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Overview
• The COCO platform


• Data profiles are runtime distributions


• What to aggregate?


• Target -values


• Integrating out (low) success rates


• Runtime distributions versus convergence graphs

f
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COCO experiments
Test suites:
– bbob
– bbob-biobj
. . .
Logging functionality
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Figure by Tea Tušar in Hansen et al (2021), COCO: A platform for comparing continuous optimizers in a 
black-box setting. Optimization Methods and Software, 36(1), 114-144. 5
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Important Characteristics of Benchmarking 
with COCO/bbob

• Functions are instantiated multiple times with

• different locations of the optimum in x- and f-space


• different search space rotations


• several monotonous local transformations to obfuscate simple regularities


making inadvertent exploitation of artificial regularities (aka overfitting) much less likely


• Functions are (generally) scalable with dimension


• Performance evaluation via (generalized) data profiles

first and foremost 

• Provision of ~300 data sets to directly compare with


6



Nikolaus Hansen, Inria7

• Functions are instantiated multiple times with

• different locations of the optimum in x- and f-space


• different search space rotations


• several monotonous local transformations to obfuscate simple regularities


making inadvertent exploitation of artificial regularities (aka overfitting) much less likely


• Functions are (generally) scalable with dimension


• Performance evaluation via (generalized) data profiles

first and foremost 

• Provision of ~300 data sets to directly compare with


Important Characteristics of Benchmarking 
with COCO/bbob



Nikolaus Hansen, Inria

COCO (COmparing Continuous Optimizers) Impact Numbers 

8

Hansen et al 2021. OMS…

Citations to Hansen et al 2021. COCO: A platform for comparing… OMS 36,1.                                            491
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Data Profiles


“data profiles […] have been designed to provide […] the percentage of problems that can be solved 
(for a given tolerance ) with a given number of function evaluations [ ].”


1. Create a set of recorded sequences ,  

for different algorithms and different problems/functions 

2. Define for each problem a target -value based on the data (aka convergence test)

based on the smallest observed -value  and a tolerance parameter :  

 

3. Find the “runtimes” , as number of -evaluations, when, for the first time,  was met


for all problems and each algorithm and each tolerance  

4. Plot the empirical cumulative distribution of  over all problems for each algorithm and each 


different tolerances  are usually shown in different plots 

τ μf

ft t = 1,2,…, μf

f
f fL τ ∈ {10−1,10−3,10−5,10−7}

ftarget = fL + τ ⋅ ( f(x0) − fL)

t f ft ≤ ftarget
τ

t
n + 1

τ

τ
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Moré and Wild 2009. SIAM J. OPTIM. 20,1.



Nikolaus Hansen, Inria10

Moré and Wild 2009. SIAM J. OPTIM. 20,1.



Nikolaus Hansen, Inria

Remarks/Discussion 

• The measured values  can be any cost value that is comparable between all 
problems.


the values are aggregated in the same graph, hence they should have the same unit 

• The target value  is based on (the same) empirical data

even for the same problem, performance results are  

not directly comparable between publications 

• Aggregation is


• done over different problems and different dimensions


• not done over different algorithms or different tolerances 

t

ftarget

τ
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Our Insights
1. Aggregation over a wide range of dimensions is not conducive


dimension can (and should) be used as algorithm selection decision parameter! 

2. Aggregation over various tolerance values is possible and seems useful

arguably, a problem is only defined by a function and a target 

 then we still just aggregate over all problems 

3. Restricting the budget of the benchmarked algorithms has no 
methodological advantage


at least none I am aware of 
our measured data are runtimes (budgets)

13
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Generalizing the setting of   ftarget
• We can separate the set of algorithms that determine  (by 

determining  ) from the set of benchmarked algorithms.

Thereby, because we can keep  constant, data and graphs become comparable across publications 

• Then, instead of setting and varying the -tolerance , we can vary the budget  to get 
different target values (AKA budget-based or runlength-based targets)


the meaning of budgets is somewhat easier to understand  
we don’t need to change the budget of the benchmarked algorithms  

• In COCO, we (usually) set  -values based on the known optimal -value

thereby defining the objective extrinsically/absolute rather than relative 

• We use a budget-free experimental setup

increasing the “time-out” budget does not affect results for smaller budgets, 

hence results remain compatible 
larger budgets allow for a better quantification of performance losses 

ftarget = fL + τ ⋅ ( f(x0) − fL)
fL

fL

f τ μf

ftarget f

14
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Restarted Algorithm and Simulated Runtimes

• The runtime (RT) of a (randomized) restarted algorithm is 

 
 

• The expected RT is (where  is a random variable) 
 
 
 

• An estimator from the data is 
 
 
 
 
aka ERT, Enes, SP2, aRT.


 
Implications:


• if we have at least one successful run, we can simulate runtimes, estimate the expected runtime, and don’t need to 
negotiate success vs speed


• if we have no successful run, we can estimate a lower bound for the expected runtime 

t

̂E[RT] > ∑ tunsuc

15

RT =
Nunsuc

∑
i=1

tunsuc
i + tsucc

E[RT] =
1 − psucc

psucc
E[tunsuc] + E[tsucc]

=
(1 − psucc)E[tunsuc] + psuccE[tsucc]

psucc

̂E[RT] =
∑ tunsuc + ∑ tsucc

Nsucc
=

overall costs
#successes

Price 1997, Auger & Hansen 2005
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𝟣𝟢𝟢 𝟣𝟢𝟣 𝟣𝟢𝟤 𝟣𝟢𝟥 𝟣𝟢𝟦

evaluations

From a Convergence Graph to the Empirical Runtime Distribution
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Hansen et al. 2022. Anytime performance assessment in blackbox 
optimization benchmarking. IEEE Trans. on EC, 26(6).
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#solved
#all

#evals = ∫
#solved

#all

0
#evals(Δf ) dΔf

#solved
#all

#evals = ∫
#solved

#all

0
#evals(Δfi(r)) dr

𝟣𝟢𝟢 𝟣𝟢𝟣 𝟣𝟢𝟤 𝟣𝟢𝟥 𝟣𝟢𝟦

evaluations

Empirical Runtime Distribution and area above the curve

the area above the curve 
represent a (truncated) 
average runtime #evals =

#all
#solved ∫

#solved
#all

0
#evals(Δfi(r)) dr

When the x-axis is in log-
scale, the area is the 
(truncated) geometric 
average

Hansen et al. 2022. Anytime performance assessment in blackbox 
optimization benchmarking. IEEE Trans. on EC, 26(6).
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Aggregated Runtime Distributions


32

Hansen 2019. A Global Surrogate Assisted CMA-ES. GECCO ’19.
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• Wasserstein et al. 2019: “We conclude, based on our review of the articles in this 
special issue and the broader literature, that it is time to stop using the term 
“statistically significant” entirely. Nor should variants such as “significantly 
different,” “p < 0.05,” and “nonsignificant” survive, […] however, we are not 
recommending that the calculation and use of continuous p-values be 
discontinued. Where p-values are used, they should be reported as continuous 
quantities (e.g., p = 0.08).”


• Amrhein et al. + 800 signatories, 2019: “We agree, and call for the entire concept 
of statistical significance to be abandoned. […] we are calling for a stop to the 
use of P values in the conventional, dichotomous way — to decide whether a 
result refutes or supports a scientific hypothesis.” 

• Cockburn et al. 2020: “misuse of statistical significance as the standard of 
evidence for experimental success has been identified as a key contributor in the 
replication crisis.” 

39

 Retire statistical significance. Scientists rise up against statistical significance. Nature, 567(7748).

Threats of a replication crisis in empirical computer science. Communications of the ACM, 63(8).

Moving to a World Beyond “p < 0.05”. The American Statistician, 73, S1.

Stop writing “statistically significant”
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How to use a -value wiselyp
An observed -value indicates by how much we should update our 
confidence in  (not: how confident we should be in )

p
H0 H0

40




If we do not provide an estimate for the prior odds, we have no argument to 
reject  (and that’s perfectly fine too) 

a small  stands on its own merits: we can conclude that  
the odds for  have decreased by a factor of about  


If we improved a well-established state-of-the-art algorithm or invented cold fusion or find a 
room-temperature superconductor at atmospheric pressures, the prior odds of  are usually 
high, say, at least .


the higher the prior odds for , the more exceptional or surprising is the scientific result 
to accept  with the same confidence we had in  before, we need 

Odds(H0 ∣ D)

posterior odds

≈ Odds(H0)

prior odds

× 2p

H0
p

H0 2p

H0
104

H0
¬H0 H0 p ≈ P(¬H0)2
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Summary
• Target definitions (the convergence test condition) can be separated from benchmarked 

algorithms

thereby, results can become comparable across publications 

• We aggregate over different target values but not over dimension


• (simulated) restarts can integrate out success rates


• We use a budget-free experimental setup


• We read data profiles preferably as horizontal data (runtimes) rather then vertically data 
(success rates)


• Data profiles do not obscure the problem difficulty (as performance profiles do)

41
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