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Abstract

This paper investigates σ-self-adaptation for real valued evolutionary algorithms on
linear fitness functions. We identify the step-size logarithm log σ as a key quantity
to understand strategy behavior. Knowing the bias of mutation, recombination, and
selection on log σ is sufficient to explain σ-dynamics and strategy behavior in many
cases, even from previously reported results on non-linear and/or noisy fitness func-
tions. On a linear fitness function, if intermediate multi-recombination is applied on
the object parameters, the i-th best and the i-th worst individual have the same σ-
distribution. Consequently, the correlation between fitness and step-size σ is zero.
Assuming additionally that σ-changes due to mutation and recombination are unbi-
ased, then σ-self-adaptation enlarges σ if and only if µ < λ/2, given (µ, λ)-truncation
selection. Experiments show the relevance of the given assumptions.
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1 Introduction

Mutative strategy parameter control, often denoted as self-adaptation (SA) (Schwefel,
1995), is a widely used method to adjust strategy parameters in evolutionary algo-
rithms (EAs). In particular in evolution strategies (ESs) and in evolutionary program-
ming, self-adaptation is regarded as a key feature (Bäck and Schwefel, 1993). In the
concept of mutative strategy parameter control, the strategy parameters undergo an
evolutionary process of reproduction and selection, similar to the object parameters.
Usually recombination and mutation operators are applied to the strategy parameters
first. The newly generated strategy parameter values are typically used to determine
the probability distribution for the object parameter mutation of the same individual.
Consider for example the following generation of new search points. Given object pa-
rameter x(g) ∈ Rn and strategy parameter θ(g) ∈ R at generation g, we have for each
descendant k = 1, . . . , λ

θ
(g+1)
k = θ(g) + Yk(τ) (1)

x
(g+1)
k = x(g) + γ

(
θ
(g+1)
k

)
Nk(0, I) , (2)

where Yk(τ) ∈ R denotes a random number with variance τ2, the function γ : R → R
is monotonic, and N(0, I) ∈ Rn denotes a normally distributed random vector with
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zero mean and identity I as covariance matrix. The strategy parameter θ determines,
via γ(θ), the scaling factor for the mutation of the object parameter x, and therefore the
expected step length.

The function γ is most often chosen to be the exponential function, as in evolution
strategies (Rechenberg, 1994; Schwefel, 1995) and often in evolutionary programming
(Yao et al., 1999). In meta-evolutionary programming, γ was chosen to be the square
root, where Y is bounded to ensure θ > 0, and τ becomes a function of θ (Bäck and
Schwefel, 1993).1 If not stated otherwise we assume γ to be the exponential function in
the following.

To avoid an a priori bias on the strategy parameter change, the distribution of
Y (τ) usually has zero mean and zero median. Mostly the normal distribution Y (τ) ∼
N
(
0, τ2

)
is used (Schwefel, 1995), or a symmetric, discrete two-point distribution, e.g.

±0.26 (Rechenberg, 1994, p. 48). Given symmetry, zero mean, and variance τ2 for Y ,
the specific distribution is, to our experience, of secondary relevance. Consequently,
our discussion does not depend on the specific distribution chosen for mutating θ.

The selection of descendents is solely based on the fitness of the object parameter
values x

(g+1)
k , k = 1, . . . , λ. Therefore, selection of strategy parameters, here θ

(g+1)
k , is

indirect and stochastic: it is based on the probabilistic connection between the strategy
parameters (here the covariance matrix γ(θk)2I) and a given realization of the object
parameter vector. A better strategy parameter setting can, by chance, result in a worse
object parameter setting and vice versa. Hence stochastic fluctuations of the strategy
parameters will occur. In (1) only a single strategy parameter θ is in use and stochastic
fluctuations are usually unproblematic. In a more general scheme we can have θ ∈ Rn.
Then, γ(θ) results in a diagonal matrix and defines a different scaling for each variable.
In this case, stochastic fluctuations of elements of θ are problematic whenever an ele-
ment becomes small and changes of this element do not produce selection relevant dif-
ferences in the object parameter x anymore.2 Because the size of stochastic fluctuations
can be scaled down by an increasing parent number, this happens, roughly speaking,
only if the number of adapted strategy parameters exceed the parent population size.

This problem is related to the mutation strength τ of the mutation of the strategy
parameters. Small mutation strengths, i.e., small changes of the strategy parameters,
can result in virtually selection-irrelevant changes. Large mutation strengths result in
large fluctuations of the strategy parameters. Both can lead to a failure of the strategy.
Again, this problem becomes particularly relevant if a larger number of parameters is
adapted. The problem can be approached by choosing an appropriately large popula-
tion size, e.g. together with intermediate multi-recombination, or by derandomization
(Ostermeier et al., 1994; Hansen and Ostermeier, 2001).

Another fundamental problem connected to self-adaptation regards the discrep-
ancy between the improvement of a single individual versus the improvement of the
whole population. On the one hand, selection accounts for a high fitness of the single
individual. On the other hand, an optimal strategy parameter setting must take into ac-
count the fitness gain of the whole population. These objectives can be opposed: Con-

1Here θ
(g)
k instead of θ

(g+1)
k is used in (2). This can only be feasible if different θ

(g)
k are used in (2) and

accordingly in (1).
2Schwefel (1995) observes the same effect, referred to as overadaptation, and states, in contrast to our hy-

pothesis, that elements become small because selection is favorable to individuals with a single small ele-
ment.
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sider the (µ/µI, λ)-ES3 on the sphere model, f(x) =
∑n

i=1 x2
i . The optimal step length

is approximately proportional to µ (assuming λ � n) (Rechenberg, 1994; Beyer, 2001).
The σ-self-adaptation (σSA) accounts for selection of single individuals and leads to a
nearly optimal step-size σ for µ = 1. But, σSA cannot account for parent number µ,
and the selected step-sizes are roughly independent of µ.4 Consequently, for large µ
the step-sizes adapted by σSA are (far) too small. The problem is less pronounced with
dominant recombination of the object parameters and the problem can be alleviated
using a biased step-size changing operator (see below).5 The problem can be solved
using competing populations rather than competing individuals or by cumulative path
length control (Hansen and Ostermeier, 2001, Eqs. (16) and (17), where B = D = I).

This paper addresses yet another problem concerning the link between selection
rank (fitness) and strategy parameter setting. It seems plausible that a better object
parameter setting (in terms of fitness, determining the selection rank) is connected with
a better expected strategy parameter setting. This plausible conjecture turns out to be
wrong in general. We show that a missing link between fitness and strategy parameter
quality can lead to a failure even on a linear fitness function.

We will consider the following, simple optimization problem. Maximize the
(affine) linear fitness function flinear : Rn → R, x 7→ f0 + 〈v,x〉 = f0 +

∑n
i=1 vixi,

where the constants f0 ∈ R and v ∈ Rn, and v 6= 0. In a simple case, f0 = 0 and v is
equal to the first unit vector and flinear(x) = x1, as used in the simulations. The results
in this paper hold for any f0 ∈ R and v 6= 0. Furthermore, we will consider the com-
monly used σ-self-adaptation (σSA) of one global step-size. To derive the equations of
σSA from (1) and (2) we set γ = exp and σ = γ(θ) ∈ R+. The well-known σSA method
then reads

σ
(g+1)
k = σ(g) exp (Yk(τ)) (3)

x
(g+1)
k = x(g) + σ

(g+1)
k Nk(0, I) . (4)

Remark that (3) and (4) are only a specific way to rewrite (1) and (2).

The σSA of one global step-size is a commonly used method for the adaptation
of the overall distribution variance of the mutation distribution. What is the interest in
flinear when considering σSA of one global step-size? When step-size σ (and hence pop-
ulation diversity) decreases to zero, from the algorithms viewpoint any smooth fitness
function f becomes (affine) linear, that is f → flinear for certain f0 and v, when σ → 0.
Therefore, a linear fitness environment must be regarded as the strongest realistic indi-
cation for enlarging the step-size. Hence, we have a necessary (minimal) demand on
any control mechanism for the global step-size: to enlarge the step-size on flinear. This
paper investigates when and why σSA increases the step-size on flinear and therefore
meets the minimal demand.

The next section describes the initial motivation for this paper. In Section 3 the

3The algorithm is outlined in Section 5 as ESI....
4Actually, the second best individual has an even smaller expected step-size than the best individual

(Hansen, 1998).
5Even though the target step-size of σSA is smaller than the optimal step-size, the dynamics of the optimal

step-size when approaching the optimum can have a remarkable influence. If the realized change rate of σ,
controlled by parameter τ , is small enough, the changing optimal step-size approaches the realized step-size
and can even become smaller (as becomes obvious for τ = 0). This effect can explain the results reported
by Grünz and Beyer (1999) but, for a reasonable parameter setting of τ , will be observed only on functions
where the optimum can be approached fast.
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general evolutionary algorithm is outlined and the assumptions for the theoretical re-
sults are described. Section 4 presents the theoretical results. Section 5 describes the
specific algorithms used for the experiments. In Section 6 experiments confirm the role
of the assumptions. Section 7 gives a summary and a conclusion.

2 Motivation: The (1, 2)-σSA-ES Fails

We start from a somewhat surprising observation from experiments on flinear, origi-
nally brought up in Ostermeier (1997, p. 9ff). Fig. 1 shows log-fitness curves of the
(1, λ)-σSA-ES, where λ = 2; 3; 4; 6; 8; 10. (The algorithm is outlined in Section 5, where
〈σ〉(g)

k = σ
(g)
1:λ in (16) and 〈x〉(g)

k = x
(g)
1:λ in (17), where 1 : λ denotes the index of the best

individual). With constant step-size, i.e., without σ-self-adaptation, theoretical results
(Schwefel, 1995; Hansen et al., 1995) as well as experiments (Herdy, 1993) reveal that
λ = 2 and λ = 3 are the optimal choice on flinear. The σSA-ES cannot realize this result.
The performance of the (1, 4)-σSA-ES is about 1.5 times faster than the performance
of the (1, 3)-σSA-ES and even the σSA-ES with λ = 6; 8; 10 is clearly faster than with
λ = 4. This result is particularly surprising, because the parameter τ = 1/

√
2n is chosen

identical in all cases. Because τ determines the possible step-size increase per generation
the set up is favorable to smaller λ. Even more remarkable is the degradation of the
(1, 2)-σSA-ES. For λ = 2, the log-fitness gain over time is clearly sub-linear.

The reason for the performance degradation of the (1, 2)-σSA-ES can be observed
in Fig. 2. The log-σ plots from the same runs reveal a qualitative difference between the
(1, 2)-σSA-ES on the one hand, and the strategies where λ > 2 on the other hand. The
former shows an unbiased random walk of log(σ), while for the latter log(σ) increases
linearly with time.

Why can we observe a random walk of log(σ)? One might argue that the additional
parameter σ to be adapted needs a larger population size. For a slight degradation this
argument might be acceptable. But it is unsatisfactory for the observed σ-dynamics for
λ = 2. Also, a large number of object parameters does not generally demand a large
population size. For µ = 1 optimal λ-values are usually small, even for large search
space dimensions. On the sphere model and on flinear, even the (1, 2)-ES works well
for search space dimensions of at least up to 1000 if, e.g., cumulative path length control
(Hansen and Ostermeier, 1996) is applied to adapt the global step-size.

It was already concluded in Ostermeier (1997, p. 11) that the (1, 2)-σSA-ES keeps
log(σ) constant on a linear function. We can explain this by simple symmetry con-
siderations. In a (1, 2)-σSA-ES three different selection situations can occur: 1) one
offspring is better than the parent while the other is worse. In this situation selection
takes place regardless of σ. 2) both offspring are better than the parent. Selection will
favor the larger σ in this situation. 3) both offspring are worse than the parent. Selec-
tion will favor the smaller σ now. From the symmetry of the offspring distribution and
of flinear follows that in situation 3) exactly those σ are selected which are disregarded
in situation 2). Subsuming 1)-3) implies that the selection on flinear does not change the
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Figure 1: lg(flinear) versus number of function evaluations. (1, λ)-σSA-ES for λ =
2; 3; 4; 6; 8; 10, problem dimension n = 10, 19 runs per figure.

distribution of σ in the (1, 2)-σSA-ES! Therefore, with (3) we can derive

E
[
log σ(g+1)

∣∣∣σ(g)
]

= E
[
log σ

(g+1)
k

∣∣∣σ(g)
]

= E
[
log
(
σ(g) exp (Yk(τ))

) ∣∣∣σ(g)
]

= log
(
σ(g)

)
+ E[log (exp(Yk(τ)))]

= log
(
σ(g)

)
+ E[Yk(τ)] (5)
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Figure 2: lg(σ) versus number of function evaluations. (1, λ)-σSA-ES for λ =
2; 3; 4; 6; 8; 10, problem dimension n = 10, 19 runs per figure. Shown are the same
runs as in Fig. 1.

for the (1, 2)-σSA-ES on flinear. Because Y has zero mean, for λ = 2 we must expect an
unbiased random walk of log(σ) on a linear fitness function. This random walk of log σ
can be observed in Fig. 2, upper left, where the normal distributionN(0, τ2) for Y in (3)
is used.

Beyer and Deb (2001) argue that the “constant σ claim” for a linear function is
wrong because Ostermeier argues w.r.t. the probability of increase of σ rather than w.r.t.
the expectation value of σ. Based on Beyer (1996), they show that the (1, 2)-σSA-ES ex-
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ponentially increases σ and σ2 on flinear (Beyer and Deb, 2001). In fact, both assertions
are correct: The “constant σ claim” by Ostermeier (1997) holds for the expectation of
log(σ), as shown above, while the expectation of σ and σ2 increase exponentially: from
E
[
log σ(g+1)

∣∣σ(g)
]

= log
(
σ(g)

)
, according to (5), we multiply with α 6= 0 and derive

with Jensen’s inequality for all α 6= 0 that log
(
E
[ (

σ(g+1)
)α ])

> E
[
log
((

σ(g+1)
)α) ]

=

log
((

σ(g)
)α)

and therefore E
[ (

σ(g+1)
)α ]

>
(
σ(g)

)α
.6

We summarize our observations in

Proposition 1 On flinear the σ-distribution in the (1, 2)-σSA-ES is identical before and after
selection, that is, for k = 1, 2

σ(g+1) = σ
(g+1)
1:2 ∼ σ

(g+1)
2:2 ∼ σ

(g+1)
k = σ(g) exp(Yk) . (6)

Therefore, if E
[
Yk

]
= 0, the step-size σ is unbiased: for all α 6= 0

E
[
log
((

σ(g+1)
)α) ∣∣∣σ(g)

]
= log

((
σ(g)

)α)
, (7)

but
E
[(

σ(g+1)
)α ∣∣∣σ(g)

]
>
(
σ(g)

)α

. (8)

Beyer and Deb (2001) oppose the evolution of log(σ) to the evolution of the real σ.
Even though it is unclear why log(σ) can be considered as being less real than σ, the
question remains whether to look at σ, σ2, or log(σ) is more appropriate. For the case
of the (1, 2)-σSA-ES, Proposition 1, complemented by the experimental results from
Fig. 1 and Fig. 2, answers this question. On the one hand, log(σ) being constant re-
flects that the σ distribution remains identical before and after selection. On the other
hand, log(σ) being constant is directly related to the collapse of fitness gain on flinear

and can predict the performance degradation of the (1, 2)-σSA-ES. In contrast, the ex-
ponential increase of σ and/or σ2 turns out to be not sufficient to predict a satisfactory
σ-dynamics on flinear. Postulate 3 from Beyer and Deb (2001), that the expected popu-
lation variance should increase exponentially, is not sufficient. The following postulate
is more appropriate.

Postulate 1 On flinear, an evolutionary algorithm should increase the expected logarithm of
the population variance linearly in time.

What should be the conclusion from these observations? We would expect from
any reasonable σ-control algorithm on a linear fitness function a linear increase of
log(σ) over the time. The reason is threefold. First, in many cases flinear is the best
local approximation of the fitness function if σ is (too) small. Second, on flinear a non-
increasing log(σ) does not achieve a linear log-fitness gain. Third, σ-control can achieve
the linear increase of log(σ) and of the log-fitness easily. (This was validated by the
above results for λ > 2). The (1, 2)-σSA-ES fails to meet the expectation to increase
log(σ).

The remainder of this paper is related to the question whether this failure car-
ries over to other strategy variants. Is it a singular phenomenon of the (1, 2)-σSA-ES?

6Thanks to Anne Auger who pointed out this implication to me.
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Does it generalize to any (µ, 2µ)-σSA-ES as stated in Ostermeier (1997, p. 11)? What
if µ > λ/2? If applied, does recombination play a role? These questions will be ad-
dressed in the following sections. It will be shown that, depending on the applied muta-
tion and recombination mechanism, the phenomenon generalizes to the (µ, 2µ)-σSA-ES.
More formally, we will show that under certain assumptions the (µ, 2µ)-selection does
not influence the expectation of certain transformations of σ. Slightly more restrictive
assumptions are necessary to get conclusions for µ 6= λ/2.

Prior to presenting the theoretical results, we need to define the Evolutionary Al-
gorithm.

3 The Evolutionary Algorithm

We formulate a real coded evolutionary algorithm with (µ, λ)-truncation selection and
with σSA, i.e., mutative strategy parameter control of one global step-size σ. The new
step-size Sk and the new search point Xk are generated from the set of selected indi-
viduals, (x, σ)i:λ|i=1,...,µ, comprising object parameters xi:λ and step-sizes σi:λ, where
i : λ denotes the index of the i-th best individual. For each descendant k = 1, . . . , λ we
have independently

S
σi:λ|i=1,...,µ

k = Mutσ

(
Recσ

{
σi:λ|i=1,...,µ

})
(9)

X
(x,σ)i:λ|i=1,...,µ

k = Recx

{
xi:λ|i=1,...,µ

}
+ S

σi:λ|i=1,...,µ

k · Zk , (10)

where Recσ{.} and Recx{.} denote recombination mechanisms, Mutσ(.) denotes mu-
tation of a step-size and Zk ∈ Rn, k = 1, . . . , λ, are independent and identically dis-
tributed random vectors for the mutation of the object parameter vector. An example
for Recx{.} is intermediate multi-recombination, where Recx{xi:λ|i=1,...,µ} = 1

µ

∑µ
i=1 xi:λ.

In the following S
σi:λ|i=1,...,µ

k ∈ R+ and X
(x,σ)i:λ|i=1,...,µ

k ∈ Rn denote random vari-
ables whose distributions depend on the superscript values. The σk and xk denote
realized values of the previous generation. The number i : λ denotes the index of the
i-th best individual and the set {i : λ|i = 1, . . . , µ} is the index set of the µ selected
(best) individuals.

For the theory section of this paper two assumptions on the EA are introduced.
Examples of mutation and recombination operators which satisfy these assumptions
are formulated in the following.

The first assumption is concerned with the symmetry of the distribution of indi-
viduals.

Assumption 1 (Symmetry) Recombination and mutation of object parameter vectors x in
(10) yield a point-symmetrical distribution of descendants. That is, there exists a point p ∈ Rn,
such that

X
(x,σ)i:λ|i=1,...,µ

k − p

and
−
(
X

(x,σ)i:λ|i=1,...,µ

k − p
)

are identically distributed, and also the distribution of Sσi:λ|i=1,...,µ

k |X(x,σ)i:λ|i=1,...,µ

k is identical
for the symmetry pair X

(x,σ)i:λ|i=1,...,µ

k = p + a and X
(x,σ)i:λ|i=1,...,µ

k = p− a for all a ∈ Rn.
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Assumption 1 leads to a point-symmetrical distribution of the complete population
before selection.

The following proposition gives a sufficient condition to satisfy the symmetry As-
sumption 1.

Proposition 2 The symmetry Assumption 1 is satisfied by (9) and (10) if
Recx{xi:λ|i=1,...,µ} = p for all offspring k = 1, . . . , λ of one generation step, and Zk is
point-symmetrical w.r.t. 0, and Zk is independent of S

σi:λ|i=1,...,µ

k . In particular an evolu-
tion strategy with intermediate multi-recombination, (µ/µI, λ)-ES, satisfies the symmetry
assumption.

Without intermediate multi-recombination of the object parameters, symmetry cannot
be taken for granted, because the selected population x1:λ, . . . ,xµ:λ is non-symmetrical
in general.

The second assumption refers to the step-size variation. It concurrently defines
a) what we refer to as unbiased step-size and b) an appropriate method to measure an
expected step-size of the EA.

Assumption 2 (σ-Stationarity) There exists a (strictly) monotonically increasing function
h : R → R,7 for which recombination and mutation leave h(Sσi:λ|i=1,...,µ

k ) unbiased, that is
E
[
h(Sσi:λ|i=1,...,µ

k )
]

= 1
µ

∑µ
i=1 h(σi:λ), for all k = 1, . . . , λ.

Lemma 1 Let h : x 7→ log(x) and let the mutation of σ be a multiplication with a factor > 0,
that is, w.l.o.g. Mutσ(σ) = σ · exp(Y ). Then the biases of mutation and recombination add,
that is

E
[
log(Sσi:λ|i=1,...,µ

k )
]

= E
[
Y
]
+ E

[
log
(
Recσ{σi:λ|i=1,...,µ}

) ]
. (11)

Proof

E
[
log(Sσi:λ|i=1,...,µ

k )
]

= E
[
log
(
Mutσ

(
Recσ{σi:λ|i=1,...,µ}

))]
= E

[
log
(
exp(Y ) · Recσ{σi:λ|i=1,...,µ}

)]
= E

[
log (exp(Y )) + log

(
Recσ{σi:λ|i=1,...,µ}

)]
= E[Y ] + E

[
log
(
Recσ{σi:λ|i=1,...,µ}

)]
.

2

Two examples for the operators Recσ{.} and Mutσ(.) are given which satisfy the
σ-stationarity Assumption 2 for a certain function h.

Proposition 3 The σ-stationarity Assumption 2 is satisfied by h : x 7→ log(x), if Mutσ(σ) =
σ·exp(Yk), where Yk is a random number with zero mean, e.g. Yk is (0, 1)-normally distributed,
and

1. no recombination on the step-size is applied, that is Recσ{σi:λ|i=1,...,µ} := σj , where j is
uniformly distributed in {i : λ|i = 1, . . . , µ}, or

2. “geometric” recombination on the step-sizes is applied, that is Recσ{σi:λ|i=1,...,µ} =
µ
√∏µ

i=1 σi:λ in the case of µ recombinants.
7For h ≡ const the theoretical results can be formally applied but become meaningless.
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Proof With (11) from Lemma 1 and E[Yk] = 0 we derive E
[
h(Sσi:λ|i=1,...,µ

k )
]

= 0 +
E
[
log
(
Recσ{σi:λ|i=1,...,µ}

)]
. From the definition of Recσ{σi:λ|i=1,...,µ} in both cases

we derive E
[
log
(
Recσ{σi:λ|i=1,...,µ}

) ]
= 1

µ

∑µ
i=1 log σi:λ = 1

µ

∑µ
i=1 h(σi:λ). 2

Proposition 4 The σ-stationarity Assumption 2 is satisfied by the identity function h : x 7→ x,
if Mutσ(σ) := σ + Yk, where Yk is a random number with zero mean,8 and

1. no recombination on the step-size is applied, that is Recσ{σi:λ|i=1,...,µ} := σj , where j is
uniformly distributed in {i : λ|i = 1, . . . , µ}, or

2. “arithmetic” recombination on the step-sizes is applied, that is Recσ{σi:λ|i=1,...,µ} :=
1
µ

∑µ
i=1 σi:λ.

Proof

E
[
h(Sσi:λ|i=1,...,µ

k )
]

= E
[
S

σi:λ|i=1,...,µ

k

]
= E

[
Mutσ

(
Recσ{σi:λ|i=1,...,µ}

)]
= E

[
Yk + Recσ{σi:λ|i=1,...,µ}

]
= 0 + E

[
Recσ{σi:λ|i=1,...,µ}

]
,

and from the definition of Recσ{σi:λ|i=1,...,µ} in both cases we have
E
[
Recσ{σi:λ|i=1,...,µ}

]
= 1

µ

∑µ
i=1 σi:λ. 2

In contrast to geometric recombination, arithmetic recombination of step-sizes in-
troduces a bias on σ, given h = log.

Proposition 5 For h : x 7→ log(x), the arithmetic recombination of σ, where
Recσ{σi:λ|i=1,...,µ} := 1

µ

∑µ
i=1 σi:λ, does not satisfy Assumption 2 and biases σ towards in-

crease.

Proof Because µ ≥ 2 and σ obeys a density, we can assume that σi:λ 6= σj:λ for some
i, j ≤ µ. Therefore

E
[
h
(
Recσ{σi:λ|i=1,...,µ}

)]
= E

[
log

(
1
µ

µ∑
i=1

σi:λ

)]

= log

(
1
µ

µ∑
i=1

σi:λ

)

>
1
µ

µ∑
i=1

log σi:λ

=
1
µ

µ∑
i=1

h (σi:λ)

2

8This model allows, and demands, negative values for σ. With an object parameter mutation symmetrical
around zero this is algorithmically insignificant. Consequently E[σ] does not equal E[|σ|] in general, that is
E[σ] may not reflect the step length anymore.
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This bias, introduced by arithmetic recombination of step-sizes, has important conse-
quences on the strategy behavior, as we will see below.

All theoretical results in this paper are based on Assumption 1. Some results also
require Assumption 2 (and hold for any function h satisfying Assumption 2). The ex-
periments in Section 6 reveal the relevance of these assumptions in different algorithms.

4 Theoretical Results

From the symmetry Assumption 1 we derive the fundamental theorem that the step-
size distributions of the i-th best and the i-th worst individual on flinear are identical.

Theorem 1 Given Assumption 1, the i-th best and the i-th worst individual have the same
distribution of the step-size on flinear, that is, for i = 1, . . . , λ

S
(x,σ)i:λ|i=1,...,µ

i:λ ∼ S
(x,σ)i:λ|i=1,...,µ

λ−i+1:λ . (12)

Proof Because S
σi:λ|i=1,...,µ

k |(X(x,σ)i:λ|i=1,...,µ

k = p + a) is distributed like
S

σi:λ|i=1,...,µ

k |(X(x,σ)i:λ|i=1,...,µ

k = p − a), selection on flinear yields the same
distribution for S

(x,σ)i:λ|i=1,...,µ

i:λ as selection on −flinear. Because the i-th best
individual on −flinear is identical to λ− i + 1-th best individual on flinear the proof
is complete. 2

Corollary 1 Given Assumption 1, on flinear the correlation between fitness-value and step-size
is zero.

Proof Let denote f0(Xk) = flinear(X
(x,σ)i:λ|i=1,...,µ

k ) − E
[
flinear(X

(x,σ)i:λ|i=1,...,µ

k )
]
. Be-

cause X
(x,σ)i:λ|i=1,...,µ

k is symmetric, f0(Xk) is symmetric around zero and ac-
cording to Assumption 1 the distribution of S

σi:λ|i=1,...,µ

k | f0(Xk) = a is iden-
tical to S

σi:λ|i=1,...,µ

k | f0(Xk) = −a for all a ∈ R. Therefore E
[
f0(Xk) ×(

S
σi:λ|i=1,...,µ

k − E
[
S

σi:λ|i=1,...,µ

k

]) ]
= 0, q.e.d. 2

Theorem 1 and Corollary 1 indicate that on flinear there is no clear cut relation between
fitness (of the object parameters) and step-size quality. In the following, we will inves-
tigate some consequences of those results. For the remainder of this section, we use an
EA which satisfies both assumptions given in the last section.

Consider two identical evolutionary algorithms with different (truncation-)
selection schemes. One with (µ, λ)-selection, the other with (µ′, λ)-selection. Assuming
µ′ = λ−µ the algorithms are denoted by EAµ and EAλ−µ. We investigate now whether
EAµ and EAλ−µ increase h(σ) on flinear.

Let S
EAµ

i:λ and S
EAλ−µ

i:λ denote S
(x,σ)i:λ|i=1,...,µ

i:λ of EAµ and EAλ−µ, respectively, and
let Eh [.] denote E[h(.)]. We show that the set S

EAµ

1...µ:λ is “opposed” to the set S
EAλ−µ

1...λ−µ:λ

on flinear.

Theorem 2 Assume identical baseline step-size, that is 1
µ

∑µ
i=1 h(σi:λ) in EAµ to be equal

to 1
λ−µ

∑λ−µ
i=1 h(σi:λ) in EAλ−µ. Assume the results of recombination, Recx{xi:λ|i=1,...,µ}

11



and Recσ{σi:λ|i=1,...,µ} identically distributed in EAµ and EAλ−µ, respectively, apart from
translation in search space. Then on flinear, EAµ enlarges the expected step-size if and only if
EAλ−µ reduces it, and vice versa. That is

1
µ

µ∑
i=1

Eh

[
S

EAµ

i:λ

]
><

1
µ

µ∑
i=1

h (σi:λ) ><
1

λ− µ

λ−µ∑
i=1

Eh

[
S

EAλ−µ

i:λ

]
(13)

where >< means >, or =, or < holds equally at each occurrence.

Proof With Assumption 2 we have for each k = 1, . . . , λ

1
µ

µ∑
i=1

h (σi:λ) = Eh

[
S

EAµ

k

]
=

1
λ

λ∑
i=1

Eh

[
S

EAµ

i

]
=

1
λ

λ∑
i=1

Eh

[
S

EAµ

i:λ

]
.

The last equation results from rearranging the sum after exchanging sum and ex-
pectation. Splitting the last sum yields

1
µ

µ∑
i=1

Eh

[
S

EAµ

i:λ

]
><

1
µ

µ∑
i=1

h (σi:λ)

⇐⇒ 1
µ

µ∑
i=1

h (σi:λ) ><
1

λ− µ

λ∑
i=µ+1

Eh

[
S

EAµ

i:λ

]
. (14)

Because the result of recombination is identical for EAµ and EAλ−µ, descendants
are identically distributed in both strategies (beside their selection scheme both
algorithms are identical). That is, S

EAµ

i:λ has the same distribution as S
EAλ−µ

i:λ and
with Theorem 1 we can replace i by λ− i + 1. Therefore the RHS of (14) equals to

1
λ−µ

∑λ
i=µ+1 Eh

[
S

EAλ−µ

λ−i+1:λ

]
= 1

λ−µ

∑λ−µ
i=1 Eh

[
S

EAλ−µ

i:λ

]
, q.e.d. 2

Theorem 2 shows that, under slightly tighter assumptions, only one of the two al-
gorithms EAµ and EAλ−µ increase the step-size on flinear. That is, only one of these
algorithms work properly on flinear. Sufficient conditions for the assumptions in Theo-
rem 2 can be given.

Proposition 6 The additional assumption in Theorem 2 on the recombination result
Recx{xi:λ|i=1,...,µ} is satisfied by Proposition 2. The additional assumption in Theorem 2 on the
recombination result of Recσ{σi:λ|i=1,...,µ} is satisfied by the multi-recombination from Propo-
sition 3, point 2, and from Proposition 4, point 2.

Finally, we derive from Theorem 2 the answer to the original question, whether
our observations from the (1, 2)-σSA can be generalized to any µ, where λ = 2µ.

Theorem 3 Given Assumption 1 and 2, the expected step-size of a (µ, 2µ)-EA on flinear is
constant. That is, for λ = 2µ

1
µ

µ∑
i=1

Eh

[
S

(x,σ)i:λ|i=1,...,µ

i:λ

]
=

1
µ

µ∑
i=1

h (σi:λ) . (15)

Proof Because λ = 2µ, EAµ and EAλ−µ in Theorem 2 denote the same strategy. There-
fore, the assumption of identical recombination result in Theorem 2 is satisfied. We
have 1

µ

∑µ
i=1 Eh

[
S

EAµ

i:λ

]
= 1

λ−µ

∑λ−µ
i=1 Eh

[
S

EAλ−µ

i:λ

]
, and with (13) follows (15). 2

12



Theorem 3 generalizes (7) from the (1, 2)-σSA-ES to any (µ, 2µ)-EA that satisfies both
assumptions from Section 3. Furthermore, Theorem 3 gives even stronger evidence
that Theorem 2 is of relevance for any (µ, λ)-EA from Section 3. It seems unlikely that
the step-size remains constant for µ = λ/2, as shown in Theorem 3, while it increases
for µ < λ/2 and for µ > λ/2. This will be confirmed in the following, where a few
EA variants are formulated and the predictions of the theoretical results are compared
with experimental results.

5 Algorithms Used for Experiments

For our experiments we used the following (µ/ρI, λ)-evolution strategy, where we use a
different, more common notation from now on. The transition from generation g to g+1
for step-sizes σ ∈ R+ and object parameter vectors x ∈ Rn read for each descendant
k = 1, . . . , λ

σ
(g+1)
k = 〈σ〉(g)

k exp
(
Nk

(
0, τ2

))
(16)

x
(g+1)
k = 〈x〉(g)

k + σ
(g+1)
k Nk(0, I) , (17)

where Nk

(
0, τ2

)
denotes a normally distributed random number with zero mean and

standard deviation τ = 1/
√

2n. Nk(0, I) denotes a (0, I)-normally distributed random
vector, where I denotes the identity matrix.

By defining the recombination operators, i.e., 〈σ〉(g)
k and 〈x〉(g)

k in different ways the
following algorithm variants are specified (i : λ denotes the index of the i-th best out of
λ individuals):

ESw/o: ES without recombination (ρ = 1). We have that

〈σ〉(g)
k = σ

(g)
i (18)

〈x〉(g)
k = x

(g)
i , (19)

where i is uniformly distributed in {j : λ|j = 1, . . . , µ}, drawn for each k = 1, ..., λ
independently. This scheme satisfies the σ-stationarity Assumption 2 for h ≡ log
(see Proposition 3). We suspect that the symmetry Assumption 1 is usually not
satisfied for two reasons. It seems unlikely for most objective functions that the
µ selected individuals of a population are point-symmetrically distributed. Ad-
ditionally the linkage between object parameter x and σ should compromise the
symmetry assumption w.r.t. the distribution of σ.

ESunlink: ES without recombination of x or σ (ρ = 1), while x and σ are chosen inde-
pendently. We have that

〈σ〉(g)
k = σ

(g)
i (20)

〈x〉(g)
k = x

(g)
j , (21)

where i and j are chosen independently uniformly drawn in {i : λ|i = 1, . . . , µ}.
This mechanism unlinks σ from x and can also be regarded as recombination be-
tween x and σ blocks.

13



This algorithm satisfies the σ-stationarity Assumption 2 for h ≡ log (see Proposi-
tion 3). Again the symmetry Assumption 1 might be violated due to an asymmet-
rical distribution of the population.

ESIA: ES with intermediate µ/µ-recombination (ρ = µ) of the object parameters and
intermediate arithmetic µ/µ-recombination of the step-sizes. We have that

〈σ〉(g)
k =

1
µ

µ∑
i=1

σ
(g)
i:λ (22)

〈x〉(g)
k =

1
µ

µ∑
i=1

x
(g)
i:λ (23)

This algorithm satisfies the symmetry Assumption 1 (see Proposition 2). The σ-
stationarity Assumption 2 is satisfied (only) for µ = 1 and h ≡ log.9 For µ > 1
and h ≡ log, the σ-stationarity is not preserved; E

[
log(σ)

]
increases under the

recombination operator (Proposition 5).

ESIG: ES with intermediate µ/µ-recombination (ρ = µ) of object parameters and inter-
mediate geometric µ/µ-recombination of the step-sizes. We have that

〈σ〉(g)
k = exp

(
1
µ

µ∑
i=1

log σ
(g)
i:λ

)
=

(
µ∏

i=1

σ
(g)
i:λ

) 1
µ

(24)

〈x〉(g)
k =

1
µ

µ∑
i=1

x
(g)
i:λ (25)

According to Propositions 2 and 3 this algorithm satisfies both assumptions from
Section 3 for h = log.

ESI w/o: ES with intermediate µ/µ-recombination (ρ = µ) of the object parameters as
in ESIA and ESIG (Equation (25)) and without recombination of the step-sizes as
in ESw/o and ESunlink(Equation (20)). According to Propositions 2 and 3 this algo-
rithm satisfies both assumptions from Section 3 like ESIG.

For ESIG also the additional assumption for Theorem 2 of identical population distri-
bution of EAµ and EAλ−µ is satisfied.

The described mutation and recombination mechanisms for the object parameter
vector x are frequently used in ESs. While the arithmetic mutation operator for step-
size σ in (16) is commonly used, the geometric recombination operator in (24) is fairly
uncommon. Nevertheless, from a fundamental viewpoint, the geometric mean seems
to be the more sensible operator for the following reason: Let, for example, step-sizes
σ1 = 10−2 and σ2 = 10−4 been “tested” already. If one would like to choose a third
step-size for testing “in the middle” of σ1 and σ2 this would be, naturally, σ3 = 10−3 =
2
√

σ1σ2. Using the arithmetic mean would result in σ3 = 5.05 · 10−3—a fairly strange
choice: a factor of 2 less than σ1, but a factor of 50 greater than σ2. Also the commonly
used mutation operator reflects the feasibility of the “geometrical approach” to operate

9This result explains, why for the ESIA in a noisy environment σ seems to converge to zero only for µ = 1
(Beyer and Sendhoff, 2005).
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with step-sizes. Here, after mutation of σ the numbers σ · α and σ/α appear with the
same probability for all α > 0. The original σ is the geometric mean of the mutated
ones. Nevertheless, we will see in the next section that the arithmetic operator can be
more useful from a practical point of view.

6 Experimental Results

We perform computer simulations for the following two purposes. First, we want to
confirm that the predictions made by the theoretical results can actually be observed
in the simulation. This can be done by simulating ESIG and ESI w/o that satisfy the
assumptions made for the theoretical results. These simulations must be in accordance
with Theorem 2 and 3. Second, we want to reveal the importance of the assumptions
made in Section 3. This is done by simulating strategies that violate one or the other
assumption.

We performed simulations with ESIG and ESI w/o on flinear for various µ and λ.
The results are in accordance with the theoretical results:

∑µ
i=1 E

[
log(σ(g+1)

i:λ )
]

equals∑µ
i=1 log σ

(g)
i:λ for µ = λ/2, while log(σ) increases for µ < λ/2 and log(σ) decreases for

µ > λ/2. In Figs. 3 (a) and 4, data are given for ESIG and λ = 20 and n = 2. Expectation
values were estimated from data of about 50000 generations. While the results are actu-
ally independent of the problem dimension n, they depend on the strategy parameter
τ(n) which simply rescales the y-axis.

In Fig. 3 (a) the expected change of lg(σ) of the i-th best individual in the
(µ/µIG, 20)-ES relates to the lowest graph (◦). The individual σ-change is indepen-
dent of the chosen µ. Theorem 3 states that the sum over i = 1 . . . 10 is zero. In the data
shown the value is−3.56·10−4. The symmetry of the graph shows that the i-th best and
i-th worst individual have the same expected lg(σ). Note that already the 5-th best out
of 20 individuals has a decreased expected lg(σ) value, compared to the mean parental
value (zero at the y-axis), and therefore carries a worse strategy parameter than the
parental population.

In Fig. 4 the expected lg(σ) change of ESIG (◦) between two generations is shown
for µ = 1; 5; 10; 15; 19. The points correspond to the mean value of the first µ points in
Fig. 3. For µ < 10 the lg(σ) change for the (µ/µIG, 20)-ES (◦) is positive. According to
Theorem 2, the expected change is negative for 11 ≤ µ ≤ 19.

The situation changes significantly for ESIA. The graphs can be seen in Fig. 3 (a)
for µ = 1; 5; 10; 15 and λ = 20. For µ = 1 the graph must be obviously identical with
that of ESIG. With increasing µ the graphs move upward. For µ = 10 still four of the
new parents have a smaller lg(σ) value than the former population. Nevertheless, the
sum over i = 1 . . . µ is greater than zero in every single graph. These mean values
can be seen in Fig. 4 (�) for µ = 1; 5; 10; 15; 19 respectively. They correspond to σ-
changing factors between 1.60 and 1.06 per generation. Therefore step-sizes increase
in any of these selection schemes on flinear. Due to the violation of the σ-stationarity
Assumption 2 neither Theorem 2 nor Theorem 3 holds.

Results for ESunlink, where x and σ are chosen independently for each offspring,
are shown in Fig. 3(b), again for µ = 1; 5; 10; 15. Graphs of the expected lg(σ) are
clearly asymmetrical for µ > 1 and have their minimum at offspring number 13; 14; 15
for µ = 5; 10; 15. In all cases the 5-th best individual already has a decreased lg(σ).
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Figure 3: Expected logarithmic step-size change of single individuals, i.e.,
mean1e3≤g<5e4(lg(σ(g+1)

i:20 )−meanj∈{i:λ|i=1,...,µ}(lg(σ(g)
j ))) on flinear versus fitness rank of

descendants from left (best) to right (worst). (a): (µ/µ, 20)-ESIA, (b): (µ/1, 20)-ESunlink,
(c): (µ/1, 20)-ESw/o. Results given for µ = 1; 5; 10; 15 (◦; +; ∗;×), where problem di-
mension n = 2.
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Figure 4: Expected logarithmic step-size change within one generation step, i.e.,
mean1e3≤g<5e4(meanj∈{i:λ|i=1,...,µ}(lg(σ(g+1)

j ))−meanj∈{i:λ|i=1,...,µ}(lg(σ(g)
j ))) on flinear

versus parent number µ for µ = 1; 5; 10; 15; 19. ◦: (µ/µ, 20)-ESIG, �: (µ/µ, 20)-ESIA, 3:
(µ/1, 20)-ESunlink, ∗: (µ/1, 20)-ESw/o. Problem dimension n = 2. Values ≤ 0 reveal a
failure of the strategy.

Table 1: µ values of the (µ, 20)-σSA-ES on flinear classified by log σ-changes
ESw/o ESunlink ESIA ESIG ESI w/o

log σ increases 1− 17 1− 11 1− 20 1− 9 1− 9
log σ decreases 18, 19 12− 19 ∅ 11− 19 11− 19
log σ is unbiased 20 20 ∅ 10, 20 10, 20

According to the σ-stationarity Assumption 2, the sum over all points of any single
graph deviates only stochastically from zero. That is, under random selection or in a
flat fitness landscape the expected lg(σ) change is zero for any µ. Due to the violation
of the symmetry Assumption 1, Theorem 3 does not hold. As can be seen in Figure 4
(3) the (10, 20)-scheme increases lg(σ). While the lg(σ) change is 0.002 for the (11, 20)-
scheme, it is smaller than zero for 12 ≤ µ ≤ 19.

Results for ESw/o without recombination are shown in Fig. 3(c). The graph for
µ = 1 is identical with that one in (a) and (b). For µ > 1 graphs become even more
asymmetrical than for ESunlink. Again, according to the σ-stationarity Assumption 2,
the sum over all points of any single graph deviates only stochastically from zero, and
under random selection or in a flat fitness landscape the expected lg(σ) change is zero.
For µ = 1 and µ = 5 all parents have a positive lg(σ) change. For µ = 10 the best
6, for µ = 15 the best 7 individuals show a positive lg(σ) change. Figure 4 shows (∗)
that for µ < 18 the overall population lg(σ) change is greater than zero. It is smaller
than zero only for µ = 18 (lg(σ) = −0.002) and µ = 19. The violation of the symmetry
Assumption 1 is here even more significant. Neither Theorem 2 nor Theorem 3 holds.
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Figure 5: Best lg(flinear) (upper graph) and lg(σ) of all parents versus number of func-
tion evaluations. Shown is a single run of (a): (12/12IA, 20)-σSA-ES, (b): (12/12IG, 20)-
σSA-ES, (c): (12/1, 20)-σSA-ESw/o, (d): (12/1, 20)-σSA-ESunlink. Problem dimension
n = 10. Only in (a) and (c) an increase of lg(σ) and a corresponding constant fitness
gain can be observed.

Table 1 classifies the µ values by log σ-changes for all (µ, 20)-σSA-ESs. Only the
ESIA increases µ for all µ < λ and for random selection (µ = 20). The latter is not neces-
sarily desirable, because it can cause the step-size to diverge under weak selection, e.g.
in a noisy environment.

How these results relate to single runs on flinear can be observed in Fig. 5 for dif-
ferent (12, 20)-σSA-ESs, where n = 10. While in ESIA (a) and ESw/o (c) there is a linear
increase of lg(σ) over the time, in ESIG (b) and ESunlink (d) it linearly decreases. The
increase of lg(σ) is considerably larger in ESw/o than in ESIA. This difference becomes
larger with increasing n. The remarkable difference between ESw/o (c) and ESunlink (d)
is due to the existing/missing direct linkage between x and σ for the transition between
parents and descendants. Note that in a flat or completely random fitness landscape
one would observe an unbiased random walk of lg(σ) for all but ESIA, where µ > 1.
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7 Summary and Conclusions

We investigated σ-self-adaptation (σSA), i.e., the mutative control of one global step-
size σ of an evolutionary algorithm on the linear fitness function flinear. We find that
log σ is the adequate measure to examine σSA. Based on this observation we call an
operator unbiased, if log σ is not changed in expectation. Naturally, random selection
or selection in a flat fitness landscape is unbiased. The mutation operator that is most
commonly applied to the step-size, i.e. σ 7→ σ · exp(Y ), where E

[
Y
]

= 0, is unbiased as
well. The frequently applied arithmetic recombination of step-sizes is biased towards
an increase of log σ (Proposition 5).

As an elementary demand on step-size control on flinear we identify the (expected)
increase of log σ, linear in time (Postulate 1). The σSA does not meet this demand in
general. For example, in the (1, 2)-σSA-EA, selection on flinear leaves the σ-distribution
unchanged. Therefore, even after a complete (1, 2)-σSA-EA generation step, σ remains
unbiased on flinear and log σ does not increase.

More general, in a (µ, λ)-σSA-EA on flinear, the i-th best and the i-th worst individ-
ual of the population have the same σ-distribution, given that the distribution of new
search points (generated by recombination and mutation) is point-symmetrical in the
object parameter space. We can derive two consequences.

• On flinear, the correlation between fitness and step-size is zero. A necessary prere-
quisite for self-adaptation is that better individuals (i.e., individuals with a higher
fitness of their object parameters) also inherit better strategy parameters. Because
the correlation between fitness and step-size is zero, the link between fitness and
step-size quality is less evident than one would expect.

• Provided that recombination and mutation leave the step-size unbiased (station-
arity assumption), on flinear the (µ/µI, λ)-σSA-EA increases the expected step-size
for µ < λ/2, decreases the expected step-size for µ > λ/2, and leaves the step-size
unbiased for µ = λ/2.

Given a symmetrical distribution of the new population before selection and an un-
biased generation of the step-size, the (µ, λ)-σSA-EA fails to increase σ on flinear for
µ ≥ λ/2. In practice, this failure on flinear does not play an important role. Usually
applied strategy variants do not fail, because µ is chosen < λ/2, or the recombination
of σ is biased, or a recombination scheme is chosen that does not lead to a symmetrical
population distribution. Nevertheless, the analysis helps to understand why σSA usu-
ally works adequately on flinear. The results also indicate that a low selection pressure
does not necessarily lead to a failure of σSA (see Table 1).

The bias introduced by arithmetic recombination of step-sizes can explain previ-
ously reported “surprising” observations.

• Kursawe (1995) gives an example for a failure of individual σSA, i.e., self-adaptation
of n individual step-sizes, where n = 100. The strategy diverges in several cases,
but only when arithmetic multi-recombination of step-size is applied (as in ESIA,
see Section 3). In the light of this paper Kursawe’s observation can be explained
as follows. The bias on the step-sizes introduced by arithmetic recombination,
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that increases log σ in expectation, must be compensated. Compensation can be
accomplished in two ways.

– By selection. Selection can compensate the bias best, the smaller the num-
ber of self-adapted step-sizes. With individual step-sizes in large dimensions,
the number of step-sizes becomes too large and σSA can diverge even on the
sphere model.

– By intermediate recombination of the object parameters. Intermediate recom-
bination reduces the finally realized step lengths and therefore can compensate
a too large step-size σ. The largest step-sizes are still discarded by selection,
because they tend to produces much lower fitness values with a high proba-
bility.

Divergence is observed if neither selection sufficiently compensates the bias nor
intermediate recombination is applied. Our interpretation can be supported by
additional simulations, not shown here.

• Arnold and Beyer (2000) investigate the (3/3I, 10)-σSA-ESIA on a noisy sphere
model. They observe divergence of the step-size when the (proportional) noise
level becomes large. Their observation can be explained as follows. If selection is
highly disturbed by noise, i.e. selection becomes almost random, the biased recom-
bination of step-sizes cannot be compensated and leads to divergence. The diver-
gence disappears when the unbiased geometric recombination is used (ESIG), but
then the step-size becomes much too small.

• The dynamics of the (µ/µI, λ)-σSA-ESIAon noisy functions depends significantly
on µ. Only for µ = 1 step-sizes seem to converge to zero where the noise level is
large (Beyer and Sendhoff, 2005). The dependency can be explained as follows. For
µ = 1 no recombination takes place and therefore σ is unbiased before selection.
Because, for large noise levels, the selection is almost random, we expect an almost
unbiased random walk of log σ. Because, in the given noise model, too large step-
sizes lead to a remarkable impairment of the fitness, the random walk is bounded
from above and can appear as convergence to zero. For µ > 1 in the ESIA the
random walk becomes biased and σ will not become arbitrarily small.

Results from an analysis, as presented in this paper, can be most useful to derive
design criteria and specifications for (new) search algorithms. Two such conclusions
are drawn on the dynamics of the population variance.

• As a basic specification on flinear, the population variance should increase linearly
on the log scale (Postulate 1).10 To our intuition, an increase by a factor of at least
1.12 after n function evaluations, or, for large populations, by a factor of at least
1.52 after one generation, seems adequate.

• Under random selection the population variance should be unbiased, because any
bias entails the danger of divergence or premature convergence. In a noisy or flat
environment, a bias towards increase can be useful and desirable, but it should

10In our case the population variance corresponds to the squared step-size σ2. To perform on flinear, an
increase of the population variance in gradient direction is sufficient. To maintain diversity and exploration
an increase in all directions seems preferable.
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be carefully quantified. We believe, the increase of the population variance under
random selection should be small, and in particular smaller than its increase on flinear.

Finally, to recapitulate, a practitioner will, in our opinion, most frequently face the
following drawback of σSA. For µ > 1 the target step-size of σSA is usually (far) smaller
than the optimal step-size, because σSA is based on selection of individuals, while opti-
mality of step-size wisely refers to the advance of the whole population. Therefore, af-
ter the adaptation has taken place, the algorithm will usually operate with step lengths
considerably smaller than optimal. For the same reason, too small step lengths must be
expected from any mechanism that determines (explicitly or implicitly) the population
variance based on individual selection.
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