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ABSTRACT ARTICLE HISTORY

We introduce COCO, an open-source platform for Comparing Contin- Received 17 June 2019
uous Optimizers in a black-box setting. COCO aims at automatizing  Accepted 8 August 2020
the tedious and repetitive task of benchmarking numerical optimiza- KEYWORDS

tion algorithms to the greatest possible extent. The platform and the Numerical optimization;
underlying methodology allow to benchmark in the same framework black-box optimization;
deterministic and stochastic solvers for both single and multiobjec- derivative-free optimization;
tive optimization. We present the rationals behind the (decade-long) benchmarking; performance
development of the platform as a general proposition for guidelines assessment; test functions;
towards better benchmarking. We detail underlying fundamental  runtime distributions;
concepts of COCO such as the definition of a problem as a function software

instance, the underlying idea of instances, the use of target values,

and runtime defined by the number of function calls as the central

performance measure. Finally, we give a quick overview of the basic

code structure and the currently available test suites.

1. Introduction

We consider the continuous black-box optimization or search problem to minimize
f:XCR"->R" nm>1, (1)

where the search domain X is typically a bounded hypercube or the entire continuous
space.! More specifically, we aim to find, as quickly as possible, one or several solutions
x in the search space X with small value(s) of f(x) € R™.

A continuous optimization algorithm, denoted as solver, addresses the above problem.
In this paper, we only consider zero-order black-box optimization [19,57,58]: while the
search domain X C R” and its boundaries are accessible, no other prior knowledge about
f is available to the solver.? That is, f is considered as a black-box, also known as an oracle,
and the only way the solver can acquire information on f is by querying the value f(x) of
a solution x € X. Zero-order black-box optimization is thus a derivative-free optimization
setting.> We generally consider ‘time’ to be the number of calls to the function f and will
define ‘runtime’ correspondingly.
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Abstract—We present concepts and recipes for the anytime
performance assessment when benchmarking optimization algo-
rithms in a blackbox scenario. We consider runtime—oftentimes
measured in the number of blackbox evaluations needed to
reach a target quality—to be a universally measurable cost for
solving a problem. Starting from the graph that depicts the solu-
tion quality versus runtime, we argue that runtime is the only
performance measure with a generic, meaningful, and quanti-
tative interpretation. Hence, our assessment is solely based on
runtime measurements. We discuss proper choices for solution
quality indicators in single- and multi-objective optimization, as
well as in the presence of noise and constraints. We also dis-
cuss the choice of the target values, budget-based targets, and
the aggregation of runtimes by using simulated restarts, aver-
ages, and empirical cumulative distributions which generalize
convergence graphs of single runs. The presented performance
assessment is to a large extent implemented in the compar-
ing continuous optimizers (COCO) platform freely available at
https://github.com/numbbo/coco.

Index Terms—Anytime optimization, benchmarking, blackbox
optimization, performance assessment, quality indicator.

I. INTRODUCTION

E PRESENT practical concepts and ideas for the

performance assessment of optimization algorithms
when benchmarked in a blackbox and anytime scenario. Going
beyond a simple ranking of algorithms, we aim to provide a
quantitative and meaningful performance assessment, which
allows for conclusions like algorithm A is seven times faster
than algorithm B in solving a given problem or in solv-
ing problems with certain characteristics. To achieve this end
in a comparative and timeless manner, we argue that we
should measure the number of blackbox evaluations to reach a
predefined quality indicator value (a target). More generally,
we argue to measure a cost that is defined on a ratio scale
and is comparable across publications. We call this measure
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the runtime of the algorithm to reach a given target. Yet, our
assessment methodology does not depend on any specific cost
measure, as long as the costs are quantitative and comparable.'

In this article, we formalize the optimization goal by a
so-called quality indicator. Its definition may heavily depend
on the optimization scenario, e.g., the number of objectives
or constraints. Broadly speaking, a quality indicator is based
on the sequence of all so-far visited solutions. In the sim-
plest case, it is the objective function value of the last visited
solution.

Runtimes represent the cost of optimization. Compared to
the quality indicator, the definition of costs depends to a
lesser extent on the specific optimization scenario. To sus-
tain reproducibility and comparability across publications, we
recommend against CPU or wall-clock time as cost measure?
(see also Hooker [22] for a further discussion on the unwanted
consequences of benchmarking based on CPU time).

Benchmarking is usually computationally expensive and
benchmarking for a single budget seems vastly inefficient by
1) addressing only one of many possible budget scenarios
(scenarios heavily depend on the software and hardware envi-
ronment) and 2) throwing away most of the data generated
during the experiment. An anytime approach to benchmark-
ing prevents these drawbacks. To allow for a budget-free
performance assessment even for non-anytime algorithms that
have a maximum or timeout budget as decisive or manda-
tory input parameter (decided by the user), we collect data
with an any-budget experimental procedure that runs repeated
experiments with increasing input budget [31].> Non-anytime
algorithms that do not take a maximum budget as an input
parameter can be accurately assessed only by the time of their
final solution proposal.

In this article, we advocate to routinely use (anytime)
empirical runtime distributions to assess the performance
of optimization algorithms. We demonstrate how to directly
compare the runtime distributions of algorithms that have

IWe are grateful to the anonymous reviewer pointing this out to us.

2 An exploratory CPU timing experiment to get an estimate of the internal
time complexity of the algorithm is still advisable, like it is prescribed in the
comparing continuous optimizer (COCO) platform [20].

3We can stop the procedure when the last budget was not fully exhausted.
Increasing the budget each time by a factor of » > 1 adds to the overall com-
putational costs for the experimentation less than f’=°0 1/t =r/(r=1
times the last consumed budget. For the performance assessment, always
the data from the smallest eligible budget is used. The performance assess-
ment will be too optimistic by tacitly assuming that the budget can be
set properly without additional costs. On the other hand, runtimes may be
overestimated (by less than a factor of r). A code example is provided in




Overview

The COCO platform
Data profiles are runtime distributions

What to aggregate?

Target f-values

Integrating out (low) success rates

Runtime distributions versus convergence graphs
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Benchmarking is a tedious and repetitive task

with surprisingly many traps and pitfalls

That's where COCO comes into play: semi-automatized benchmarking

Black-Box Optimization Benchmarking Template for the
Comparison of More than Two Algorithms on the Noiseless
Testbed®
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Important Characteristics of Benchmarking
with COCO/bbob

* Functions are instantiated multiple times with
» different locations of the optimum in x- and f-space
o different search space rotations
e several monotonous local transformations to obfuscate simple regularities

making inadvertent exploitation of artificial regularities (aka overfitting) much less likely

* Functions are (generally) scalable with dimension

6 Nikolaus Hansen, Inria



Important Characteristics of Benchmarking

with COCO/bbob

Functions are instantiated multiple times with

» different locations of the optimum in x- and f-space

o different search space rotations

e several monotonous local transformations to obfuscate simple regularities

making inadvertent exploitation of artificial regularities (aka overfitting) much less likely
Functions are (generally) scalable with dimension

Performance evaluation via (generalized) data profiles

Provision of ~300 data sets to directly compare with

first and foremost

Nikolaus Hansen, Inria



COCO (COmparing Continuous Optimizers) Impact Numbers

Hansen et al 2021. OMS...
Table 1. Visibility of COCO.

Data sets online bbob suite 227
bbob-noisy suite 45
bbob-biobj suite 32
bbob-largescale suite 11
bbob-mixint suite 4
BBOB workshop papers using COCO 143
Unique authors on the workshop papers 109 from 28 countries
Papers in Google Scholar found with the search phrase ‘comparing continuous optimizers’ 559
OR ‘black-box optimization benchmarking (BBOB)’
Citations to the COCO documentation including [16,17,28,35-37,39-42] 1455
Citations to Hansen et al 2021. COCO: A platform for comparing... OMS 36,1. 491

Any cocopp.archiving.create () -ed data sets that are provided under an URL
can be loaded and processed.

8 Nikolaus Hansen, Inria



Data Profiles

Moré and Wild 2009. SIAM J. OPTIM. 20,1.

“data profiles [...] have been designed to provide [...] the percentage of problems that can be solved
(for a given tolerance 7) with a given number of function evaluations [,uﬂ

1. Create a set of recorded sequences f,, = 1,2,.. . My

for different algorithms and different problems/functions

2. Define for each problem a target f-value based on the data (aka convergence test)

based on the smallest observed f-value f; and a tolerance parameter T € {1071,1073,107,1077 }:

Jtarget = fr. + 7 (f(x0) — /1)

3. Find the “runtimes” ¢, as number of f-evaluations, when, for the first time, f, < fiarget Was met

for all problems and each algorithm and each tolerance t

t
4. Plot the empirical cumulative distribution of over all problems for each algorithm and each 7

n+1

different tolerances t are usually shown in different plots

O Nikolaus Hansen, Inria



T=10"L Moré and Wild 2009. SIAM J. OPTIM. 20,1.
D '"-"-"-:-'-:;'_'5:.'.’::.'.::.::'. —o
_____________ _A_---J .
I A-
—-8-nmsmax
- -newuoa
) | | | | A appspack | | | |
d 20 0 80 80 100 20 0 80 80 100
Number of simplex gradients, Number of simplex gradients, »
T — ].0_5 T = 10_7

| @-- | 1 | | | 1
20 40 60 80 o0 ° 20 40 60 80 100
Number of simplex gradients, Number of simplex gradients, &

1

FiGc. 5.1. Data profiles ds(k) for the smooth problems Ps show the percentage of problems

solved as a function of a computational budget of simplex gradients. | |
1V Nikolaus Hansen, Inria



Remarks/Discussion

 The measured values 7 can be any cost value that is comparable between all
problems.

the values are aggregated in the same graph, hence they should have the same unit

» The target value fi5rget is based on (the same) empirical data

even for the same problem, performance results are
not directly comparable between publications

11 Nikolaus Hansen, Inria



Remarks/Discussion

 The measured values 7 can be any cost value that is comparable between all
problems.

the values are aggregated in the same graph, hence they should have the same unit

» The target value fi5rget is based on (the same) empirical data

even for the same problem, performance results are
not directly comparable between publications

 Aggregation is

e done over different problems and different dimensions

* not done over different algorithms or different tolerances 7

12 Nikolaus Hansen, Inria



Our Insights

1. Aggregation over a wide range of dimensions Is not conducive

dimension can (and should) be used as algorithm selection decision parameter!

2. Aggregation over various tolerance values is possible and seems useful

arguably, a problem is only defined by a function and a target
then we still just aggregate over all problems

3. Restricting the budget of the benchmarked algorithms has no
methodological advantage

at least none | am aware of
our measured data are runtimes (budgets)

13 Nikolaus Hansen, Inria



Generalizing the setting of fi5rget

We can separate the set of algorithms that determine fiarget = fr + 7 - (f(xy) — /1) (by
determining f;) from the set of benchmarked algorithms.

Thereby, because we can keep f; constant, data and graphs become comparable across publications

Then, instead of setting and varying the f-tolerance 7, we can vary the budget Jir10 get
different target values (AKA budget-based or runlength-based targets)

the meaning of budgets is somewhat easier to understand
we don’t need to change the budget of the benchmarked algorithms

In COCO, we (usually) set ftarget—values based on the known optimal f-value

thereby defining the objective extrinsically/absolute rather than relative

We use a budget-free experimental setup

increasing the “time-out” budget does not affect results for smaller budgets,
hence results remain compatible
larger budgets allow for a better quantification of performance losses

14 Nikolaus Hansen, Inria



Restarted Algorithm and Simulated Runtimes

e The runtime (RT) of a (randomized) restarted algorithm is Price 1997, Auger & Hansen 2005
Nunsuc
RT — Z tiunsuc 4 fsucc
=1

 The expected RT is (where f is a random variable)

1 —

E[RT] — Psucc E[tunsuc] 4+ E[fSUCC]
Psucc
(1 _pSUCC)E[tunSUC] +pSUCCE[tSUCC]

Psucc

15 Nikolaus Hansen, Inria



Restarted Algorithm and Simulated Runtimes

e The runtime (RT) of a (randomized) restarted algorithm is Price 1997, Auger & Hansen 2005
Nunsuc
RT — Z tiunsuc 4 fsucc
=1
 The expected RT is (where f is a random variable)
I-p
E[RT] — SUCC E[tunsuc] 4+ E[tSUCC]
Psucc
unsuc succ
_ (I = psuco)Elt | + PsuccElr™ "]
* An estimator from the data is Psucc
BIRT] = 2 11MSHE 1 3T PUEE overall costs
- Nsyce  #successes

aka ERT, Enes, SP2, aRT.

10 Nikolaus Hansen, Inria



Restarted Algorithm and Simulated Runtimes

e The runtime (RT) of a (randomized) restarted algorithm is Price 1997, Auger & Hansen 2005
Nunsuc
RT — Z tiunsuc 4 fsucc
=1
 The expected RT is (where f is a random variable)
I-p
E[RT] — SUCC E[tunsuc] 4+ E[fSUCC]
Psucc
unsuc succ
_ (I = psuco)Elt | + PsuccElr™ "]
* An estimator from the data is Psucc
BIRT] = 2 11MSHE 1 3T PUEE overall costs
- Nsyce  #successes

aka ERT, Enes, SP2, aRT.

Implications:

* if we have at least one successful run, we can simulate runtimes, estimate the expected runtime, and don’t need to
negotiate success vs speed

. if we have no successful run, we can estimate a lower bound for the expected runtime E[RT] > Z gnsuc

17 Nikolaus Hansen, Inria



From a Convergence Graph to the Empirical Runtime Distribution
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From a Convergence Graph to the Empirical Runtime Distribution
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From a Convergence Graph to the Empirical Runtime Distribution
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From a Convergence Graph to the Empirical Runtime Distribution
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From a Convergence Graph to the Empirical Runtime Distribution
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From a Convergence Graph to the Empirical Runtime Distribution
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From a Convergence Graph to the Empirical Runtime Distribution
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From a Convergence Graph to the Empirical Runtime Distribution
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From a Convergence Graph to the Empirical Runtime Distribution
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From a Convergence Graph to the Empirical Runtime Distribution
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From a Convergence Graph to the Empirical Runtime Distribution
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From a Convergence Graph to the Empirical Runtime Distribution

1.0
-0.8
- - 0.6
when we maximize
(instead of minimize),
the graph can be
considered as an -0.4
empirical runtime
distribution as is
- 0.2
| | | | 0.0
10° 10 107 10° 104
evaluations
Hansen et al. 2022. Anytime performance assessment in blackbox
optimization benchmarking. IEEE Trans. on EC, 26(6). 59 Nikolaus Hansen., Inria



Empirical Runtime Distribution and area above the curve
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Aggregated Runtime Distributions
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Stop writing “statistically significant”

 \Wasserstein et al. 2019: “We conclude, based on our review of the articles in this
special issue and the broader literature, that it is time to stop using the term
“statistically significant” entirely. Nor should variants such as “significantly
different,” “p < 0.05,” and “nonsignificant” survive, [...] however, we are not

recommending that the calculation and use of continuous p-values be

discontinued. Where p-values are used, they should be reported as continuous
quan tities (e.g., P = 0. 08)- ) Moving to a World Beyond “p < 0.05”. The American Statistician, 73, S1.

e Amrhein et al. + 800 signatories, 2019: “We agree, and call for the entire concept
of statistical significance to be abandoned. |...] we are calling for a stop to the
use of P values in the conventional, dichotomous way — to decide whether a
result refutes or supports a scientific hypothesis.”
Retire statistical significance. Scientists rise up against statistical significance. Nature, 567(7748).
 Cockburn et al. 2020: “misuse of statistical significance as the standard of
evidence for experimental success has been identified as a key contributor in the

= = L Y |
rep lication crisis. Threats of a replication crisis in empirical computer science. Communications of the ACM, 63(8).

39 Nikolaus Hansen, Inria



How to use a p-value wisely

An observed p-value indicates by how much we should update our
confidence in H (not: how confident we should be in H,)

Odds(H,, | D) ~ Odds(H,) X 2p

posterior odds  prior odds

If we do not provide an estimate for the prior odds, we have no argument to
reject H, (and that’s perfectly fine too)

a small p stands on its own merits: we can conclude that
the odds for H,, have decreased by a factor of about 2p
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Summary

Target definitions (the convergence test condition) can be separated from benchmarked
algorithms

thereby, results can become comparable across publications

We aggregate over different target values but not over dimension
(simulated) restarts can integrate out success rates
We use a budget-free experimental setup

We read data profiles preferably as horizontal data (runtimes) rather then vertically data
(success rates)

Data profiles do not obscure the problem difficulty (as performance profiles do)
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