDIX
A. PROOFS

The following two well-known formulas are used repeat-
edly in the sequel.

Proposition A.1 (Sherman-Morrison). Suppose that
A is invertible and v is a column vector. Then, A + vvT is
invertible if and only if 1 + vTA−1v 6= 0 and the inverse is

given by A−1 − A−1vvTA−1

1+vTA−1v
.

Proposition A.2 (Partitioned matrix inversion).
Suppose that T is nonsingular. Then, the partitioned matrix
[T,U ;V,W] is nonsingular if and only if the Schur comple-
ment ST = W −V T−1U of T is nonsingular and the inverse
is given by[
T U
V W

]−1

=

[
T−1 0

0 0

]
+

[
−T−1U

I

]
S−1
T

[
−T−1V I

]
.

Let ei ∈ Rd be the unit vector whose ith element is one
and the others are zero. Let δi,j = eT

i ej which is one if
i = j, 0 otherwise. In the following proofs we often use the
following relations

∂C
∂di

= eie
T
i D
−1C + CD−1eie

T
i

∂C
∂vi

= D(eiv
T + veT

i)D ,

where di is the ith diagonal element of D and vi is the ith
element of v.

Proof of Lemma 3.1. The gradient w.r.t. m is proved
in the main text. We are going to prove the gradients w.r.t.
v and θD. Let y = σ−1D−1(x − m). We start from the
equation given in the main text:

∂ ln pθ(x)
∂θi

= ∂mT

∂θi
Σ−1(x−m)

+ 1
2

Tr
(
Σ−1 ∂Σ

∂θi
Σ−1

[
(x−m)(x−m)T − Σ

])
.

Each element of ∇v ln pθ(x) is given as

∂ ln pθ(x)
∂vi

= 1
2

Tr
(
C−1 ∂C

∂vi
C−1[(x−m)(x−m)T − C]

)
= 1

2
Tr
(
C−1 ∂C

∂vi
C−1[DyyTD − C]

)
= 1

2
Tr
(
C−1D(eiv

T + veT
i)DC−1[DyyTD − C]

)
= eT

i DC
−1[DyyTD − C]C−1Dv

= eT
i DC

−1DyyTDC−1Dv − eT
i DC

−1Dv

= eT
i (I + vvT)−1yyT(I + vvT)−1v − eT

i (I + vvT)−1v

= eT
i

(
I − 1

1+‖v‖2 vv
T
)
yyT

(
I − 1

1+‖v‖2 vv
T
)
v

− eT
i

(
I − 1

1+‖v‖2 vv
T
)
v

= eT
i

(
y − 〈y,v〉

1+‖v‖2 v
)(
〈y, v〉 − 〈y,v〉‖v‖

2

1+‖v‖2

)
− eT

i
1

1+‖v‖2 v

= eT
i

1
1+‖v‖2

[
〈y, v〉 y − 〈y,v〉

2+1+‖v‖2
1+‖v‖2 v

]
.

Rewriting it in a vector form, we have

∇v ln pθ(x) = (1 + ‖v‖2)−1
[
〈y, v〉 y

− (1 + ‖v‖2)−1(〈y, v〉2 + 1 + ‖v‖2)v
]
.

Next, each element of ∇θD ln pθ(x) is

∂ ln pθ(x)
∂[θD]i

= 1
2

Tr
(
C−1 ∂C

∂di
C−1[DyyTD − C]

)
= 1

2
Tr
(
C−1(eie

T
i D
−1C + CD−1eie

T
i)C−1[DyyTD − C]

)
= Tr

(
C−1eie

T
i D
−1CC−1[DyyTD − C]

)
= eT

i D
−1[DyyTD − C]C−1ei

= eT
i [yyT(I + vvT)−1D−1 −D−1]ei

= eT
i [yyT(I − 1

1+‖v‖2 vv
T)D−1 −D−1]ei

= eT
i [yyTD−1 − 〈y,v〉

1+‖v‖2 yv
TD−1 −D−1]ei

= yiyid
−1
i −

〈y,v〉
1+‖v‖2 yivid

−1
i − d

−1
i

= eT
i D
−1
(
y � y − 〈y,v〉

1+‖v‖2 y � v − 1
)
.

Therefore, we have

∇θD ln pθ(x) = D−1
[
y � y − (1 + ‖v‖2)−1 〈y, v〉 y � v − 1

]
.

This ends the proof.

Proof of Lemma 3.2. We start from the well-known for-
mula stated in the proof idea of Lemma 3.2 in the main text:

[I]i,j = ∂m
∂θi

Σ−1 ∂mT

∂θj
+ 1

2
Tr
(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
.

Since Im is derived in the main text, we are going to derive
an explicit form of IC .

Each element of Iv,v is

[Iv,v]i,j

= 1
2

Tr
(
C−1 ∂C

∂vi
C−1 ∂C

∂vj

)
= σ4

2
Tr
(
C−1(eiv

T + veT
i)C−1(ejv

T + veT
j)
)

= Tr
(
(I + vvT)−1eiv

T(I + vvT)−1ejv
T
)

+ Tr
(
(I + vvT)−1eiv

T(I + vvT)−1veT
j

)
= eT

i (I + vvT)−1vvT(I + vvT)−1ej

+ (vT(I + vvT)−1v)eT
i (I + vvT)−1ej

= eT
i [(vT(I + vvT)−1v)(I + vvT)−1

+ (I + vvT)−1vvT(I + vvT)−1]ej

= eT
i

[
‖v‖2

1+‖v‖2 (I + vvT)−1 + 1
(1+‖v‖2)2

vvT
]
ej

= eT
i

[
‖v‖2

1+‖v‖2

(
I − 1

1+‖v‖2 vv
T
)

+ 1
(1+‖v‖2)2

vvT
]
ej

= eT
i

[
‖v‖2

1+‖v‖2 I −
‖v‖2

(1+‖v‖2)2
vvT + 1

(1+‖v‖2)2
vvT

]
ej

= eT
i

[
‖v‖2

1 + ‖v‖2 I −
‖v‖2 − 1

(1 + ‖v‖2)2
vvT

]
ej

= eT
i

1
1+‖v‖2

[
‖v‖2I + 1−‖v‖2

1+‖v‖2 vv
T
]
ej .

Each element of ID,D is

[ID,D]i,j

= 1
2

Tr
(
C−1 ∂C

∂di
C−1 ∂C

∂dj

)
= 1

2
Tr
(
C−1(eie

T
i D
−1C + CD−1eie

T
i)

· C−1(eje
T
j D
−1C + CD−1eje

T
j)
)

= Tr
(
C−1eie

T
i D
−1CC−1(eje

T
j D
−1C + CD−1eje

T
j)
)

= eT
i D
−1CC−1(eje

T
j D
−1C + CD−1eje

T
j)C−1ei

= eT
i D
−1eje

T
j D
−1CC−1ei + eT

i D
−1CD−1eje

T
j C
−1ei

= eT
i D
−2ej + eT

i (I − 1
1+‖v‖2 vv

T)eje
T
j D
−1(I + vvT)D−1ei

= eT
i D
−2ej +

(
δi,j − vivj

1+‖v‖2

)
d−1
i d−1

j (δi,j + vivj)

= eT
i D
−2ej +

(
δ2
i,j +

‖v‖2δi,jvivj
1+‖v‖2 − v2i v

2
j

1+‖v‖2

)
d−1
i d−1

j

=

(
2δ2
i,j +

‖v‖2δi,jvivj
1+‖v‖2 − v2i v

2
j

1+‖v‖2

)
d−1
i d−1

j

= eT
i

1
1+‖v‖2D

−1
[
2(1 + ‖v‖2)I + ‖v‖2V 2 − V vvTV

]
D−1ej .

Each element of ID,v is

[ID,v]i,j

= 1
2

Tr
(
C−1(eie

T
i D
−1C + CD−1eie

T
i)

· C−1D(ejv
T + veT

j)D
)

= Tr
(
C−1eie

T
i D
−1CC−1D(ejv

T + veT
j)D

)
= eT

i D
−1CC−1D(ejv

T + veT
j)DC−1ei

= eT
i (ejv

T + veT
j)DC−1ei

= eT
i (ejv

T + veT
j)(I − 1

1+‖v‖2 vv
T)D−1ei

= d−1
i eT

i (ejv
T + veT

j)ei − vi
1+‖v‖2 d

−1
i eT

i (ejv
T + veT

j)v

= 2d−1
i viδi,j −

d−1
i vi

1+‖v‖2 (‖v‖2δi,j + vivj)

= d−1
i vi

(
2δi,j − 1

1+‖v‖2 (‖v‖2δi,j + vivj)
)

= d−1
i vi

(
2δi,j − ‖v‖2

1+‖v‖2 δi,j −
1

1+‖v‖2 vivj
)

= d−1
i vi

(
2+‖v‖2
1+‖v‖2 δi,j −

1
1+‖v‖2 vivj

)
= eT

i
1

1+‖v‖2D
−1V

(
(2 + ‖v‖2)I − vvT

)
ej

Altogether, with γv = 1 + ‖v‖2, we have

Iv,v = γ−1
v

[
‖v‖2I + (1− ‖v‖2)γ−1

v vvT
]
,

ID,v = γ−1
v D−1V

[
(2 + ‖v‖2)I − vvT

]
,

ID,D = γ−1
v D−1

[
2γvI + ‖v‖2V 2 − V vvTV

]
D−1

and Iv,D = IT
D,v is clear by definition. This completes the

proof.

Proof of Lemma 3.3 and 3.4. Lemma 3.3 is the case
that α = 1 in Lemma 3.4. Hence, it suffices to prove
Lemma 3.4.

The Schur complement of Iv,v is Sv,v = ID,D−α2ID,vI−1
v,vIv,D

as it is stated in the main text. By applying the Sherman-

Morisson formula, we have the inverse of Iv,v

I−1
v,v = 1+‖v‖2

‖v‖2

[
I −

1−‖v‖2

1+‖v‖2
vvT

1+
1−‖v‖2
1+‖v‖2

]
= 1+‖v‖2

‖v‖2

[
I − (1−‖v‖2)

2
vvT

]
provided v 6= 0.

First, observe

I−1
v,vIv,D

= 1+‖v‖2
‖v‖2

[
I − (1−‖v‖2)

2
vvT

] (
2+‖v‖2
1+‖v‖2 I −

‖v‖2
1+‖v‖2 vv

T
)
V D−1

= 1
‖v‖2

[
I − (1−‖v‖2)

2
vvT

] (
(2 + ‖v‖2)I − ‖v‖2vvT

)
V D−1

= 1
‖v‖2

[
(2 + ‖v‖2)I − ‖v‖2vvT − (1−‖v‖2)(2+‖v‖2)

2
vvT

+ (1−‖v‖2)‖v‖2
2

vvT
]
V D−1

= 1
‖v‖2

[
(2 + ‖v‖2)I

− 2‖v‖2+2−‖v‖2−‖v‖4−‖v‖2+‖v‖4
2

vvT
]
V D−1

= 1
‖v‖2

[
(2 + ‖v‖2)I − vvT

]
V D−1

Then,

ID,vI−1
v,vIv,D

= 1
‖v‖2D

−1V
(

2+‖v‖2
1+‖v‖2 I −

1
1+‖v‖2 vv

T
)

·
[
(2 + ‖v‖2)I − vvT

]
V D−1

= 1
‖v‖2(1+‖v‖2)

D−1V
(
(2 + ‖v‖2)I − ‖v‖2vvT

)
·
[
(2 + ‖v‖2)I − vvT

]
V D−1

= 1
‖v‖2(1+‖v‖2)

D−1V
(
(2 + ‖v‖2)2I − ‖v‖2(2 + ‖v‖2)vvT

− (2 + ‖v‖2)vvT + ‖v‖2vvT
)
V D−1

= 1
‖v‖2(1+‖v‖2)

D−1V
(
(2 + ‖v‖2)2I

− (2 + ‖v‖2)2I − (2 + 2‖v‖2 + ‖v‖4)vvT
)
V D−1

= 1
(1+‖v‖2)

D−1V
(
(2 + ‖v‖2)2I

− (2 + 2‖v‖2 + ‖v‖4)vvT
)
V D−1

Finally we have

Sv,v

= D−1
[
2I + ‖v‖4

1+‖v‖2 V
2 − ‖v‖4

1+‖v‖2 V vv
TV

− α2 (2+‖v‖2)2

1+‖v‖2 V
2

+ α2 2+2‖v‖2+‖v‖4
1+‖v‖2 V vvTV

]
D−1

= D−1
[
2I + ‖v‖4−α2(2+‖v‖2)2

1+‖v‖2 V
2

− ‖v‖
4−α2(2+2‖v‖2+‖v‖4)

1+‖v‖2 V vvTV
]
D−1

= 2D−1
[
A+ bvv

T
]
D−1 .

This ends the proof.

Proof of Proposition 3.5. In the main text, a suffi-
cient condition is derived:

α2 ≤ [‖v‖4 + (2− γ)(1 + ‖v‖2)/max(vj)]/(2 + ‖v‖2)2

α2 ≥ [‖v‖4 − (1− γ)γ(1 + ‖v‖2)]/(‖v‖4 + 2‖v‖2 + 2) .

It is obvious that the first inequality is satisfied by α in
(7). Therefore, we are going to show that the second one is
satisfied by this α.

First, notice that the RHS of the second inequality is
smaller than one. Therefore, the inequality holds if α = 1.
If α < 1, the inequality reduces to

α2 ≥ [‖v‖4 − (1− γ)γ(1 + ‖v‖2)]/(‖v‖4 + 2‖v‖2 + 2)

⇔[‖v‖4 + (2− γ)(1 + ‖v‖2)/max(vj)]/(2 + ‖v‖2)2

≥ [‖v‖4 − (1− γ)γ(1 + ‖v‖2)]/(‖v‖4 + 2‖v‖2 + 2)

⇔(‖v‖4 + 2‖v‖2 + 2)‖v‖4

+ (‖v‖4 + 2‖v‖2 + 2)(2− γ)(1 + ‖v‖2)/max(vj)

≥ (‖v‖4 + 4‖v‖2 + 4)‖v‖4

− (‖v‖4 + 4‖v‖2 + 4)(1− γ)γ(1 + ‖v‖2)

⇔− 2(1 + ‖v‖2)‖v‖4

+ (‖v‖4 + 2‖v‖2 + 2)(2− γ)(1 + ‖v‖2)/max(vj)

≥ −(‖v‖4 + 4‖v‖2 + 4)(1− γ)γ(1 + ‖v‖2)

⇔− 2‖v‖4 + (‖v‖4 + 2‖v‖2 + 2)(2− γ)/max(vj)

+ (‖v‖4 + 4‖v‖2 + 4)(1− γ)γ ≥ 0

⇐− 2‖v‖4 + (‖v‖4 + 2‖v‖2 + 2)(2− γ)

+ (‖v‖4 + 4‖v‖2 + 4)(1− γ)γ ≥ 0

⇔− (‖v‖4 + 4‖v‖2 + 4)γ2 + 2(1 + ‖v‖2)γ + 4(1 + ‖v‖2) ≥ 0

⇔(‖v‖2 + 2)2γ2 − 2(1 + ‖v‖2)γ − 4(1 + ‖v‖2) ≤ 0

By solving the right-most side inequality, we obtain the suf-
ficient condition for γ

(1 + ‖v‖2)−
√

(1 + ‖v‖2)2 + 4(2 + ‖v‖2)2(1 + ‖v‖2)

(2 + ‖v‖2)2
≤ γ

≤
(1 + ‖v‖2) +

√
(1 + ‖v‖2)2 + 4(2 + ‖v‖2)2(1 + ‖v‖2)

(2 + ‖v‖2)2
.

The LHS is negative, so γ = (1 + ‖v‖2)−1/2 satisfies the left
inequality. The RHS is

(1 + ‖v‖2) +
√

(1 + ‖v‖2)2 + 4(2 + ‖v‖2)2(1 + ‖v‖2)

(2 + ‖v‖2)2

>

√
4(‖v‖2 + 2)2(1 + ‖v‖2)

(2 + ‖v‖2)2
=

2
√

1 + ‖v‖2
2 + ‖v‖2

≥ 1√
1 + ‖v‖2

= γ .

Hence, the right inequality is satisfied. Therefore, the second
inequality is satisfied, which completes the proof.

Proof of Theorem 3.6. In the main text we have shown
that ∇̃m ln pθ(x) = x − m. We are going to show that

∇̃v ln pθ(x) = ‖v‖−1t and ∇̃θD ln pθ(x) = Ds with s and
t computed in step 4 and step 5.

The modified natural gradient w.r.t. θC is computed as

[
Iv,v αIv,D
αID,v ID,D

]−1 [∇v ln pθ(x)
∇θD ln pθ(x)

]
=

[
I−1
v,v∇v ln pθ(x)

0

]
+

[
−αI−1

v,vIv,D
I

]
· S−1

v,v

[
−ID,vαI−1

v,v I
] [∇v ln pθ(x)
∇θD ln pθ(x)

]
=

[
I−1
v,v∇v ln pθ(x)

0

]
+

[
−αI−1

v,vIv,D
I

]
S−1
v,v

·
(
∇θD ln pθ(x)− αID,vI−1

v,v∇v ln pθ(x)
)

=

[
I−1
v,v∇v ln pθ(x)

0

]
+

[
−αI−1

v,vIv,DD
I

]
D−1S−1

v,v

·D−1
(
D∇θD ln pθ(x)︸ ︷︷ ︸

=:s1

−αDID,v I−1
v,v∇v ln pθ(x)︸ ︷︷ ︸

=:t2/‖v‖

)
=

[
t2/‖v‖

0

]
+

[
−αI−1

v,vIv,DD
D

]
D−1S−1

v,vD
−1

· (s1 − (α/‖v‖)DID,vt2)︸ ︷︷ ︸
=:s3

=

[
t2/‖v‖

0

]
+

[
−αI−1

v,vIv,DD
D

]
D−1S−1

v,vD
−1s3︸ ︷︷ ︸

=:s4

=

t2/‖v‖ − αI−1
v,vIv,DDs4︸ ︷︷ ︸

=:t5/‖v‖
Ds4

 .

According to Lemma 3.1, it is easy to see that s1 is com-
puted by s in step 1. In the proof of Lemma 3.4, we have
derived the explicit forms of I−1

v,v. From this and Lemma 3.1,
we have

t2 = ‖v‖
(

1+‖v‖2
‖v‖2

[
I − (1−‖v‖2)

2
vvT

])
·
(
γ−1
v

[
〈y, v〉 y − γ−1

v (〈y, v〉2 + γv)v
])

= 1
‖v‖

[
I − (1−‖v‖2)

2
vvT

] [
〈y, v〉 y − γ−1

v (〈y, v〉2 + γv)v
]

= 1
‖v‖

[
〈y, v〉 y − γ−1

v (〈y, v〉2 + γv)v

− (1−‖v‖2)
2‖v‖ 〈y, v〉2 v + (1−‖v‖2)

2γv
(〈y, v〉2 + γv)v

]
= 1
‖v‖

[
〈y, v〉 y − (1−‖v‖2)

2‖v‖ 〈y, v〉2 v − 1
2
(〈y, v〉2 + γv)v

]
= 〈y, v〉 y − 2−1(〈y, v〉2 + γv)v .

Hence t2 = t in step 2. According to Lemma 3.2,

s3 = s1 − (α/‖v‖)γ−1
v V

[
(2 + ‖v‖2)I − vvT

]
t2

= s1 − αγ−1
v V

[
(2 + ‖v‖2)I − ‖v‖2vvT

]
t2

= s1 − αγ−1
v

[
(2 + ‖v‖2)v � t2 − ‖v‖2 〈v, t2〉 v

]
,

which is equivalent to s in step 3. According to Proposi-
tion 3.5,

s4 =
[
A−1 − (1 + bv

T
A−1v)−1bA−1vv

T
A−1

]
s3

= A−1s3 − (1 + bv
T
A−1v)−1b

〈
A−1v, s3

〉
A−1v

and s4 = s in step 4. In the proof of Lemma 3.4, we have
derived the explicit forms of I−1

v,vIv,D. With this, we have

t5 = t2 − α‖v‖
(

1
‖v‖2

[
(2 + ‖v‖2)I − vvT

]
V
)
s4

= t2 − α
[
(2 + ‖v‖2)I − vvT

]
V s4

= t2 − α
[
(2 + ‖v‖2)v � s4 −

〈
v, s4

〉
v
]
.

This is equivalent to t in step 5. Therefore, ∇̃v ln pθ(x) =

‖v‖−1t5 = ‖v‖−1t and ∇̃θD ln pθ(x) = Ds4 = Ds.

	Introduction
	Information Geometric Optimization and CMA-ES
	Information Geometric Optimization
	The CMA-ES Algorithm

	VD-CMA: a Linear Variant of CMA-ES for High Dimension Optimization
	Preliminaries
	Modified Fisher Information Matrix with Reduced Off-diagonal Blocks
	The VD-CMA Algorithm

	Experiments
	Discussion
	References
	Proofs

