
Anytime Performance Assessment:
Runtime Distributions Beyond Data Profiles 

Nikolaus Hansen

Inria & École polytechnique, France

June 2024

1

Nikolaus Hansen, Inria2

Nikolaus Hansen, Inria

Overview
• The COCO platform

• Data profiles are runtime distributions

• What to aggregate?

• Target -values

• Integrating out (low) success rates

• Runtime distributions versus convergence graphs

f

3

Nikolaus Hansen, Inria4

Nikolaus Hansen, Inria
5

COCO experiments
Test suites:
– bbob
– bbob-biobj
. . .
Logging functionality

C

Results of the
user-provided

solver
Log �les

COCO
post-processing

Python

Results of other
solvers

Log �les

Tables

Latex, HTML

Plots

� � � �� �� ��

�

�

�

���LQVWDQFHV
WDUJHW�'I���H�� Y���������

��6SKHUH
0&6�KX\HU�QRLV
1(/'(5'2(55�GR
1(:82$�URV�QRL
5$1'206($5&+�D
1,323D&0$�ORVK
OPP�&0$�(6�DXJ
%)*6�3�6W3W

� � � �
ORJ�����I�HYDOV���GLPHQVLRQ�

���

���

���

���

���

���

)U
DF
WLR
Q�
RI
�IX
QF
WLR
Q�
WD
UJ
HW
�S
DL
UV

5$1'206($

0&6�KX\HU

1(/'(5'2(

%)*6�3�6W

OPP�&0$�(

1(:82$�UR

1,323D&0$

EHVW�����EERE�I��I�������'
���WDUJHWV��������H���
���LQVWDQFHV

Y���������

PDF, SVG

HTML pages

HTML

Latex templates

Latex

C/C��
interface

C

Python
interface

Python

Java
interface

Java

Matlab/Octave
interface

Matlab

User-provided
solver

C

User-provided
solver

Python

User-provided
solver

Java

User-provided
solver

Matlab

what to
benchmark

and logging

measures used

and presented

data collection

Figure by Tea Tušar in Hansen et al (2021), COCO: A platform for comparing continuous optimizers in a
black-box setting. Optimization Methods and Software, 36(1), 114-144. 5

COCO/bbob

Nikolaus Hansen, Inria

Important Characteristics of Benchmarking 
with COCO/bbob

• Functions are instantiated multiple times with

• different locations of the optimum in x- and f-space

• different search space rotations

• several monotonous local transformations to obfuscate simple regularities

making inadvertent exploitation of artificial regularities (aka overfitting) much less likely

• Functions are (generally) scalable with dimension

• Performance evaluation via (generalized) data profiles

first and foremost

• Provision of ~300 data sets to directly compare with

6

Nikolaus Hansen, Inria7

• Functions are instantiated multiple times with

• different locations of the optimum in x- and f-space

• different search space rotations

• several monotonous local transformations to obfuscate simple regularities

making inadvertent exploitation of artificial regularities (aka overfitting) much less likely

• Functions are (generally) scalable with dimension

• Performance evaluation via (generalized) data profiles

first and foremost

• Provision of ~300 data sets to directly compare with

Important Characteristics of Benchmarking 
with COCO/bbob

Nikolaus Hansen, Inria

COCO (COmparing Continuous Optimizers) Impact Numbers 

8

Hansen et al 2021. OMS…

Citations to Hansen et al 2021. COCO: A platform for comparing… OMS 36,1. 491

Nikolaus Hansen, Inria

Data Profiles

“data profiles […] have been designed to provide […] the percentage of problems that can be solved
(for a given tolerance) with a given number of function evaluations [].”

1. Create a set of recorded sequences ,

for different algorithms and different problems/functions

2. Define for each problem a target -value based on the data (aka convergence test)

based on the smallest observed -value and a tolerance parameter :  

3. Find the “runtimes” , as number of -evaluations, when, for the first time, was met

for all problems and each algorithm and each tolerance

4. Plot the empirical cumulative distribution of over all problems for each algorithm and each

different tolerances are usually shown in different plots

τ μf

ft t = 1,2,…, μf

f
f fL τ ∈ {10−1,10−3,10−5,10−7}

ftarget = fL + τ ⋅ (f(x0) − fL)

t f ft ≤ ftarget
τ

t
n + 1

τ

τ

9

Moré and Wild 2009. SIAM J. OPTIM. 20,1.

Nikolaus Hansen, Inria10

Moré and Wild 2009. SIAM J. OPTIM. 20,1.

Nikolaus Hansen, Inria

Remarks/Discussion 

• The measured values can be any cost value that is comparable between all
problems.

the values are aggregated in the same graph, hence they should have the same unit

• The target value is based on (the same) empirical data

even for the same problem, performance results are  

not directly comparable between publications

• Aggregation is

• done over different problems and different dimensions

• not done over different algorithms or different tolerances

t

ftarget

τ

11

Nikolaus Hansen, Inria

Remarks/Discussion 

12

• The measured values can be any cost value that is comparable between all
problems.

the values are aggregated in the same graph, hence they should have the same unit

• The target value is based on (the same) empirical data

even for the same problem, performance results are  

not directly comparable between publications

• Aggregation is

• done over different problems and different dimensions

• not done over different algorithms or different tolerances

t

ftarget

τ

Nikolaus Hansen, Inria

Our Insights
1. Aggregation over a wide range of dimensions is not conducive

dimension can (and should) be used as algorithm selection decision parameter!

2. Aggregation over various tolerance values is possible and seems useful

arguably, a problem is only defined by a function and a target 

 then we still just aggregate over all problems

3. Restricting the budget of the benchmarked algorithms has no
methodological advantage

at least none I am aware of 
our measured data are runtimes (budgets)

13

Nikolaus Hansen, Inria

Generalizing the setting of  ftarget
• We can separate the set of algorithms that determine (by

determining) from the set of benchmarked algorithms.

Thereby, because we can keep constant, data and graphs become comparable across publications

• Then, instead of setting and varying the -tolerance , we can vary the budget to get
different target values (AKA budget-based or runlength-based targets)

the meaning of budgets is somewhat easier to understand  
we don’t need to change the budget of the benchmarked algorithms

• In COCO, we (usually) set -values based on the known optimal -value

thereby defining the objective extrinsically/absolute rather than relative

• We use a budget-free experimental setup

increasing the “time-out” budget does not affect results for smaller budgets, 

hence results remain compatible 
larger budgets allow for a better quantification of performance losses

ftarget = fL + τ ⋅ (f(x0) − fL)
fL

fL

f τ μf

ftarget f

14

Nikolaus Hansen, Inria

Restarted Algorithm and Simulated Runtimes

• The runtime (RT) of a (randomized) restarted algorithm is 

 
 

• The expected RT is (where is a random variable) 
 
 
 

• An estimator from the data is 
 
 
 
 
aka ERT, Enes, SP2, aRT.

 
Implications:

• if we have at least one successful run, we can simulate runtimes, estimate the expected runtime, and don’t need to
negotiate success vs speed

• if we have no successful run, we can estimate a lower bound for the expected runtime

t

̂E[RT] > ∑ tunsuc

15

RT =
Nunsuc

∑
i=1

tunsuc
i + tsucc

E[RT] =
1 − psucc

psucc
E[tunsuc] + E[tsucc]

=
(1 − psucc)E[tunsuc] + psuccE[tsucc]

psucc

̂E[RT] =
∑ tunsuc + ∑ tsucc

Nsucc
=

overall costs
#successes

Price 1997, Auger & Hansen 2005

Nikolaus Hansen, Inria

Restarted Algorithm and Simulated Runtimes

• The runtime (RT) of a (randomized) restarted algorithm is 

 
 

• The expected RT is (where is a random variable) 
 
 
 

• An estimator from the data is 
 
 
 
 
aka ERT, Enes, SP2, aRT.

 
Implications:

• if we have at least one successful run, we can simulate runtimes, estimate the expected runtime, and don’t need to
negotiate success vs speed

• if we have no successful run, we can estimate a lower bound for the expected runtime

t

̂E[RT] > ∑ tunsuc

16

RT =
Nunsuc

∑
i=1

tunsuc
i + tsucc

E[RT] =
1 − psucc

psucc
E[tunsuc] + E[tsucc]

=
(1 − psucc)E[tunsuc] + psuccE[tsucc]

psucc

̂E[RT] =
∑ tunsuc + ∑ tsucc

Nsucc
=

overall costs
#successes

Price 1997, Auger & Hansen 2005

Nikolaus Hansen, Inria

Restarted Algorithm and Simulated Runtimes

• The runtime (RT) of a (randomized) restarted algorithm is 

 
 

• The expected RT is (where is a random variable) 
 
 
 

• An estimator from the data is 
 
 
 
 
aka ERT, Enes, SP2, aRT.

 
Implications:

• if we have at least one successful run, we can simulate runtimes, estimate the expected runtime, and don’t need to
negotiate success vs speed

• if we have no successful run, we can estimate a lower bound for the expected runtime

t

̂E[RT] > ∑ tunsuc

17

RT =
Nunsuc

∑
i=1

tunsuc
i + tsucc

E[RT] =
1 − psucc

psucc
E[tunsuc] + E[tsucc]

=
(1 − psucc)E[tunsuc] + psuccE[tsucc]

psucc

̂E[RT] =
∑ tunsuc + ∑ tsucc

Nsucc
=

overall costs
#successes

Price 1997, Auger & Hansen 2005

Nikolaus Hansen, Inria18

𝟣𝟢𝟢 𝟣𝟢𝟣 𝟣𝟢𝟤 𝟣𝟢𝟥 𝟣𝟢𝟦

evaluations

From a Convergence Graph to the Empirical Runtime Distribution

fu
nc

tio
n

va
lu

e
(e

rro
r)

Hansen et al. 2022. Anytime performance assessment in blackbox
optimization benchmarking. IEEE Trans. on EC, 26(6).

Nikolaus Hansen, Inria19

𝟣𝟢𝟢 𝟣𝟢𝟣 𝟣𝟢𝟤 𝟣𝟢𝟥 𝟣𝟢𝟦

evaluations

fu
nc

tio
n

va
lu

e
equidistance

“target” values

From a Convergence Graph to the Empirical Runtime Distribution

(e
rro

r)

Hansen et al. 2022. Anytime performance assessment in blackbox
optimization benchmarking. IEEE Trans. on EC, 26(6).

Nikolaus Hansen, Inria20

𝟣𝟢𝟢 𝟣𝟢𝟣 𝟣𝟢𝟤 𝟣𝟢𝟥 𝟣𝟢𝟦

evaluations

fu
nc

tio
n

va
lu

e

From a Convergence Graph to the Empirical Runtime Distribution

(e
rro

r)

Hansen et al. 2022. Anytime performance assessment in blackbox
optimization benchmarking. IEEE Trans. on EC, 26(6).

Nikolaus Hansen, Inria21

𝟣𝟢𝟢 𝟣𝟢𝟣 𝟣𝟢𝟤 𝟣𝟢𝟥 𝟣𝟢𝟦

evaluations

fu
nc

tio
n

va
lu

e

From a Convergence Graph to the Empirical Runtime Distribution

(e
rro

r)

Hansen et al. 2022. Anytime performance assessment in blackbox
optimization benchmarking. IEEE Trans. on EC, 26(6).

Nikolaus Hansen, Inria22

𝟣𝟢𝟢 𝟣𝟢𝟣 𝟣𝟢𝟤 𝟣𝟢𝟥 𝟣𝟢𝟦

evaluations

fu
nc

tio
n

va
lu

e

From a Convergence Graph to the Empirical Runtime Distribution

(e
rro

r)

Hansen et al. 2022. Anytime performance assessment in blackbox
optimization benchmarking. IEEE Trans. on EC, 26(6).

Nikolaus Hansen, Inria23

𝟣𝟢𝟢 𝟣𝟢𝟣 𝟣𝟢𝟤 𝟣𝟢𝟥 𝟣𝟢𝟦

evaluations

fu
nc

tio
n

va
lu

e

From a Convergence Graph to the Empirical Runtime Distribution

for the remaining
construction,

we could use any
runtimes, for
example, from
different runs or
different functions

(e
rro

r)

Hansen et al. 2022. Anytime performance assessment in blackbox
optimization benchmarking. IEEE Trans. on EC, 26(6).

Nikolaus Hansen, Inria24

𝟣𝟢𝟢 𝟣𝟢𝟣 𝟣𝟢𝟤 𝟣𝟢𝟥 𝟣𝟢𝟦

evaluations

fu
nc

tio
n

va
lu

e

fra
ct

io
n

of
 p

ro
bl

em
s

From a Convergence Graph to the Empirical Runtime Distribution

(e
rro

r)

Hansen et al. 2022. Anytime performance assessment in blackbox
optimization benchmarking. IEEE Trans. on EC, 26(6).

Nikolaus Hansen, Inria25

𝟣𝟢𝟢 𝟣𝟢𝟣 𝟣𝟢𝟤 𝟣𝟢𝟥 𝟣𝟢𝟦

evaluations

fu
nc

tio
n

va
lu

e

fra
ct

io
n

of
 p

ro
bl

em
s

From a Convergence Graph to the Empirical Runtime Distribution

(e
rro

r)

Hansen et al. 2022. Anytime performance assessment in blackbox
optimization benchmarking. IEEE Trans. on EC, 26(6).

Nikolaus Hansen, Inria26

𝟣𝟢𝟢 𝟣𝟢𝟣 𝟣𝟢𝟤 𝟣𝟢𝟥 𝟣𝟢𝟦

evaluations

From a Convergence Graph to the Empirical Runtime Distribution

Hansen et al. 2022. Anytime performance assessment in blackbox
optimization benchmarking. IEEE Trans. on EC, 26(6).

Nikolaus Hansen, Inria27

𝟣𝟢𝟢 𝟣𝟢𝟣 𝟣𝟢𝟤 𝟣𝟢𝟥 𝟣𝟢𝟦

evaluations

𝟣𝟢𝟢 𝟣𝟢𝟣 𝟣𝟢𝟤 𝟣𝟢𝟥 𝟣𝟢𝟦

evaluations

From a Convergence Graph to the Empirical Runtime Distribution

Hansen et al. 2022. Anytime performance assessment in blackbox
optimization benchmarking. IEEE Trans. on EC, 26(6).

Nikolaus Hansen, Inria28

𝟣𝟢𝟢 𝟣𝟢𝟣 𝟣𝟢𝟤 𝟣𝟢𝟥 𝟣𝟢𝟦

evaluations

From a Convergence Graph to the Empirical Runtime Distribution

when we maximize
(instead of minimize),
the graph can be
considered as an
empirical runtime
distribution as is

Hansen et al. 2022. Anytime performance assessment in blackbox
optimization benchmarking. IEEE Trans. on EC, 26(6).

Nikolaus Hansen, Inria29

𝟣𝟢𝟢 𝟣𝟢𝟣 𝟣𝟢𝟤 𝟣𝟢𝟥 𝟣𝟢𝟦

evaluations

From a Convergence Graph to the Empirical Runtime Distribution

when we maximize
(instead of minimize),
the graph can be
considered as an
empirical runtime
distribution as is

Hansen et al. 2022. Anytime performance assessment in blackbox
optimization benchmarking. IEEE Trans. on EC, 26(6).

Nikolaus Hansen, Inria30

#solved
#all

#evals = ∫
#solved

#all

0
#evals(Δf) dΔf

#solved
#all

#evals = ∫
#solved

#all

0
#evals(Δfi(r)) dr

𝟣𝟢𝟢 𝟣𝟢𝟣 𝟣𝟢𝟤 𝟣𝟢𝟥 𝟣𝟢𝟦

evaluations

Empirical Runtime Distribution and area above the curve

the area above the curve
represent a (truncated)
average runtime #evals =

#all
#solved ∫

#solved
#all

0
#evals(Δfi(r)) dr

When the x-axis is in log-
scale, the area is the
(truncated) geometric
average

Hansen et al. 2022. Anytime performance assessment in blackbox
optimization benchmarking. IEEE Trans. on EC, 26(6).

Nikolaus Hansen, Inria31

#solved
#all

#evals = ∫
#solved

#all

0
#evals(Δf) dΔf

#solved
#all

#evals = ∫
#solved

#all

0
#evals(Δfi(r)) dr

𝟣𝟢𝟢 𝟣𝟢𝟣 𝟣𝟢𝟤 𝟣𝟢𝟥 𝟣𝟢𝟦

evaluations

Empirical Runtime Distribution and area above the curve

#evals =
#all

#solved ∫
#solved

#all

0
#evals(Δfi(r)) dr

When the x-axis is in log-
scale, the area is the
(truncated) geometric
average

the area above the curve
represent a (truncated)
average runtime

Hansen et al. 2022. Anytime performance assessment in blackbox
optimization benchmarking. IEEE Trans. on EC, 26(6).

Nikolaus Hansen, Inria

Aggregated Runtime Distributions

32

Hansen 2019. A Global Surrogate Assisted CMA-ES. GECCO ’19.

Nikolaus Hansen, Inria33

Nikolaus Hansen, Inria34

Nikolaus Hansen, Inria35

Nikolaus Hansen, Inria36

Nikolaus Hansen, Inria37

Nikolaus Hansen, Inria38

Nikolaus Hansen, Inria

• Wasserstein et al. 2019: “We conclude, based on our review of the articles in this
special issue and the broader literature, that it is time to stop using the term
“statistically significant” entirely. Nor should variants such as “significantly
different,” “p < 0.05,” and “nonsignificant” survive, […] however, we are not
recommending that the calculation and use of continuous p-values be
discontinued. Where p-values are used, they should be reported as continuous
quantities (e.g., p = 0.08).”

• Amrhein et al. + 800 signatories, 2019: “We agree, and call for the entire concept
of statistical significance to be abandoned. […] we are calling for a stop to the
use of P values in the conventional, dichotomous way — to decide whether a
result refutes or supports a scientific hypothesis.”

• Cockburn et al. 2020: “misuse of statistical significance as the standard of
evidence for experimental success has been identified as a key contributor in the
replication crisis.”

39

 Retire statistical significance. Scientists rise up against statistical significance. Nature, 567(7748).

Threats of a replication crisis in empirical computer science. Communications of the ACM, 63(8).

Moving to a World Beyond “p < 0.05”. The American Statistician, 73, S1.

Stop writing “statistically significant”

Nikolaus Hansen, Inria

How to use a -value wiselyp
An observed -value indicates by how much we should update our
confidence in (not: how confident we should be in)

p
H0 H0

40

If we do not provide an estimate for the prior odds, we have no argument to
reject (and that’s perfectly fine too)

a small stands on its own merits: we can conclude that  
the odds for have decreased by a factor of about

If we improved a well-established state-of-the-art algorithm or invented cold fusion or find a
room-temperature superconductor at atmospheric pressures, the prior odds of are usually
high, say, at least .

the higher the prior odds for , the more exceptional or surprising is the scientific result 
to accept with the same confidence we had in before, we need

Odds(H0 ∣ D)

posterior odds

≈ Odds(H0)

prior odds

× 2p

H0
p

H0 2p

H0
104

H0
¬H0 H0 p ≈ P(¬H0)2

Nikolaus Hansen, Inria

Summary
• Target definitions (the convergence test condition) can be separated from benchmarked

algorithms

thereby, results can become comparable across publications

• We aggregate over different target values but not over dimension

• (simulated) restarts can integrate out success rates

• We use a budget-free experimental setup

• We read data profiles preferably as horizontal data (runtimes) rather then vertically data
(success rates)

• Data profiles do not obscure the problem difficulty (as performance profiles do)

41

Nikolaus Hansen, Inria

Summary

Than
k Yo

u
• Target definitions (the convergence test condition) can be separated from benchmarked

algorithms

thereby, results can become comparable across publications

• We aggregate over different target values but not over dimension

• (simulated) restarts can integrate out success rates

• We use a budget-free experimental setup

• We read data profiles preferably as horizontal data (runtimes) rather then vertically data
(success rates)

• Data profiles do not obscure the problem difficulty (as performance profiles do)

42

