
Tutorial: Covariance Matrix Adaptation (CMA)
Evolution Strategy

Nikolaus Hansen

Institute of Computational Science
ETH Zürich
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Einstein once spoke of the
“unreasonable effectiveness of
mathematics” in describing how the
natural world works. Whether one is
talking about basic physics, about the
increasingly important environmental
sciences, or the transmission of
disease, mathematics is never any
more, or any less, than a way of
thinking clearly. As such, it always has
been and always will be a valuable
tool, but only valuable when it is part
of a larger arsenal embracing analytic
experiments and, above all,
wide-ranging imagination.

Lord Kay
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Problem Statement and Problem Properties Black Box Optimization and Its Difficulties

Problem Statement
Continuous Domain Search/Optimization

Continuous domain, minimize fitness function

f : S ⊆ Rn → R
x 7→ f (x)

Black Box scenario
f(x)x

Typical Examples:
I shape optimization

curve fitting, airfoils
I model calibration

biological, physical
I parameter calibration

plants, controller, image matching
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Problem Statement and Problem Properties Black Box Optimization and Its Difficulties

Problem Properties

We assume f : S ⊂ Rn → R to have at least moderate dimensionality,
say n 6� 10, and to be non-linear, non-convex, and non-separable.

Additionally, f can be
multimodal
non-smooth
discontinuous
ill-conditioned
noisy
. . .

Goal: cope with these function properties that are related to real-world
problems
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Problem Statement and Problem Properties Black Box Optimization and Its Difficulties

What makes a problem hard?
Why randomized search?

ruggedness
non-smooth, discontinuous,

multimodal, and/or noisy function

dimensionality (considerably) larger than
three
non-separability
ill-conditioning
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Problem Statement and Problem Properties Black Box Optimization and Its Difficulties

Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to problems
caused by the rapid increase in volume associated with adding extra
dimensions to a (mathematical) space.

Consider placing 100 points onto a real interval, say [0, 1]. To get
similar coverage1 of the 10-dimensional space [0, 1]10 would require
10010 = 1020 points, while 100 points appear now as isolated points in
a vast empty space.

Consequently, a search policy (e.g. exhaustively sample the search
space volume) that is valuable in small dimensions might be useless in
moderate or large dimensional search spaces.

1coverage in terms of distance between adjacent points
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Problem Statement and Problem Properties Non-Separable Problems

Separable Problems
Definition (Separable Problem)
A function f is separable if(

arg min
x1

f (x1, . . .), . . . , arg min
xn

f (. . . , xn)

)
= arg min

(x1,...,xn)
f (x1, . . . , xn)

⇒ it follows that f can be optimized in a sequence
of n independent 1-D optimization processes

Example: Additively
decomposable functions

f (x1, . . . , xn) =
n∑

i=1

fi(xi)

Rastrigin function
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Problem Statement and Problem Properties Non-Separable Problems

Non-Separable Problems
Building a non-separable problem from a separable one

Rotating the coordinate system
f : x 7→ f (x) separable
f : x 7→ f (Rx) non-separable

R rotation matrix
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2
Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies:

The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann
3

Salomon (1996). ”Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A
survey of some theoretical and practical aspects of genetic algorithms.” BioSystems, 39(3):263-278
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Problem Statement and Problem Properties Ill-Conditioned Problems

Ill-Conditioned Problems

If f is quadratic, f : x 7→ xTHx, ill-conditioned means a high condition number of
Hessian Matrix H

ill-conditioned means “squeezed” lines of equal function value
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consider the curvature of iso-fitness lines
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Problem Statement and Problem Properties Ill-Conditioned Problems

Ill-Conditioned Problems
Example: A Narrow Ridge

Volume oriented search ends up in the pink area.
To approach the optimum an ill-conditioned problem needs to be
solved (e.g. by following the narrow bent ridge).4

4
Whitley, Lunacek, Knight 2004. Ruffled by Ridges: How Evolutionary Algorithms Can Fail, GECCO
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Problem Statement and Problem Properties Ill-Conditioned Problems

Implication of Ill-Conditioning

Consider the convex quadratic function
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f : Rn → R,

f (x) =
1
2
(x− x∗)T H(x− x∗)

where the Hessian H ∈ Rn×n is symmetric positive definite. We have f ≥ 0 (by
definition of positive definiteness) and the minimizer for f is x = x∗.
Differentiating the equation with respect to x yields

f ′(x) = (x− x∗)TH and after some rearrangement

f ′(x)T = Hx−Hx∗ H = HT , H linear

Hx∗ = Hx− f ′(x)T

x∗ = x−H−1f ′(x)T
H invertible

we have solved the equation for x∗ given x.
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Problem Statement and Problem Properties Ill-Conditioned Problems

The Benefit of Second Order Information

x∗ = x−H−1f ′(x)T

condition number of 9
condition numbers between

100 and even 106 are regularly
observed in real world

problems

gradient direction −f ′(x)T

Newton direction −H−1f ′(x)T

For H ≈ I (small condition number of H) first order information
(estimating the gradient) is sufficient to approach the optimum
effectively. Otherwise second order information (estimation of H−1)
is required.
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Problem Statement and Problem Properties Ill-Conditioned Problems

Second Order Approaches
An Overview

quasi-Newton method
conjugate gradients
trust region methods
surrogate model methods
linkage learning
correlated mutations (self-adaptation)
estimation of distribution algorithms

The mutual idea
capture dependencies between variables, a second-order model

. . . summary

Nikolaus Hansen (ETH) Tutorial: Covariance Matrix Adaptation (CMA) Evolution StrategyPPSN 2006 19 / 163



Problem Statement and Problem Properties Summary

What makes a problem hard?
Summary

ruggedness
addressed by ES-selection and recombination

dimensionality (considerably) larger than three
non-separability

addressed by covariance matrix adaptation (CMA)

ill-conditioning
addressed by CMA

. . . interface to real world problems
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Problem Statement and Problem Properties Problem Representation

Problem Encoding

A real world problem requires

a representation; the encoding of problem parameters into x ∈ S ⊂ Rn

the definition a fitness function f : x 7→ f (x) to be minimized

One might distinguish two approaches

Natural Encoding
Use a “natural” encoding and design the optimizer with respect to the problem e.g.
use of specific “genetic operators”

frequently done in discrete domain

Concerned Encoding
Put all problem specific knowledge into the encoding and use a “generic” optimizer

frequently done in continuous domain
Advantage: Sophisticated and well-validated optimizers (as CMA) can be used
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Problem Statement and Problem Properties Problem Representation

Linear Encoding and the Mutation Operator
Equivalence between change in encoding and transformation of the mutation operator

Let xB, xA ∈ Rn be two genotypes encoding the same phenotype

y = A xA = B xB

via the different linear transformations (matrices) A and B . The effect of the
different encodings becomes evident, when mutation is applied on the
genotype (by adding N ).

ynew = B (xB +N ) = B xB + BN
= A xA + A A−1BN
= A (xA + A−1BN )

ynew = A (xA + A−1BN )

Using a new encoding B means, in case of additive mutation, to introduce a
linear transformation A−1B for the mutation in encoding A . Because

A−1BN (0, C) ∼ N
(
0, A−1B C(A−1B )T)

this means using a different covariance matrix for the mutation operator.
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The CMA Evolution Strategy

The CMA Evolution Strategy
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The CMA Evolution Strategy

Randomized Search

A black box search template to minimize f : Rn → R
Initialize distribution parameters θ, set population size λ ∈ N
While not terminate

1 Sample distribution P (x|θ)→ x1, . . . , xλ ∈ Rn

2 Update parameters θ ← Fθ(θ, x1, . . . , xλ, f (x1), . . . , f (xλ))

Everything depends on the definition of P and Fθ (deterministic
algorithms are covered as well)

In the CMA evolution strategy

P is a multi-variate normal distribution N
θ = {m, C, σ}
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The CMA Evolution Strategy

1 Problem Statement and Problem Properties

2 The CMA Evolution Strategy
The Search Distribution
Covariance Matrix Rank-One Update
Covariance Matrix Rank-µ Update
Step-Size Control

3 Discussion

4 Empirical Validation

5 Miscellaneous
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The CMA Evolution Strategy The Search Distribution

Why Normal Distributions?

1 the isotropic distribution does not (unfoundedly) favor any direction
implies invariances

2 maximum entropy distribution with finite variance
there are the least possible assumptions on f in the

distribution shape

3 only stable distribution with finite variance
stable means the sum of normal variates is again

normal,
helpful in design and analysis of algorithms

4 most convenient way to generate isotropic search points
5 widely observed in nature, for example with phenotypic traits
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The CMA Evolution Strategy The Search Distribution

Normal Distribution
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The CMA Evolution Strategy The Search Distribution

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution N (m, C) is uniquely determined by its mean
value m ∈ Rn and its (symmetric positive definite) n× n covariance matrix C.

The mean value m

determines the displacement (translation)

is the value with the largest density (modal value)

the distribution is symmetric about the distribution
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The CMA Evolution Strategy The Search Distribution

The covariance matrix C determines the shape. It has a nice geometrical
interpretation: any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x ∈ Rn | xTC−1x = 1}

Lines of Equal Density

N
`
m, σ2I

´
∼ m + σN (0, I)

one free parameter σ
components of N (0, I)
are independent standard
normally distributed

N
`
m, D2´∼ m + DN (0, I)
n free parameters

components are
independent, scaled

N (m, C)∼ m + C
1
2N (0, I)

(n2 + n)/2 free parameters
components are
correlated

where I is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable
for separable problems) and A×N (0, I) ∼ N

`
0, AAT´ holds for all A.
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The CMA Evolution Strategy The Search Distribution

Sampling New Search Points
The Mutation Operator

New search points are sampled normally distributed

xi ∼ Ni
(
m, σ2C

)
= m + σNi(0, C) for i = 1, . . . , λ

where xi, m ∈ Rn, σ ∈ R+, and C ∈ Rn×n

where

the mean vector m ∈ Rn represents the favorite solution at
present
the so-called step-size σ ∈ R+ controls the step length
the covariance matrix C ∈ Rn×n determines the shape of
the distribution ellipsoid

The question remains how to update m, C, and σ.
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The CMA Evolution Strategy The Search Distribution

Update of the Distribution Mean m
Selection and Recombination

Given the i-th solution point xi = m + σ Ni(0, C)︸ ︷︷ ︸
=:zi

= m + σzi

Let xi:λ the i-th ranked solution point, such that f (x1:λ) ≤ · · · ≤ f (xλ:λ).

The new mean reads

m←
µ∑

i=1

wi xi:λ = m + σ

µ∑
i=1

wi zi:λ︸ ︷︷ ︸
=:〈z〉sel

where
w1 ≥ · · · ≥ wµ > 0,

∑µ
i=1 wi = 1

The best µ points (µ parents) are selected from the new solutions
(non-eletist) and weighted intermediate recombination is applied.
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The CMA Evolution Strategy Covariance Matrix Rank-One Update
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The CMA Evolution Strategy Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m ← m + σ〈z〉sel, 〈z〉sel =
∑µ

i=1 wi zi:λ, zi ∼ Ni(0, C)

new distribution,
C← 0.8× C + 0.2× 〈z〉sel〈z〉Tsel
the ruling principle: the adaptation increases the probability of success-
ful steps, 〈z〉sel, to appear again
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The CMA Evolution Strategy Covariance Matrix Rank-One Update

The covariance matrix adaptation

learns all pairwise dependencies between variables
off-diagonal entries in the covariance matrix reflect the

dependencies

learns a rotated problem representation (according to the
principle axes of the mutation ellipsoid)

components are independent (only) in the new
representation

learns a scaling of the independent components
in the new representation

conducts a principle component analysis (PCA) of steps 〈z〉sel, sequentially in time and
space

eigenvectors of the covariance matrix C are the principle
components / the principle axes of the mutation ellipsoid

achieves covariance matrix C ∝ H−1 on quadratic functions

is equivalent with an adaptive (general) linear encoding5

. . . equations
5

Hansen 2000, Invariance, Self-Adaptation and Correlated Mutations in Evolution Strategies, PPSN VI
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The CMA Evolution Strategy Covariance Matrix Rank-One Update

Preliminary Set of Equations
Covariance Matrix Adaptation with Rank-One Update

Initialize m ∈ Rn, σ ∈ R+, and C = I, set learning rate ccov ≈ 2/n2

While not terminate

xi = m + σ zi, zi ∼ Ni(0, C) ,

m ← m + σ〈z〉sel where 〈z〉sel =

µ∑
i=1

wi zi:λ

C ← (1− ccov)C + ccov
1∑µ

i=1 wi
2 〈z〉sel〈z〉Tsel︸ ︷︷ ︸

rank-one

. . . cumulation, rank-µ, step-size control
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The CMA Evolution Strategy Covariance Matrix Rank-One Update

Cumulation
The Evolution Path

Evolution Path
Conceptually, the evolution path is the path the strategy takes over a number of
generation steps. It can be expressed as a sum of consecutive steps of the mean m.

An exponentially weighted sum of
steps 〈z〉sel is used

pc ∝
gX

i=0

(1− cc)
g−i| {z }

exponentially

fading weights

〈z〉(i)
sel

The recursive construction method for the evolution path is referred to as cumulation.

pc ← (1− cc)| {z }
decay factor

pc +
p

1− (1− cc)2√µeff| {z }
normalization factor

〈z〉sel|{z}
input

where µeff = 1P
wi2 , cc � 1. History information is accumulated in the evolution path.
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The CMA Evolution Strategy Covariance Matrix Rank-One Update

Cumulation is a common technique and also named

exponentially weighted mooving average
exponential smoothing (time series, forecasting)
iterate averaging (stochastic approximation)
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The CMA Evolution Strategy Covariance Matrix Rank-One Update

Cumulation
Utilizing the Evolution Path

We used 〈z〉sel〈z〉Tsel for updating C. Because 〈z〉sel〈z〉Tsel = −〈z〉sel(−〈z〉sel)
T the sign of

〈z〉sel is neglected. The sign information is (re-)introduced by using the evolution path.

pc ← (1− cc)| {z }
decay factor

pc +
p

1− (1− cc)2√µeff| {z }
normalization factor

〈z〉sel

where µeff = 1P
wi2 , cc � 1.
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The CMA Evolution Strategy Covariance Matrix Rank-One Update

variance effective selection mass µeff

m ← m + σ〈z〉sel =
Pµ

i=1 wi xi:λ

pc ← (1− cc)| {z }
decay factor

pc +
p

1− (1− cc)2√µeff| {z }
normalization factor

〈z〉sel

µeff =
1Pµ

i=1 wi
2 where

µX
i=1

wi = 1, w1 ≥ w2 ≥ · · · ≥ wµ > 0

is termed variance effective selection mass. It holds

1 ≤ µeff ≤ µ

it holds µeff = µ (the number of selected points) if and only if w1 = w2 = · · · = wµ.
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The CMA Evolution Strategy Covariance Matrix Rank-One Update

〈z〉sel =
Pµ

i=1 wi zi:λ where zi ∼ Ni(0, C)
µeff = 1Pµ

i=1 wi2

pc ← (1− cc) pc +
p

1− (1− cc)2√µeff 〈z〉sel

We discuss the choice of normalization constants
√

µeff and
p

1− (1− cc)2.
Under random selection the input for pc

√
µeff 〈z〉sel =

1pPµ
i=1 wi

2

µX
i=1

wi zi:λ

∼ 1pPµ
i=1 wi

2

µX
i=1

wiNi(0, C) random selection, zi:λ ∼ N(0, C)

∼ 1pPµ
i=1 wi

2
N

 
0,

µX
i=1

wi
2C

!
Ni() independent

∼ N (0, C)
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The CMA Evolution Strategy Covariance Matrix Rank-One Update

pc ← (1− cc)| {z }
decay factor

pc +
p

1− (1− cc)2√µeff 〈z〉sel| {z }
∼N(0,C)

The factor
p

1− (1− cc)2 accounts for 1− cc such that

(1− cc)
2 +

p
1− (1− cc)2

2
= 1

Therefore pc ∼ N (0, C) given previously pc ∼ N (0, C) and
√

µeff 〈z〉sel ∼ N (0, C)
independently.

. . . cumulation in update of C
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The CMA Evolution Strategy Covariance Matrix Rank-One Update

Preliminary Set of Equations (2)
Covariance Matrix Adaptation, Rank-One Update with Cumulation

Initialize m ∈ Rn, σ ∈ R+, C = I, and pc = 0 ∈ Rn,
set cc ≈ 4/n, ccov ≈ 2/n2

While not terminate

xi = m + σ zi, zi ∼ Ni(0, C) ,

m ← m + σ〈z〉sel where 〈z〉sel =

µ∑
i=1

wi zi:λ

pc ← (1− cc) pc +
√

1− (1− cc)2√µeff 〈z〉sel

C ← (1− ccov)C + ccov pc pc
T︸ ︷︷ ︸

rank-one

. . .O(n2) toO(n)
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The CMA Evolution Strategy Covariance Matrix Rank-One Update

Using an evolution path for the rank-one update of the covariance
matrix reduces the number of function evaluations to adapt to a
straight ridge from O(n2) to O(n).a

a
Hansen, Müller and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with

Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18

remark: the overall model complexity is n2 but we can learn important
parts of the model in time of order n

. . . remark on learning rates
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The CMA Evolution Strategy Covariance Matrix Rank-One Update

A Remark on Learning Rates

pc ← (1− cc) pc + . . .

The parameters cc ≈ 4
n ≤ 1 and ccov ≤ 1 are learning rates. The larger they are,

the faster the learning takes place.

I for cc = 1 the previous information is completely disregarded
I there can be a trade-off between fast and reliable adaptation

The reciprocal of the learning rate, e.g. 1
cc
≈ n

4 , can be interpreted as backward
time horizon, or life span, or amount information stored in pc .

I approximately 37% (≈ exp(−1)) of the information in pc is older than
the backward time horizon of n/4 generations

I approximately 63% of the information has vanished after n/4
generation steps and therefore replaced by newer information

. . . rank-µ update
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The CMA Evolution Strategy Covariance Matrix Rank-µ Update

Rank-µ Update

xi = m + σ zi, zi ∼ Ni(0, C) ,
m ← m + σ〈z〉sel 〈z〉sel =

Pµ
i=1 wi zi:λ

The rank-µ update extends the update rule for large population sizes
using µ > 1 vectors to update C at each generation step.
The matrix

Z =

µ∑
i=1

wi zi:λzT
i:λ

computes a weighted mean of the outer products of the best µ steps
and has rank min(µ, n) with probability one.
The rank-µ update then reads

C← (1− ccov) C + ccov Z

where ccov ≈ µeff /n2 ≤ 1.
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The CMA Evolution Strategy Covariance Matrix Rank-µ Update

xi = m + σ zi, zi ∼ N (0, C)

sampling of λ = 150
solutions where
C = I and σ = 1

Z = 1
µ

P
zi:λzT

i:λ
C ← (1− 1)× C + 1× Z

calculating C where
µ = 50,

w1 = · · · = wµ = 1
µ ,

and ccov = 1

mnew ← m + 1
µ

P
zi:λ

new distribution

. . . combined rank-one rank-µ update
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The CMA Evolution Strategy Covariance Matrix Rank-µ Update

rank-µ CMA versus EMNAglobal
6

xi = mold + zi, zi ∼ N (0, C)

xi = mold + zi, zi ∼ N (0, C)

sampling of λ = 150
solutions (dots)

C← 1
µ

P
(xi:λ−mold)(xi:λ−mold)T

C← 1
µ

P
(xi:λ−mnew)(xi:λ−mnew)T

calculating C from µ = 50
solutions

mnew = mold + 1
µ

P
zi:λ

mnew = mold + 1
µ

P
zi:λ

new distribution

rank-µ CMA
conducts a
PCA of
steps

EMNAglobal

conducts a
PCA of
points

The CMA-update yields a larger variance in particular in gradient direction, because mnew is the
minimizer for the variances when calculating C

6
Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larranga, I. Inza and E.

Bengoetxea (Eds.). Towards a new evolutionary computation. Advances in estimation of distribution algorithms. pp. 75-102
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The CMA Evolution Strategy Covariance Matrix Rank-µ Update

Rank-one update and rank-µ update can be combined:

C = (1− ccov) C +
ccov

µcov
pc pc

T︸ ︷︷ ︸
rank-one

+ccov

(
1− 1

µcov

)
Z︸︷︷︸

rank-µ

where µcov = µeff .

. . . summary rank-µ
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The CMA Evolution Strategy Covariance Matrix Rank-µ Update

In summary

The rank-µ update

increases the possible learning rate in large populations
roughly from 2/n2 to µeff /n2

reduces the number of necessary generations roughly from
O(n2) to O(n)7

given µeff ∝ λ ∝ n

Therefore the rank-µ update is the primary mechanism whenever a
large population size is used

say λ ≥ 3 n + 10

The rank-one update
uses the evolution path and can learn straight ridges in O(n)
rather than O(n2) function evaluations.

7
Hansen, Müller and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with

Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18
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The CMA Evolution Strategy Covariance Matrix Rank-µ Update

Preliminary Set of Equations (3)
Rank-One Update with Cumulation, Rank-µ Update

Initialize m ∈ Rn, σ ∈ R+, C = I, and pc = 0,
set cc ≈ 4/n, ccov ≈ µeff /n2, µcov = µeff
While not terminate

xi = m + σ zi, zi ∼ Ni(0, C) , sampling

m ← m + σ〈z〉sel where 〈z〉sel =
∑µ

i=1 wi zi:λ update mean

pc ← (1− cc) pc +
√

1− (1− cc)2√µeff 〈z〉sel cumulation for C

C ← (1− ccov) C update C

+ ccov
1

µcov
pc pc

T

+ ccov

(
1− 1

µcov

)
Z where Z =

∑µ
i=1 wi zi:λzT

i:λ

Missing: update of σ
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The CMA Evolution Strategy Step-Size Control

Why Step-Size Control?

1 the covariance matrix update can hardly increase the variance in all directions
simultaneously (that is, the overall scale of search, the global step-size, cannot
be increased effectively).

increasing the global step-size is usually required
after the shape of the distribution has adapted to

the function topography

2 There is a relatively small evolution window for the step-size 10−3 10−2 10−1 100
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ss

normalized step size . Given
µ 6� n the optimal step length remarkably depends on parent number µ. The
classical progress theory yields

σopt ∝
µ

n
for intermediate multi-recombination, as applied in

CMA, and equal recombination weights
The length of the selected step(s) does not depend on µ in an according way.
Therefore, the C-update cannot achieve close to optimal step lengths for a wide
range of µ.
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The CMA Evolution Strategy Step-Size Control

Why Step-Size Control?

10−3 10−2 10−1 100
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normalized step size

evolution window for the step-size
on the sphere function

evolution window refers to the
step-size interval where
reasonable performance is
observed
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The CMA Evolution Strategy Step-Size Control

3 The learning rate ccov ≈ µeff /n2 does not comply with the requirements of
convergence speed on the sphere model, f (x) =

P
x2

i . On the sphere model at
least

C← C× exp
„
−0.1 λ

n

«
is required to get competitive progress, given λ < n. The very best we can hope
for from the C-update is

C ← (1− ccov)× C
≈ exp(−ccov)× C

≈ exp
“
−µeff

n2

”
× C

≈ exp
„
−0.3 λ

n2

«
× C .

Each single reason would be sufficient to ask for additional step-size control in an
evolutionary algorithm

. . . methods for step-size control
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The CMA Evolution Strategy Step-Size Control

Methods for Step-Size Control

1/5-th success rulea, applied with “+”-selection

I increase step-size if more than 20% of the new solutions are successful,
decrease otherwise

I used in the (1 + λ)-CMA-ESbc

σ-self-adaptationd, applied with “,”-selection
I mutation is applied to the step-size and the better one, according to the

fitness function value, is selected

path length controle (cumulative step-size adaptation, CSA)f, applied with
“,”-selection

I preferably used in the CMA evolution strategy

a
Rechenberg 1973, Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der biologischen Evolution,

Frommann-Holzboog
b

Igel et al 2006. A Computational Efficient Covariance Matrix Update and a (1+1)-CMA for Evolution Strategies. GECCO
2006

c
Igel et al 2006, Covariance Matrix Adaptation for Multi-objective Optimization. Evolutionary Computation Journal

d
Schwefel 1981, Numerical Optimization of Computer Models, Wiley

e
Hansen & Ostermeier 2001. Completely Derandomized Self-Adaptation in Evolution Strategies, Evol. Comput. 9(2)

f
Ostermeier et al 1994, Step-size adaptation based on non-local use of selection information, PPSN IV
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The CMA Evolution Strategy Step-Size Control

Path Length Control
The Concept xi = m + σ zi

m ← m + σ〈z〉sel

Measure the length of the evolution path
the pathway of the mean vector m in the generation sequence

↓
decrease σ

↓
increase σ

loosely speaking steps are

perpendicular under random selection (in expectation)

perpendicular in the desired situation (to be most efficient)
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The CMA Evolution Strategy Step-Size Control

Path Length Control
The Equations

Initialize m ∈ Rn, σ ∈ R+, C, evolution path pσ = 0,
set cσ ≈ 4/n, dσ ≈ 1.

xi = m + σ zi, zi ∼ Ni(0, C) , sampling

m ← m + σ〈z〉sel where 〈z〉sel =
∑µ

i=1 wi zi:λ update mean

pσ ← (1− cσ) pσ +
√

1− (1− cσ)2︸ ︷︷ ︸
accounts for 1−cσ

√
µeff︸ ︷︷ ︸

accounts for wi

C−
1
2 〈z〉sel

σ ← σ × exp
(

cσ

dσ

(
‖pσ‖

E‖N (0, I) ‖
− 1

))
︸ ︷︷ ︸

>1⇐⇒ ‖pσ‖ is greater than its expectation

update step-size

where
√

C−1 = C−
1
2 =
√

C−1
is symmetric positive definite
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The CMA Evolution Strategy Step-Size Control

〈z〉sel =
Pµ

i=1 wi zi:λ zi ∼ Ni(0, C)

pσ ← (1− cσ) pσ +
p

1− (1− cσ)2√µeff C−
1
2 〈z〉sel

σ ← σ × exp
“

cσ
dσ

“
‖pσ‖

E‖N(0,I)‖ − 1
””

We have
√

µeff C−
1
2 〈z〉sel = C−

1
2
√

µeff 〈z〉sel and√
µeff 〈z〉sel ∼ N (0, C) under random selection.

The expected length (norm) of a N (0, C) vector may
strongly depend on its orientation.

The transformation C−
1
2 aligns all directions, because

C−
1
2N (0, C) ∼ C−

1
2 C

1
2N (0, I) ∼ N (0, I)

becomes isotropic.
Therefore, under random selection the input for pσ

√
µeff C−

1
2 〈z〉sel ∼ N (0, I)

becomes isotropic, and ‖pσ‖ can be compared to E‖N (0, I) ‖ ≈
√

n.

. . . advantages of path length control
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The CMA Evolution Strategy Step-Size Control

Advantages of path length control

on the sphere function (and therefore on any quadratic function after
covariance matrix adaptation has taken place) the target step length is
close to optimal independent of parent number µ and of the
recombination weights wi

for µeff > 1 and λ 6� n the path length control has a considerably larger
target step length than σ-self-adaptation8

prevents premature convergence
a missing control of the overall population variance
(spread) is probably the most recurrent reason for

premature convergence

disadvantage: the expected length of the evolution path needs to be known

8
Hansen 1998, Verallgemeinerte individuelle Schrittweitenregelung in der Evolutionsstrategie. Eine Untersuchung zur

entstochastisierten, koordinatensystemunabhängigen Adaptation der Mutationsverteilung. PhD thesis
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The CMA Evolution Strategy Step-Size Control

Summary of Equations
The Covariance Matrix Adaptation Evolution Strategy

Initialize m ∈ Rn, σ ∈ R+, C = I, and pc = 0, pσ = 0,
set cc ≈ 4/n, cσ ≈ 4/n, ccov ≈ µeff /n2, µcov = µeff , dσ ≈ 1 +

√
µeff

n ,
λ, and wi, i = 1, . . . , µ such that µeff ≈ 0.3 λ, where µeff = 1Pµ

i=1 wi
2

While not terminate
xi = m + σ zi, zi ∼ Ni(0, C) , sampling

m ← m + σ〈z〉sel where 〈z〉sel =
∑µ

i=1 wi zi:λ update mean

pc ← (1− cc) pc + 1I{‖pσ‖<1.5
√

n}
√

1− (1− cc)2√µeff 〈z〉sel cumulation for C

C ← (1− ccov) C + ccov
1

µcov
pc pc

T update C

+ ccov

(
1− 1

µcov

)
Z where Z =

∑µ
i=1 wi zi:λzT

i:λ

pσ ← (1− cσ) pσ +
√

1− (1− cσ)2√µeff C− 1
2 〈z〉sel cumulation for σ

σ ← σ × exp
(

cσ

dσ

(
‖pσ‖

E‖N(0,I)‖ − 1
))

update of σ

. . . CMA in a nutshell
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The CMA Evolution Strategy Step-Size Control

Summary of Mechanisms
Covariance Matrix Adaptation ES in a Nutshell

1 Multivariate normal distribution to generate new search points
follows the maximum entropy principle

2 Selection only based on the ranking of the f -values, weighted
recombination

using only the ranking of f -values in CMA
preserves invariance

3 Covariance matrix adaptation (CMA) increases the probability to
repeat successful steps

conducts a sequential PCA
=⇒ rotated problem representation

=⇒ learning all pairwise dependencies

4 Path length control controls the step length
uses the evolution path,

aims at conjugate perpendicularity,
non-local criterion
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The CMA Evolution Strategy Step-Size Control

Adaptation of the Covariance Matrix
What do we want to achieve specifically?

f (x) = xTHx→ f (x) = xTx

reduce any convex quadratic function to the sphere model
without use of derivatives

C ∝ H−1

lines of equal density align with lines of equal fitness for quadratic f
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The CMA Evolution Strategy Step-Size Control

Experimentum Crucis (1)
f convex quadratic, separable
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function evaluations
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function evaluations

f (x) =
∑n

i=1 106 i−1
n−1 x2

i
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The CMA Evolution Strategy Step-Size Control

Experimentum Crucis (2)
f convex quadratic, non-separable (rotated)
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abs(f) (blue), f−min(f) (cyan), Sigma (green), Axis Ratio (red)
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function evaluations

f (x) = g
(
xTHx

)
, g : R→ R stricly monotonic =⇒ C ∝ H−1 for all g, H

. . . internal parameters
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Discussion

1 Problem Statement and Problem Properties

2 The CMA Evolution Strategy

3 Discussion
Strategy Internal Parameters
Key Points and Design Principles

4 Empirical Validation

5 Miscellaneous
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Discussion Strategy Internal Parameters

Strategy Internal Parameters
related to selection and recombination

I λ, offspring number, new solutions sampled, population size
I µ, parent number, solutions involved in updates of m, C, and σ
I wi=1,...,µ, recombination weights

µ and wi should be chosen such that the variance
effective selection mass µeff ≈ λ

4 , where
µeff := 1/

Pµ
i=1 wi

2.

related to C-update
I ccov, learning rate for C-update
I cc, learning rate for the evolution path
I µcov, weight for rank-µ update versus rank-one update

related to σ-update
I cσ , learning rate of the evolution path
I dσ , damping for σ-change

Parameters were identified in carefully chosen experimental set ups. Parameters do not in the
first place depend on the fitness function and are not meant to be in the users choice.
Only(?) the population size λ might be reasonably varied in a wide range, depending on the fitness
function
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Discussion Population Size

Population Size on Unimodal Functions

On unimodal functions the performance degrades at most linearly with
increasing population size.

most often a small population size, λ ≤ 10, is optimal
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Discussion Population Size

Population Size on Multi-Modal Functions
Success Probability to Find the Global Optimum

10 100 1000
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Shown: success rate versus offspring population size on the highly multi-modal
Rastrigins function9

On multi-modal functions increasing the population size can sharply
increase the success probability to find the global optimum

9
Hansen & Kern 2004. Evaluating the CMA Evolution Strategy on Multimodal Test Functions. PPSN VIII, Springer-Verlag,

pp. 282-291.
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Discussion Population Size

Multistart With Increasing Population Size
Increase by a Factor of Two Each Restart

1 no performance loss, where small population size is sufficient (e.g.
on unimodal functions)

2 moderate performance loss, if large population size is
necessary loss has an upper bound
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x 10
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2

evaluations

fit
ne

ss

for a factor between
successive runs of ≥ 1.5 we
have a performance loss
smaller than∑∞

k=0 1/1.5k = 3

This results in a quasi parameter free search algorithm.

. . . design principles
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Discussion Key Points and Design Principles

Key Points and Design Principles
Key Points

Adaptation of a step-size σ, and different adaptation principles for C and
σ.

I the update of m and C follows the maximum likelihood principle

choose m such that Prob
(

xsel| N
(
m, σ2C

))
−→ max

update C such that Prob
(

xsel −mold

σ

∣∣∣∣N (0, C)

)
−→ max

under consideration of the prior C

I the update of σ aims at conjugate perpendicularity of consecutive
steps ∆m

prevents premature convergence
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Discussion Key Points and Design Principles

Key Points

separate learning rates for m, C, and σ

I m is set to the best recent points. No prior information is used.
the learning rate is determined by λ and µeff

I C is controlled by the learning rate ccov ≈ µeff /n2. Usually much
prior information is preserved, some is depleted.

I σ is changed on a time scale of ∝ n generations to achieve
competitive performance on the sphere model.

yield reliable parameter adaptation to complex topologies with a small
population while the performance on simple functions (where the
adaptation is superfluous) is not effected

the population size can be set without reference to learning reliability for
the distribution.

I in contrast, the learning reliability of most EAs, that learn a
distribution, decisively depends on population size (and fitness
function)
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Discussion Key Points and Design Principles

Design Principles

stationarity for m, C, and σ under random selection. The
parameters are not subject to a systematic drift, means they are
unbiased in that

I E(m|mold) = mold m← mold + σ〈z〉sel
I E(C|Cold) = Cold
I E(log σ|σold) = log σold

this implies E(log σα|σold) = log σα
old for all α > 0

and E(σα|σold) ≥ σα
old

the least possible parameter tuning requirement, given a specific
problem to solve

the (initial) search space region needs to be
specified (initial setting of m and σ)

eventually stopping criteria need to be
accommodated

achieve or preserve as many invariances as possible

Nikolaus Hansen (ETH) Tutorial: Covariance Matrix Adaptation (CMA) Evolution StrategyPPSN 2006 112 / 163



Discussion Invariance

Invariance
Motivation

empirical performance results, for example
I from benchmark functions,
I from solved real world problems,

are only useful if they do generalize to other problems

Invariance is a strong non-empirical statement about the
feasibility of generalization

generalizing (identical) performance from a single
function to a whole class of functions
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Discussion Invariance

Basic Invariance in Search Space

translation invariance
is true for most optimization algorithms

��
��
��

��
��
��

f (x)↔ f (x− a)

��
��
��

��
��
��

Identical behavior on f and fa

f : x 7→ f (x), x(t=0) = x0

fa : x 7→ f (x− a), x(t=0) = x0 + a

No difference can be observed w.r.t. the argument of f

Only useful if the initial point is not decisive
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Discussion Invariance

Invariance in Function Space

invariance to order preserving transformations
preserved by ranking based selection
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f (x)↔ g(f (x)) −10 −5 0 5 10
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Identical behavior on f and g ◦ f for all order preserving
g : R→ R (strictly monotonically increasing g)

f : x 7→ f (x), x(t=0) = x0

g ◦ f : x 7→ g(f (x)), x(t=0) = x0

No difference can be observed w.r.t. the argument of f
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Discussion Invariance

Rotational Invariance in Search Space

invariance to an orthogonal transformation R, where RRT = I
e.g. true for simple evolution strategies

recombination operators might jeopardize rotational
invariance

��
��
��

��
��
��

f (x)↔ f (Rx)

�
�

�
�

�
�

�
�

�
�

�
�

Identical behavior on f and fR

f : x 7→ f (x), x(t=0) = x0

fR : x 7→ f (Rx), x(t=0) = R−1(x0)

No difference can be observed w.r.t. the argument of f
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Discussion Invariance

Invariances in Search Space

invariance to any rigid (scalar product preserving) transformation
in search space x 7→ Rx− a, where RRT = I

e.g. true for simple evolution strategies

scale invariance (scalar multiplication)
exploited by step-size control

invariance to a general linear transformation G
exploited by CMA

Identical behavior on f and fG

f : x 7→ f (x), x(t=0) = x0, C(t=0) = I
fG : x 7→ f (G(x− b)), x(t=0) = G−1x0 + b, C(t=0) = G−1G−1T

No difference can be observed w.r.t. the argument of f

Only useful with an effective adaptation of C
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Discussion Invariance

Invariance
Summary

Invariance introduces equivalence classes of functions, where
identical performance must be observed on a complete function
class
Invariance is a strong non-empirical statement about the
feasibility of generalization

rotation has n2−n
2 free parameters

The CMA Evolution Strategy inherits all invariances from simple
evolution strategies (to rigid transformations of the search space
and to order preserving transformations of the function value)
The CMA adds invariance to general linear transformations

only useful together with the effective adaptation of
the covariance matrix
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Discussion Normal Distribution Revisited

Normal Distribution Revisited

While the maximum likelihood of the
multi-variate normal distribution N (0, I) is at
zero, the distribution of its norm ‖N (0, I) ‖
reveals a different, surprising picture.
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Empirical Validation

1 Problem Statement and Problem Properties

2 The CMA Evolution Strategy

3 Discussion

4 Empirical Validation
Performance Evaluation
A Comparison Study

5 Miscellaneous
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Empirical Validation Performance Evaluation

Performance Evaluation
Evaluation of the performance of a search algorithm needs

meaningful quantitative measure on benchmark functions or real
world problems

acknowlegde invariance properties

account for meta-parameter tuning

account for algorithm internal cost, depending on the fitness
function cost
On a 2.5GHz processor our CMA-ES implementation needs

I roughly 3× 10−8(n + 4)2 seconds per function evaluation
I for one million function evaluations roughly

n time
10 5s
30 30s

100 300s
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Empirical Validation Performance Evaluation

Performance Measure

We have to record
goodness of the solution

the fitness function
value

cost of search
number of function

evaluations

fix one and measure the other
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Empirical Validation Performance Evaluation

Performance Measure

fixed number of function evaluations
vertical view

measure: statistics of fitness function values
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advantages

fixing the number of function evaluations is easy

disadvantages

assessment of short runs, i.e. runs that reach the global optimum before the
given number of function evaluations

the result is usually not a quantitative measure
ordinal (rank) scale is available,

ratio scale (“A is twice as good as B”) would be
desired
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Empirical Validation Performance Evaluation

Performance Measure

fixed function value
horizontal view

measure: statistics of the number of function
evaluations
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advantages

comprehensible and well interpretable measure
measuring the cost

quantitative measure (on the ratio scale)

algorithm-internal CPU costs can be easily included

disadvantages

assessment of “long” runs that do not obtain the given function value
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Empirical Validation A Comparison Study

A Comparison Study With 11 Evolutionary Algorithms
Methods

task: black-box optimization of 25 benchmark functions
25 runs on each benchmark function for each dimension n = 10, 30

a run is successful if the global optimum is reached with the
given precision, before the
maximum number of function evaluations

FEmax =

{
105 for n = 10

3× 105 for n = 30
is reached

Remark: the setting of FEmax has a remarkable influence on the results, if the target function value can be reached
only for a (slightly) larger number of function evaluations with a high probability.

Where FEs ≥ FEmax the result must be taken with great care.

Reference

Suganthan, Hansen, Liang, Deb, Chen, Auger, and Tiwari (2005). Problem Definitions and Evaluation Criteria for the
CEC 2005 Special Session on Real-Parameter Optimization, Technical report, Nanyang Technological University,
Singapore, May 2005, http://www.ntu.edu.sg/home/EPNSugan
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Empirical Validation A Comparison Study

References to Algorithms

BLX-GL50 Garcı́a-Martı́nez and Lozano (Hybrid Real-Coded. . . )
BLX-MA Molina et al. (Adaptive Local Search. . . )
CoEVO Pošı́k (Real-Parameter Optimization. . . )
DE Rönkkönen et al. (Real-Parameter Optimization. . . )
DMS-L-PSO Liang and Suganthan (Dynamic Multi-Swarm. . . )
EDA Yuan and Gallagher (Experimental Results. . . )
G-CMA-ES Auger and Hansen (A Restart CMA. . . )
K-PCX Sinha et al. (A Population-Based,. . . )
L-CMA-ES Auger and Hansen (Performance Evaluation. . . )
L-SaDE Qin and Suganthan (Self-Adaptive Differential. . . )
SPC-PNX Ballester et al. (Real-Parameter Optimization. . . )

In: CEC 2005 IEEE Congress on Evolutionary Computation, Proceedings
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Empirical Validation A Comparison Study

Summarized Results
Empirical Distribution of Normalized Success Performance
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n = 30
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FEs = mean(#fevals)× #all runs (25)
#successful runs , where #fevals includes only successful runs.

Shown: empirical distribution function of the Success Performance FEs divided by FEs of the
best algorithm on the respective function.

Results of all functions are used where at least one algorithm was successful at least once, i.e. where the target
function value was reached in at least one experiment (out of 11× 25 experiments).

Small values for FEs and therefore large (cumulative frequency) values in the graphs are
preferable.
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Empirical Validation A Comparison Study

Function Sets

We split the function set into three subsets
unimodal functions
solved multimodal functions

at least one algorithm conducted at least one
successful run

unsolved multimodal functions
no single run was successful for any algorithm
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Empirical Validation A Comparison Study

Unimodal Functions
Empirical Distribution of Normalized Success Performance

n = 10

100 101 1020

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  G−CMA−ES 

 EDA

 DE

 L−CMA−ES 

 L−SaDE 

 DMS−L−PSO 

 BLX−GL50 

 SPC−PNX

 K−PCX 

 CoEVO

 BLX−MA 

FEs / FEsbest

em
pi

ric
al

 d
ist

rib
ut

io
n 

ov
er

 u
ni

m
od

al
 fu

nc
tio

ns

n = 30
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Empirical distribution function of the Success Performance FEs divided by FEs of the best
algorithm (table entries of last slides).
FEs = mean(#fevals)× #all runs (25)

#successful runs , where #fevals includes only successful runs.

Small values of FEs and therefore large values in the empirical distribution graphs are preferable.
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Empirical Validation A Comparison Study

Multimodal Functions
Empirical Distribution of Normalized Success Performance
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n = 30
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Empirical distribution function of the Success Performance FEs divided by FEs of the best
algorithm (table entries of last slides).
FEs = mean(#fevals)× #all runs (25)

#successful runs , where #fevals includes only successful runs.

Small values of FEs and therefore large values in the empirical distribution graphs are preferable.
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Empirical Validation A Comparison Study

Comparison Study
Conclusion

The G-CMA-ES seems superior from three perspectives
I performed best over all functions and on the function subsets

F unimodal functions
F solved multimodal functions
F unsolved multimodal functions

I no parameter tuning were conducted
I most invariance properties together with EDA and K-PCX

on two separable problems it is considerably outperformed
The CMA-ES contradicts two myths

I Myth 1: adaptation (of the covariance matrix) to the (local) function
topography jeopardizes global search properties

I Myth 2: a single peak multi-variate Gaussian distribution must be
inferior in solving multi-modal (global) optimization problems

the curse of dimensionality limits the effectiveness
of multimodal search distributions, and clustering or

niching approaches
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Conclusion

Overall Conclusion
The Take Home Message

Important features of the CMA evolution strategy
I learns second order information efficiently and reliably with small and large

population size
I invariance to order preserving transformations of f and invariance to rigid

search space transformations
I quasi parameter free

CMA-ES is a robust local search algorithm
I BFGS is roughly ten times faster on convex quadratic f
I CMA is much more robust in a non-convex or rugged search landscape

CMA-ES is a robust global search algorithm
empirically outperformes most EAs on most

functions

More than 50 (successful) real-world applications
easily applicable and often successful

Ongoing research
I multiobjective CMA
I CMA in uncertain environments
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Conclusion
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Tutorial

Source code in Matlab, Octave and Java

For all this ... see
http://www.bionik.tu-berlin.de/user/niko/
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Conclusion

Thank You
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Miscellaneous

Determining Learning Rates
Learning rate for the covariance matrix
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f (x) = xTx = ‖x‖2 =∑n
i=1 x2

i ,
optimal condition number
for C is one,
initial condition number of
C equals 104

shown are single runs

x-axis: learning rate for the covariance matrix
y-axis: square root of final condition number of C (red),
number of function evaluations to reach fstop (blue)
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Miscellaneous Determining Learing Rates

Determining Learning Rates
Learning rate for the covariance matrix
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learning rates can be
identified on simple
functions

exploiting invariance
properties

the outcome depends on
the problem dimensionality
the specific fitness function
is rather insignificant

x-axis: factor for learning rate for the covariance matrix
y-axis: square root of final condition number of C (red),
number of function evaluations to reach fstop (blue)

. . . step size control
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Miscellaneous EMNA versus CMA

EMNA versus CMA

Both algorithms use the same sample distribution

xi = m + σ zi, zi ∼ Ni(0, C)

In EMNAglobal σ ≡ 1 and

m← 1
µ

µ∑
i=1

xi:λ

C← 1
µ

µ∑
i=1

(xi:λ −m)(xi:λ −m)T

In CMA, for ccov = 1, with rank-µ
update only

m←
µ∑

i=1

wi xi:λ

C←
µ∑

i=1

wi zi:λzT
i:λ

where zi:λ = xi:λ−mold
σ
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Miscellaneous EMNA versus CMA

xi = mold + zi, zi ∼ N (0, C)

xi = mold + zi, zi ∼ N (0, C)

sampling of λ = 150
solutions (dots) where

C = I and σ = 1

C← 1
µ

P
(xi:λ−mold)(xi:λ−mold)T

C← 1
µ

P
(xi:λ−mnew)(xi:λ−mnew)T

calculating C where
µ = 50,

w1 = · · · = wµ = 1
µ

, and
ccov = 1

mnew = mold + 1
µ

P
zi:λ

mnew = mold + 1
µ

P
zi:λ

new distribution

rank-µ CMA
conducts a
PCA of
steps

EMNAglobal

conducts a
PCA of
points

the CMA-update yields a larger variance in particular in gradient direction
mnew is the minimizer for the variances when

calculating C
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