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Einstein once spoke of the
“unreasonable effectiveness of
mathematics” in describing how the
natural world works. Whether one is
talking about basic physics, about the
increasingly important environmental
sciences, or the transmission of
disease, mathematics is never any
more, or any less, than a way of
thinking clearly. As such, it always has
been and always will be a valuable
tool, but only valuable when it is part
of a larger arsenal embracing analytic
experiments and, above all,
wide-ranging imagination.

Lord Kay
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Problem Statement: Search
Continuous Domain Search/Optimization

Task: minimize a objective function (fitness function, loss
function) in continuous domain

f : X ⊆ Rn → R, x 7→ f (x)

Black Box scenario (direct search scenario)

f(x)x

I gradients are not available or not useful
I problem domain specific knowledge is used only within the black

box, e.g. within an appropriate encoding

Search costs: number of function evaluations
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Problem Statement and Objectives
Continuous Domain Search/Optimization

Goal
I fast convergence toward the global optimum

. . . or to a robust solution x
I solution x with small function value with least search cost

there are two (conflicting) objectives

Typical Examples
I shape optimization (e.g. using CFD) curve fitting, airfoils
I parameter calibration controller, plants, images
I model calibration biological, physical

Difficulties
I exhaustive search is infeasible
I deterministic search is often not successful
I (naive) random search takes too long

Approach: stochastic search, Evolutionary Algorithms
. . . interface to real world problems
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Problem Formulation
A real world problem requires

a representation; the encoding of problem parameters into x ∈ X ⊂ Rn

the definition of a objective function f : x 7→ f (x) to be minimized

One might distinguish two approaches

Natural Encoding
Use a “natural” encoding and design the optimizer with respect to the problem e.g.
use of specific “genetic operators”

frequently done in discrete domain

Concerned Encoding (Pure Black Box)
Use problem specific knowledge for encoding and use a “generic” optimizer

frequently done in continuous domain
Advantage: Sophisticated and well-validated optimizers can be used

How about Adaptive Encoding?
. . . function properties
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Objective Function Properties
We assume f : X ⊂ Rn → R to have at least moderate dimensionality,
say n 6� 10, and to be non-linear, non-convex, and non-separable.
Additionally, f can be

multimodal
there are eventually many local optima

non-smooth
derivatives do not exist

discontinuous
ill-conditioned
noisy
. . .

Goal : cope with any of these function properties
they are related to real-world problems
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What Makes a Function Difficult to Solve?
Why stochastic search?

ruggedness
non-smooth, discontinuous, multimodal, and/or

noisy function

dimensionality
(considerably) larger than three

non-separability
dependencies between the objective variables

ill-conditioning

cut from 5-D solvable example

a narrow ridge
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How Can a Difficult Function Be Solved?
. . . therefore. . .

The Problem What can be done

Ruggedness non-local policy, large sampling width (step-size)
as large as possible while preserving a

reasonable convergence speed

stochastic, non-elitistic, population-based method
recombination operator

serves as repair mechanism

Dimensionality,
Non-Separability

exploiting the problem structure
locality, neighborhood, encoding

Ill-conditioning second order approach
changes the neighborhood metric
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Stochastic Search

A black box search template to minimize f : Rn → R
Initialize distribution parameters θ, set sample size λ ∈ N
While not terminate

1 Sample distribution P (x|θ)→ x1, . . . , xλ ∈ Rn

2 Evaluate x1, . . . , xλ on f
3 Update parameters θ ← Fθ(θ, x1, . . . , xλ, f (x1), . . . , f (xλ))

Everything depends on the definition of P and Fθ

deterministic algorithms are covered as well

In Evolutionary Algorithms the distribution P is often implicitly defined
via operators on a population, in particular, selection, recombination
and mutation
natural template for Estimation of Distribution Algorithms
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Metaphors

Evolutionary Computation Optimization

individual, offspring, parent ←→ candidate solution
decision variables
design variables
object variables

population ←→ set of candidate solutions
fitness function ←→ objective function

loss function
cost function

generation ←→ iteration

. . . function properties
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The Evolution Strategy
Minimize f : Rn → R
Initialize distribution parameters θ, set population size λ ∈ N
While not terminate

1 Sample distribution P (x|θ)→ x1, . . . , xλ ∈ Rn

2 Evaluate x1, . . . , xλ on f
3 Update parameters θ ← Fθ(θ, x1, . . . , xλ, f (x1), . . . , f (xλ))

P is a multi-variate normal distribution

N
(
mi, σ

2
i Ci

)
∼ mi + σiN (0, Ci) for i = 1, . . . , λ

θ = {mi, Ci, σi}i=1,...,λ ∈ (Rn × Rn×n × R+)λ

Fθ = Fθ(θ, x1:λ, . . . , xµ:λ), where µ ≤ λ and xi:λ is the i-th best of
the λ points

. . . why?
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Why Normal Distributions?

1 widely observed in nature, for example as phenotypic traits
2 only stable distribution with finite variance

stable means the sum of normal variates is also normal,
helpful in design and analysis of algorithms

3 most convenient way to generate isotropic search points
the isotropic distribution does not favor any direction

(unfoundedly), supports rotational invariance

4 maximum entropy distribution with finite variance
the least possible assumptions on f in the distribution shape
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Normal Distribution
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The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution N (m, C) is uniquely determined by its mean
value m ∈ Rn and its symmetric positive definite n× n covariance matrix C.

The mean value m

determines the displacement (translation)

is the value with the largest density (modal value)

the distribution is symmetric about the distribution
mean
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The covariance matrix C. . .
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The covariance matrix C determines the shape. It has a valuable geometrical
interpretation: any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x ∈ Rn | xTC−1x = 1} Lines of Equal Density

N
(
m, σ2I

)
∼ m + σN (0, I)

one degree of freedom σ
components of N (0, I)
are independent standard
normally distributed

N
(
m, D2)∼ m + DN (0, I)

n degrees of freedom
components are
independent, scaled

N (m, C)∼ m + C
1
2N (0, I)

(n2 + n)/2 degrees of freedom
components are
correlated

where I is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable
for separable problems) and A×N (0, I) ∼ N

(
0, AAT)

holds for all A.
. . . CMA
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Sampling New Search Points
The governing equation for derandomized Evolution Strategies

New search points are sampled normally distributed

xi ∼ m + σNi(0, C) for i = 1, . . . , λ

as perturbations of m where xi, m ∈ Rn, σ ∈ R+, and C ∈ Rn×n

where

the mean vector m ∈ Rn represents the favorite solution
the so-called step-size σ ∈ R+ controls the step length
the covariance matrix C ∈ Rn×n determines the shape of
the distribution ellipsoid

The question remains how to update m, C, and σ.
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Covariance Matrix Adaptation
Rank-One Update

m ← m + σyw, yw =
∑µ

i=1 wi yi:λ, yi ∼ Ni(0, C)

new distribution,
C← 0.8× C + 0.2× ywyT

w
the ruling principle: the adaptation increases the probability of success-
ful steps, yw, to appear again
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Rank-µ Update
xi = m + σ yi, yi ∼ Ni(0, C) ,
m← m + σyw yw =

∑µ
i=1 wi yi:λ

xi = m + σ yi, yi ∼ N (0, C)

sampling of λ = 150
solutions where
C = I and σ = 1

Cµ = 1
µ

∑
yi:λyT

i:λ
C← (1− 1)× C + 1× Cµ

calculating C from
µ = 50 points,

w1 = · · · = wµ = 1
µ

mnew← m + 1
µ

∑
yi:λ

new distribution

Remark: the old (sample) distribution shape has a great influence on the new
distribution −→ iterations needed
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C← (1− ccov)C + ccovµwywyT
w

covariance matrix adaptation in the evolution strategy

learns all pairwise dependencies between variables
off-diagonal entries in the covariance matrix reflect the dependencies

conducts a principle component analysis (PCA) of steps yw,
sequentially in time and space

eigenvectors of the covariance matrix C are the principle components / the
principle axes of the mutation ellipsoid

learns a new, rotated problem represen-
tation and a new metric (Mahalanobis)

components are independent (only) in the new representation

approximates the inverse Hessian on quadratic functions
overwhelming empirical evidence, proof is in progress

Nikolaus Hansen () Dynamic Encoding 19 / 34



Problem Statement The Challenges Evolution Strategy CMA Evaluation Adaptive Encoding

C← (1− ccov)C + ccovµwywyT
w

covariance matrix adaptation

is equivalent with an adaptive (general) linear
encoding1

1
Hansen 2000, Invariance, Self-Adaptation and Correlated Mutations in Evolution Strategies, PPSN VI
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Experimentum Crucis (1)
f convex quadratic, separable
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f (x) =
∑n

i=1 10α i−1
n−1 x2

i , α = 6
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Experimentum Crucis (2)
f convex quadratic, as before but non-separable (rotated)
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function evaluations

C ∝ H−1 for all g, H

f (x) = g
(
xTHx

)
, g : R→ R stricly monotonic
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Invariance
The grand aim of all science is to cover the greatest number of

empirical facts by logical deduction from the smallest number of
hypotheses or axioms.

— Albert Einstein
Invariance is a guaranty for generalization of
performance from a single function to a class of functions.
Most important invariance properties of the Covariance
Matrix Adaptation (CMA) Evolution Strategy (ES) are

invariance to order preserving transformations in
function space −→
Translation and rotation invariance in search space

to rigid transformations of the search space
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Comparison to , BFGS, PSO and DE
f convex quadratic, non-separable (rotated) with varying α

f (x) = g(xTHx) with
g identity (BFGS, red) or
g(.) = (.)1/4 (BFGS, red
dashed) or
g order-preserving =
strictly increasing (all
other)

BFGS: quasi-Newton
method
PSO: Particle Swarm
Optimization
DE:Differential Evolution
CMA-ES —

SP1 = average number of objective function evaluations to reach the target function
value of 10−9

. . . population size, invariance
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Comparison to IDEA and Simplex-Downhill

CMA-ES: Covariance Matrix Adaptation Evolution Strategy2

IDEA: Iterated Density-Estimation Evolutionary Algorithm3

Fminsearch: Nelder-Mead simplex downhill method4

Randomsearch: pure Monte-Carlo sampling
Peter Dürr and Andreas Pfister 2004. Optimization of Walking Gaits for a Three Legged Walking Robot,

Diploma Thesis, Institut für Mechanische Systeme, ETH Zurich

2
Hansen (2001) Completely Derandomized Self-Adaptation in Evolution Strategies. Evolutionary Computation Journal

3
Bosman (2003) Design and Application of Iterated Density-Estimation Evolutionary Algorithms. PhD thesis.

4
Nelder and Mead (1965). A simplex method for function minimization. Computer Journal.
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CEC 2005 Real Parameter Optimization Session
Empirical Distribution of Normalized Success Performance

n = 10
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n = 30
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FEs = mean(#fevals)× #all runs (25)
#successful runs , where #fevals includes only successful runs.

Shown: empirical distribution function of the Success Performance FEs divided by FEs of the
best algorithm on the respective function.

Results of all functions are used where at least one algorithm was successful at least once, i.e. where the target
function value was reached in at least one experiment (out of 11× 25 experiments).

Small values for FEs and therefore large (cumulative frequency) values in the graphs are
preferable.Nikolaus Hansen () Dynamic Encoding 26 / 34
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The Covariance Matrix Adaptation Evolution Strategy
In a Nutshell

1 Multivariate normal distribution to generate new search points
follows the maximum entropy principle

2 Selection only based on the ranking of the f -values, weighted
recombination

using only the ranking of f -values preserves invariance

3 Covariance matrix adaptation (CMA) increases the probability to
repeat successful steps

learning all pairwise dependencies
=⇒ conducts an incremental PCA

=⇒ new (rotated) problem representation

4 An evolution path (a trajectory) is exploited in two places
I enhances the covariance matrix (rank-one) adaptation

yields sometimes linear time complexity
I controls the step-size (step length)

aims at conjugate perpendicularity
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Linear Encoding and the Covariance Matrix
Equivalence between change in encoding and transformation of the mutation operator

Let xB, xA ∈ Rn be two genotypes encoding the same phenotype

y = A xA = B xB

The effect of the different encodings becomes evident, when the
genotype is changed (adding N (0, C)).

ynew = B (xB +N (0, C)) = B xB + BN (0, C)
= A xA + A A−1BN (0, C)
= A (xA + A−1BN (0, C))

ynew = A (xA + A−1BN (0, C))

Using a new encoding B means using a different covariance matrix
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Adaptive Encoding

Definition (Adaptive Encoding)

Given a search algorithm, A in state s, an encoding, TB and an update,
U , then the iteration step

s ← TB ◦ A ◦ T−1
B (s) (1)

B ← U(B, s) (2)

defines an adaptive encoding where TB ◦ A ◦ T−1
B (s) = TB(A(T−1

B (s))).

Remark (Evaluation of Solutions)
In order to make use of Eq. (1), A has to operate on f ◦ B.
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Adaptive Encoding
Example: Adaptive Encoding of CSA-ES
AECMA-CSA-ES

AE : Adaptive Encoding
CMA : Covariance Matrix Adaptation

CSA-ES : Cumulative Step-size Adaptation Evolution Strategy, lines 6–13
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Adaptive Encoding

Theorem (Recovery of CMA-ES)

Given AECMA-Update in Procedure 1, the AECMA-(µ/µW, λ)-CSA-ES
implements the (µ/µW, λ)-CMA-ES.

Adaptive Encoding

can render any continuous domain search algorithm independent
of the coordinate system

anticipated successful applications in particular for
population-based stochastic algorithms
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Another Case Study
Adaptive Encoding

Cauchy-ES (green)
versus Adaptively
Encoded Cauchy-ES
(black)

rotating a separable
function, 10-D
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Another Case Study
Adaptive Encoding

Cauchy-ES (green)
versus Adaptively
Encoded Cauchy-ES
(black)

rotating a separable
function, 30-D
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