
Steady-state Selection and Efficient Covariance
Matrix Update in the Multi-objective CMA-ES

Christian Igel1, Thorsten Suttorp1, and Nikolaus Hansen2

1 Institut für Neuroinformatik, Ruhr-Universität Bochum, 44780 Bochum, Germany
{christian.igel, thorsten.suttorp}@neuroinformatik.rub.de

2 Institute of Computational Science, ETH Zurich, 8092 Zurich, Switzerland
nikolaus.hansen@inf.ethz.ch

Abstract. The multi-objective covariance matrix adaptation evolution
strategy (MO-CMA-ES) combines a mutation operator that adapts its
search distribution to the underlying optimization problem with multi-
criteria selection. Here, a generational and two steady-state selection
schemes for the MO-CMA-ES are compared. Further, a recently pro-
posed method for computationally efficient adaptation of the search dis-
tribution is evaluated in the context of the MO-CMA-ES.

1 Introduction

Evolution strategies (ES) for real-valued optimization rely on Gaussian random
variations. Appropriately adapting the covariance matrices of these mutations
during optimization allows for learning a variable metric for the search distribu-
tion. It is well known that such an automatic adaptation of the mutation dis-
tribution drastically improves the search performance on non-separable and/or
badly scaled single-objective functions [1–4].

In [5], we incorporated the step size and covariance matrix adaptation from
the covariance matrix adaptation ES (CMA-ES, [3]) into a multi-objective frame-
work. The resulting MO-CMA-ES used generational selection based on [6] com-
bined with the sorting criterion proposed in [7, 8]. We chose generational selection
in order to make our performance comparisons with alternative methods easier
to interpret. However, in [7, 8] steady-state selection is used with good results
and the question arises whether the MO-CMA-ES would profit from this selec-
tion scheme. In [9], we presented a new, computationally efficient update scheme
for covariance matrices. The complexity reduction from O(n3) to O(n2) per up-
date of the mutation distribution, where n is the dimensionality of the search
space, comes at the cost of slower adaptation rates. However, as in the MO-
CMA-ES many mutation distributions need to be traced, this approach seems
to be particularly promising for the MO-CMA-ES.

In this work, we first investigate the computationally efficient update pro-
posed in [9] within the framework of the MO-CMA-ES. Second, we compare
variants of the MO-CMA-ES with different steady-state selection schemes and
generational selection, respectively.

2 Covariance Matrix Adaptation

Let us consider an additive mutation v
(g)
i ∈ Rn of individual i in generation

g. The mutation v
(g)
i is a realization of an n-dimensional random vector dis-

tributed according to a zero-mean Gaussian distribution with covariance ma-
trix C

(g)
i , that is, v

(g)
i ∼ N

(
0,C

(g)
i

)
. To sample this mutation distribution,

n independent standard normally distributed random numbers are drawn to
generate a realization of an n-dimensional normally distributed random vector
z

(g)
i ∼ N (0, I) with unit covariance matrix and zero mean. Then this random

vector is rotated and scaled by a linear transformation A
(g)
i ∈ Rn×n such that

A
(g)
i z

(g)
i ∼ N (0,C

(g)
i) for z

(g)
i ∼ N (0, I) .

Thus, for sampling the mutation distribution the covariance matrix C
(g)
i has

to be decomposed into Cholesky factors C
(g)
i = A

(g)
i A

(g)
i

T
. One of the decisive

features of ES is that the covariance matrices are subject to adaptation. The
general policy is to alter the covariance matrices such that steps promising larger
fitness gain are sampled more often. Here we consider matrix updates of the form
C(g+1) = αC(g) + βV (g), where V (g) ∈ Rn×n is positive definite and α, β ∈ R+

are weighting factors (e.g., see [3, 10]). Let v(g) ∈ R be a step in the search space
promising large fitness gain. To increase the probability that v(g) is sampled in
the next iteration, the rank-one update

C(g+1) = αC(g) + βv(g)v(g)T
(1)

can be used. This update rule shifts the mutation distribution towards the line
distribution N

(
0,v(g)v(g)T)

, which is the distribution with the highest proba-
bility to generate v(g) among all normal distributions with zero mean [3].

In general, each factorizing of a covariance matrix requires O(n3) operations.
Thus, in an ES with additive covariance matrix update the Cholesky factoriza-
tion of the covariance matrix is the computationally dominating factor apart
from the fitness function evaluations. In [9] we therefore proposed not to fac-
torize the covariance matrix, but to use an incremental rank-one update rule
for the Cholesky factorization. This reduces the computational complexity to
O(n2). The idea is not to compute the covariance matrix explicitly, but to op-
erate on Cholesky factors only. Setting v(g) = A(g)z(g) with z(g) ∼ N (0, I) we
can rewrite the rank-one update of the covariance matrix equation (1) as

C(g+1) = αC(g) + βA(g)z(g)
[
A(g)z(g)

]T
. (2)

Using the following theorem, we turn this update for C(g) into an update for
A(g).

Theorem 1 ([9]). Let Ct ∈ Rn×n be a symmetric nonnegative definite matrix
with Cholesky factorization Ct = AtAt

T . Assuming that Ct is updated using

Ct+1 = αCt + βvtv
T
t ,

with vt = Atzt, where zt is a column vector and α, β ∈ R+. Then, the Cholesky
factorization Ct+1 = At+1At+1

T is given by

At+1 =
√

αAt +
√

α

‖zt‖2

(√
1 +

β

α
‖zt‖2 − 1

)
[Atzt]zT

t .

The new update rule guarantees a positive-definite covariance matrix. The nu-
merical stability of the new update is likely to be better than an update requiring
decompositions (e.g., see the discussion in [11, chapter 6]).

3 Generational and Steady-state Multi-objective
Selection

Our multi-objective selection schemes is based on the non-dominated sorting
approach used in NSGA-II [12, 6] and the selection scheme used in SMS-EMOA
[7, 8].

First of all, the elements in a population A of candidate solutions are ranked
according to their level of non-dominance. Let the non-dominated solutions in A
be denoted by ndom(A) = {a ∈ A |@a′ ∈ A : a′ ≺ a}, where a′ ≺ a means that
a′ dominates a. The Pareto front of A is then given by {(f1(a), . . . , fM (a)) | a ∈
ndom(A)}, where the fi are the M real-valued objective functions. The elements
in ndom(A) get rank 1. The other ranks are defined recursively by considering the
set without the solutions with lower ranks (cf. [6, 9]). Formally, let dom0(A) =
A, doml(A) = doml−1(A) \ ndoml(A), and ndoml(A) = ndom(doml−1(A)) for
l ∈ {1, . . . }. For a ∈ A we define the level of non-dominance r(a,A) to be i iff
a ∈ ndomi(A).

A second sorting criterion is needed to rank the solutions having the same
level of non-dominance. This criterion is very important, as usually (in particular
in real-valued optimization of continuous objective functions) after some genera-
tions there are more non-dominated solutions in the population than solutions to
be selected. We consider the contributing hypervolume as second sorting crite-
rion, which gave better results than the crowding-distance [6] in the experiments
in [9]. The hypervolume measure or S-metric was introduced by [13] in the do-
main of evolutionary MOO. It can be defined as the Lebesgue measure Λ (i.e.,
the volume) of the union of hypercuboids in the objective space:

Saref(A
′) = Λ

(⋃
a∈ndom(A′)

{(f1(a′), . . . , fM (a′)) | a ≺ a′ ≺ aref}

)
,

where aref is an appropriately chosen reference point. The contributing hyper-
volume of a point a ∈ ndom(A′) is given by

∆S(a,A′) := Saref(A
′)− Saref(A

′ \ {a}) .

The rank s(a,A′) of an individual a can be defined recursively based on its
contribution to the hypervolume, where ties are broken at random. The indi-
vidual contributing least to the hypervolume of A′ gets the worst rank. The

individual contributing least to the hypervolume of A′ without the individ-
ual with the worst rank is assigned the second worst rank and so on. We call
a ∈ A′ a boundary element if ∆S(a,A′) depends on the choice of the refer-
ence point aref. We choose aref such that all elements in A′ dominate aref and
that for any boundary element a ∈ A′ and any non boundary element a′ ∈ A′

we have ∆S(a,A′) > ∆S(a′, A′). That is, the individuals at the “boundaries”
of the Pareto front of A′ are preferably selected. Let a lower rank be worse.
Formally (assuming that argmin breaks ties randomly), for a ∈ ndom(A′) we
have s(a,A′) = 1 if a = argmina′∈A′{∆S(a′, A′)} and s(a,A′) = k if a =
argmina′∈A′{∆S(a′, A′ \ {a′′ | s(a′′, A′) < k})}. Based on this ranking and the
level of non-dominance we define the relation

a ≺A a′ ⇔ r(a,A) < r(a′, A) or[
(r(a,A) = r(a′, A)) ∧ (s(a,ndomr(a,A)(A)) > s(a′,ndomr(a′,A)(A)))

]
,

for a, a′ ∈ A. That is, a is better than a′ when compared using ≺A if either
a has a better level of non-dominance or a and a′ are on the same level but a
contributes more to the hypervolume when considering the points at that level
of non-dominance.

In the following, we consider three reproduction and selection schemes based
on this ranking. First, in generational selection (µ+µ) as described in [9] each of
the µ parents generates one offspring per generation. The resulting 2µ individuals
are sorted as described above and the µ best form the next parent population.

Then we consider two steady-state [14, 15] selection schemes, in which only
a single parent creates one offspring per generation. If this offspring a is better
than the worst individual in the parent population A w.r.t. ≺A∪{a}, a replaces
the worst individual. Otherwise the offspring is discarded. The two steady state
variants differ in the way the parent of the offspring is selected. In the first
variant (µ+1), the parent is chosen uniformly at random from A. In the second
version (µ≺+1), the parent is chosen uniformly at random from ndom(A). The
idea behind the second approach, which can be regarded as more greedy, is
that it is more promising to allow reproduction of non-dominated individuals
than of dominated. Because the individuals A \ ndom(A) do not influence the
evolutionary process anymore, they can be discarded. That is, the second variant
is an algorithm with varying population (or archive) size. Only non-dominated
individuals remain in the population while the size of the population is still
upper bounded by µ.

4 MO-CMA-ES

In the MO-CMA-ES with standard covariance matrix update the kth individual
in generation g is a 5-tuple denoted by a

(g)
k = [x(g)

k , p
(g)
succ,k, σ

(g)
k ,p

(g)
c,k,C

(g)
k]. Here,

x
(g)
k ∈ Rn is the point in the search space, p

(g)
succ,k ∈ R+

0 the average success rate,

σ
(g)
k ∈ R+ the global step size, p

(g)
c,k ∈ Rn the evolution path, and C

(g)
k ∈ Rn×n

the covariance matrix.

The standard version of the generational MO-CMA-ES reads as follows (ig-
noring lines 5b and 10b for a moment):

Algorithm 1: generational MO-CMA

1 g = 0, initialize a
(g)
k for k = 1, . . . , µ

2 repeat
3 for k = 1, . . . , µ do
4 a′

(g+1)
k ← a

(g)
k

5a x′
(g+1)
k ∼ N

(
x

(g)
k , σ

(g)
k

2
C

(g)
k

)
5b x′

(g+1)
k ∼ N

(
x

(g)
k , σ

(g)
k

2
A

(g)
k A

(g)
k

T
)

6 Q(g) =
{

a′
(g+1)
k , a

(g)
k

∣∣ 1 ≤ k ≤ µ
}

7 for k = 1, . . . , µ do

8 updateStepSize
(
a
(g)
k ,1[a′(g+1)

k ≺Q(g) a
(g)
k]
)

9 updateStepSize
(
a′

(g+1)
k ,1[a′(g+1)

k ≺Q(g) a
(g)
k]
)

10a updateCovariance

(
a′

(g+1)
k ,

x′
(g+1)
k − x

(g)
k

σ
(g)
k

)

10b updateCholesky

(
a′

(g+1)
k ,

x′
(g+1)
k − x

(g)
k

σ
(g)
k

)
11 for i = 1, . . . , µ do a

(g+1)
i ← Q

(g)
≺:i

12 g ← g + 1
until stopping criterion is met

Each of the µ parents generates one offspring (lines 3–5) . Parents and off-
spring form the set Q(g) (line 6). The step sizes of a parent and its offspring are
updated depending on whether the mutations were successful (lines 7–9), that
is, whether the offspring is better than the parent according to the relation ≺Q(g)

(the indicator function 1[·] is 1 if its argument is true and 0 otherwise).

The covariance matrix of the offspring (line 10a) is adjusted taking into
account the mutation that has led to its genotype. Both step size and covariance
matrix update are the same as in the single-objective (1+1)-CMA-ES, see [5, 9]
for details. The best µ individuals in Q(g) sorted by ≺Q(g) form the next parent
generation (line 11, where Q

(g)
≺:i is the ith best offspring in Q(g) w.r.t. ≺Q(g)).

The update rule for the global step size is rooted in the 1/5-success-rule
proposed in [1] and is an extension from the rule proposed in [4]:

Procedure updateStepSize(a = [x, psucc, σ, pc,C], psucc)

psucc ← (1− cp) psucc + cppsucc1

σ ← σ · exp
(

1
d

psucc − ptarget
succ

1− ptarget
succ

)
2

This rule implements the well-known heuristic that the step size should be in-
creased if the success rate of mutation is high, and the step size should be
decreased if the success rate is low. The damping parameter d controls the rate
of the step size adaptation.

Then the covariance matrices are adapted (see main routine line 10a):

Procedure updateCovariance(a = [x, psucc, σ, pc,C],xstep ∈ Rn)

if psucc < pthresh then1

pc ← (1− cc)pc +
√

cc(2− cc) xstep2

C ← (1− ccov)C + ccov · pcpc
T

3

else4

pc ← (1− cc)pc5

C ← (1− ccov)C + ccov ·
(
pcpc

T + cc(2− cc)C
)

6

The update of the evolution path pc depends on the value of psucc. If the
smoothed success rate psucc is high, that is, above pthresh < 0.5, the update
of the evolution path pc is stalled. This prevents a too fast increase of axes of C
when the step size is far too small, for example, in a linear surrounding. If the
smoothed success rate psucc is low, the update of pc is accomplished with expo-
nential smoothing. The constants cc and ccov (0 ≤ ccov < cc ≤ 1) are learning
rates for the evolution path and the covariance matrix, respectively. The factor√

cc(2− cc) normalizes the variance of pc viewed as a random variable (see [3]).
The evolution path pc is then used to update the covariance matrix. The new
covariance matrix is a weighted mean of the old matrix and the outer product
of pc. In the second case (line 5), the second summand in the update of pc is
missing and the length of pc shrinks. Although of minor relevance, the term
cc(2− cc)C (line 6) compensates for this shrinking in C.

The (external) strategy parameters are the population size, target success
probability ptarget

succ , step size damping d, success rate averaging parameter cp,
cumulation time horizon parameter cc, and covariance matrix learning rate ccov.
Default values, as given in [9] and used in this paper, are: d = 1 + n/2, ptarget

succ =
(5 +

√
1/2)−1, cp = ptarget

succ /(2 + ptarget
succ), cc = 2/(n + 2), ccov = 2/(n2 + 6), and

pthresh = 0.44.

The elements of the initial individual, a
(0)
parent are set to psucc = ptarget

succ , pc = 0,
and C = I. The initial candidate solution x ∈ Rn and the initial σ ∈ R+ must
be chosen problem dependent. The optimum should presumably be within the
cube x± 2 σ (1, . . . , 1)T .

4.1 Cholesky Update

In the standard generational MO-CMA-ES, denoted by (µ+µ) in the following,
there are up to µ covariance updates (in an efficient implementation only covari-
ance matrices of those offspring that will be in the next parent population are
updated). Therefore, computation time could be significantly reduced using the
concepts described in [9] and Section 2—if objective function evaluation is fast
and the dimensionality n of the search space is large.

In the generational MO-CMA with “Cholesky update”, denoted by (µ+µ)chol

in the following, the kth individual in generation g consists of a 4-tuple a
(g)
k =

[x(g)
k , p

(g)
succ,k, σ

(g)
k ,A

(g)
k], where the Cholesky factor A

(g)
k ∈ Rn×n is stored instead

of the covariance matrix. The update of the Cholesky factor is given by applying
Theorem 1:

Procedure updateCholesky(a = [x, psucc, σ, pc,A],xstep ∈ Rn))

if psucc < pthresh then1

A←
√

1− ccov A +
√

1− ccov

‖xstep‖2

√1 +
ccov‖xstep‖2

1− ccov
− 1

AxstepxT
step

2

Because this update rule does not work with an evolution path (see [5]), the
covariance adaptation usually slows down in terms of the number of generations
needed to learn the metric of the underlying problem [9]. However, how strong
this effect is depends on the optimization problem.

The algorithmic description of the (µ+µ) is obtained from Algorithm 1 using
lines 5b and 10b instead of 5a and 10a. The replacement allows for a simple
implementation of the (µ+µ), because it avoids the otherwise necessary matrix
decomposition of the standard generational MO-CMA-ES.

4.2 Steady-state Selection

In steady-state selection schemes only one offspring is generated per generation.
Here, we consider two different variants of steady-state selection. The first one,
denoted by (µ≺+1) in the remainder of this article, selects the parent among
the non-dominated solutions in the population. As the dominated solutions in
the parent population do not influence the evolutionary dynamics, they can be
removed from the population. Thus, this variant can be viewed as an evolutionary
algorithm with adaptive population size, where the number of individuals equals
the number of non-dominated solutions upper bounded by µ.

The second steady-state algorithm, denoted by (µ+1) in the following, con-
siders all µ members of the population as potential parents and hence is less
greedy than the first variant. This corresponds to the selection scheme used in
[7, 8].

Both variants are described in Algorithm 2 and are quite similar to the
generational MO-CMA. The main difference is the selection of the parent for
reproduction in line 4a for the (µ≺+1) and in line 4b for the (µ+1), respectively.

Algorithm 2: steady-state MO-CMA

1 g = 0, initialize a
(g)
k for k = 1, . . . , µ

2 repeat

3 Q(g) =
{

a
(g)
k

∣∣ 1 ≤ k ≤ µ
}

4a i← U(1, |ndom(Q(g))|)
4b i← U(1, |Q(g)|)
5 a(g+1) ← Q

(g)
≺:i

6 a′
(g+1) ← a(g+1)

7 x′
(g+1) ∼ N

(
x(g+1), σ(g)2C(g)

)
8 Q(g) ← Q(g) ∪ {a′(g+1)}
9 updateStepSize

(
a(g),1[a′(g) ≺Q(g) a(g)]

)
10 updateStepSize

(
a′

(g+1)
,1[a′(g) ≺Q(g) a(g)]

)
11 updateCovariance

(
a′

(g+1)
,
x′

(g+1) − x(g)

σ(g)

)
12 for i = 1, . . . , µ do a

(g+1)
i ← Q

(g)
≺:i

13 g ← g + 1
until stopping criterion is met

5 Experiments

In the following, we empirically evaluate the different variants of the MO-CMA-
ES presented in the previous section. In [9] we compared the generational MO-
CMA-ES with other multi-objective evolutionary algorithms, namely NSGA-II
and the multi-criteria differential evolution algorithm NSDE [16]. Because of
the good performance of the MO-CMA-ES in [9], we do not consider any other
reference algorithm in the present study.

5.1 Evaluating the Performance of MOO Algorithms

Many ways of measuring the performance of MOO algorithms have been pro-
posed. Here we follow recommendations in [17] and use unary quality indicators,
for a detailed description of the methods we refer to [18, 17, 5].

An unary quality indicator assigns a real valued quality to a set of solutions.
Here, the hypervolume indicator [13] and the ε-indicator [18] are measured. We
use the performance assessment tools contributed to the PISA [19] software pack-
age with standard parameters. The hypervolume indicator w.r.t. reference set
Aref (see below) is defined as IS,Aref(A) = Saref(Aref)−Saref(A) where aref denotes
a (hypothetical) reference point having in each objective an objective function
value worse than all considered individuals. The additive unary ε-indicator Iε,Aref

w.r.t. reference set Aref is defined as the smallest offset by which the fitness val-
ues of the elements in A have to be shifted such that the resulting set dominates
Aref. Both a small IS,Aref and a small Iε,Aref are preferable.

Before the performance indicators are computed, the data are normalized.
We want to compare k algorithms on a particular optimization problem after g1

and g2 fitness evaluations (here, 25000 and 50000) and we assume that we have
conducted t trials. We consider the non-dominated individuals of the union of
all 2 · k · t populations after g1 and g2 evaluations. These individuals make up
the reference set Aref. Their objective vectors are normalized such that for every
objective the smallest and largest objective function value are mapped to 1 and
2, respectively, by an affine transformation. The mapping to [1, 2]M is fixed and
applied to all objective vectors under consideration. The reference point aref is
chosen to have an objective value of 2.1 in each objective. Note that the set Aref

is comprised of rather well performing individuals, whereas the point aref has
bad objective function values.

5.2 Benchmark Functions

Table 1. Unconstrained benchmark problems to be minimized, with a = 1000, b = 100,
y = O1x, and z = O2x, where O1 and O2 are orthogonal matrices.

Problem n Initial Objective
region functions

ELLI1 10 [−10, 10] f1(y) = 1
a2n

Pn
i=1 a2 i−1

n−1 y2
i

f2(y) = 1
a2n

Pn
i=1 a2 i−1

n−1 (yi − 2)2

ELLI2 10 [−10, 10] f1(y) = 1
a2n

Pn
i=1 a2 i−1

n−1 y2
i

f2(z) = 1
a2n

Pn
i=1 a2 i−1

n−1 (zi − 2)2

CIGTAB1 10 [−10, 10] f1(y) = 1
a2n

ˆ
y2
1 +

Pn−1
i=2 ay2

i + a2y2
n

˜
f2(y) = 1

a2n

ˆ
(y1 − 2)2 +

Pn−1
i=2 a (yi − 2)2 + a2(yn − 2)2

˜
CIGTAB2 10 [−10, 10] f1(y) = 1

a2n

ˆ
y2
1 +

Pn−1
i=2 ay2

i + a2y2
n

˜
f2(z) = 1

a2n

ˆ
(z1 − 2)2 +

Pn−1
i=2 a (zi − 2)2 + a2(zn − 2)2

˜

We consider three groups of test functions. The first group comprises six
common benchmark problems taken from the literature, namely the function
FON proposed in [20] and the test functions ZDT1, ZDT2, ZDT3, ZDT4, and
ZDT6 proposed in [21]. All functions have box constraints also given in the
table. As most components of the optimal solution lie on the boundary of these
box constraints, we question the general relevance of these test functions. In
accordance with [22, 23], we believe that “rotated” functions, which are less
aligned with the coordinate system of the search space, are more appropriate.

This led to the definition of the two other groups of benchmark functions, see
[5] for details.

The second group of benchmarks are functions where for each objective
the objective function is quadratic (a quadratic approximation close to a lo-
cal optimum is reasonable for any smooth enough fitness function), see Ta-
ble 1. They are of the general form fm(x) = xT Qx = xT OT

mAOmx, where
x ∈ Rn,Q,Om,A ∈ Rn×n with Om orthogonal and A diagonal and positive
definite. There are two types of functions, ELLI and CIGTAB, which differ in
the eigenvalue spectrum of Q. In each optimization run the coordinate system of
the objective functions is changed by a random choice of Om (see [9] for details).
In the case of the test functions ELLI1 and CIGTAB1 the same rotation is used
for both objective functions (i.e., O1 = O2). In the more general case of ELLI2
and CIGTAB2 two independent rotation matrices O1 and O2 are generated,
which are applied to the first and second objective function, respectively.

The third group of problems shown in Table 2 are new benchmarks that
generalize the ZDT problems to allow a rotation of the search space as in the
second group. In the first function ZDT4’ the rotation is applied to all but
the first coordinate. That is, we consider y = Ox, where O ∈ Rn×n is an
orthogonal matrix with o1j = oj1 = 0 for 1 < j ≤ n and o11 = 1. In the
other functions the rotation matrices are not restricted. Compared to the ZDT
functions, the search space is expanded and the Pareto front is not completely
located on the boundaries anymore. The lower end y1 = 0 of the Pareto front is
induced by the absolute value in the definition of f1. The ends y1 = ±ymax of
the Pareto front are determined by hf . The value ymax can be chosen between 1
and 1/ maxj(|o1j |), and in the latter case the Pareto optimal solution y1 = ymax

lies on the search space boundary. The function h : R → [0, 1] is monotonic
and emulates the original variable boundary x1 ∈ [0, 1]. Similar, the function
hg : R → R+

0 emulates the original lower variable boundary of xi ≥ 0 for
i = 2, . . . , n.

5.3 Experiments

We used the same parameters in the MO-CMA-ES as in [9]. For the functions
FON, ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 we set σ(0) equal to 60 % of the
feasible region xu

2−xl
2 (we rescaled the first component of ZDT4 to [−5, 5]). In the

unconstrained problems, Table 1, we set σ(0) equal to 60% of the initialization
range of one component. In all algorithms the population size µ was set to 100.
For each test problem, 100 trials were conducted per algorithm.

6 Results and Discussion

The results are summarized in Tables 3 to 5. In general, the MO-CMA with
Cholesky update performed worse than the MO-CMA using an evolution path,
although the differences are often not significant. After 50000 evaluations the
methods differ significantly in at least one indicator on FON, ELLI2, CIGTAB1,

Table 2. New benchmark problems to be minimized, y = Ox, where O ∈ Rn×n

is an orthogonal matrix, and ymax = 1/ maxj(|o1j |). In the case of ZDT4’, o1j =
oj1 = 0 for 1 < j ≤ n and o11 = 1. The auxiliary functions are defined as h :

R → [0, 1], x 7→
“
1 + exp

“
−x√

n

””−1

, hf : R → R, x 7→

(
x if |y1| ≤ ymax

1 + |y1| otherwise
, and

hg : R → R+
0 , x 7→ x2

|x|+0.1
.

Problem n Variable Objective
bounds function

ZDT4’ 10 x1 ∈ [0, 1] f1(x) = x1

xi ∈ [−5, 5] f2(x) = g(y)
h
1−

p
x1/g(y)

i
i = 2, . . . n g(y) = 1 + 10(n− 1) +

Pn
i=2

ˆ
y2

i − 10 cos (4πyi)
˜

IHR1 10 [−1, 1] f1(x) = |y1|
f2(x) = g(y) hf

“
1−

p
h(y1)/g(y)

”
g(y) = 1 + 9

`Pn
i=2 hg(yi)

´
/ (n− 1)

IHR2 10 [−1, 1] f1(x) = |y1|
f2(x) = g(y) hf

`
1− (y1/g(y))2

´
g(y) = 1 + 9

`Pn
i=2 hg(yi)

´
/ (n− 1)

IHR3 10 [−1, 1] f1(x) = |y1|
f2(x) = g(y) hf

“
1−

p
h(y1)/g(y)− h(y1)

g(y)
sin (10πy1)

”
g(y) = 1 + 9

`Pn
i=2 hg(yi)

´
/ (n− 1)

IHR4 10 [−5, 5] f1(x) = |y1|
f2(x) = g(y) hf

“
1−

p
h(y1)/g(y)

”
g(y) = 1 + 10(n− 1) +

Pn
i=2

ˆ
y2

i − 10 cos (4πyi)
˜

IHR6 10 [−1, 1] f1(x) = 1− exp (−4 |y1|)) sin6 (6πy1)

f2(x) = g(y) hf

`
1− (f1(x)/g(y))2

´
g(y) = 1 + 9

ˆ`Pn
i=2 hg(yi)

´
/ (n− 1)

˜0.25

CIGTAB2, IHR1, and IHR6. On the multi-modal problems, where the results are
dominated by the global search performance, the (µ+µ)chol results look slightly
better than those with (µ+µ), while the differences are not apparent in our
statistics. After 25000 evaluations, where the covariance matrix adaptation did
not pay off yet, the differences are not significant, except for the FON function,
where covariance matrix adaptation is faster due to the low dimensionality. These
results are in accordance with those in [9].

The newly developed covariance matrix update rule reduces the computa-
tional complexity of the rank-one covariance matrix adaptation from O(n3) to
O(n2). This is a significant improvement on high dimensional, but fast com-
putable fitness functions. However, in practice it is not necessary to perform the
covariance matrix decomposition, as required in the original covariance matrix

Table 3. Median results over 100 trials on standard benchmark functions after 25000
and 50000 evaluations, respectively. Superscripts indicate significant differences; I:
(µ+µ), . . . , IV: (µ+1), two-sided Wilcoxon rank sum test, normal font p < 0.001,
slanted p < 0.01.

hypervolume indicator
algorithm FON ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

25000 evaluations

(µ+µ) 0.00480II 0.00377 0.00483 0.00139 0.17444III 0.00052

(µ+µ)chol 0.00482 0.00377 0.00484 0.00140 0.16218III 0.00052

(µ≺+1) 0.00448I,II,IV 0.00357I,II,IV 0.00451I,II,IV 0.00129I,II,IV 0.39748 0.00050I,II

(µ+1) 0.00448I,II 0.00363I,II 0.00466I,II 0.00137 0.17113III 0.00050I,II

50000 evaluations

(µ+µ) 0.00473II 0.00365 0.00472 0.00132 0.12979III 0.00052

(µ+µ)chol 0.00476 0.00365 0.00473 0.00134 0.13068III 0.00052

(µ≺+1) 0.00448I,II 0.00349I,II 0.00445I,II,IV 0.00125I,II,IV 0.35486 0.00050I,II

(µ+1) 0.00448I,II 0.00350I,II 0.00452I,II 0.00129I ,II 0.15571III 0.00050I,II

ε-indicator
algorithm FON ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

25000 evaluations

(µ+µ) 0.00698 0.00624 0.00707 0.00345 0.16344III 0.00147

(µ+µ)chol 0.00695 0.00615 0.00703 0.00342 0.15132III 0.00149

(µ≺+1) 0.00497I,II 0.00491I,II 0.00541I,II,IV 0.00285I,II,IV 0.35884 0.00106I,II

(µ+1) 0.00501I,II 0.00501I,II 0.00569I,II 0.00306I,II 0.15800III 0.00106I,II

50000 evaluations

(µ+µ) 0.00694 0.00607 0.00699 0.00354 0.13596III 0.00149

(µ+µ)chol 0.00690 0.00613 0.00697 0.00355 0.12269III 0.00150

(µ≺+1) 0.00487I,II 0.00460I,II 0.00514I,II,IV 0.00269I,II 0.33336 0.00101I,II

(µ+1) 0.00487I,II 0.00460I,II 0.00526I,II 0.00273I,II 0.14155III 0.00101I,II

adaptation, each generation, but only every τ generations. Then the computa-
tional complexity becomes O(n3/τ + n2). For τ = o(n) the Cholesky approach
is still faster for large n, while τ = ω(n) is not advisable. Apart from that, the
new update rule is much simpler to implement (e.g., allowing for easy implemen-
tations in hardware and in low level programming languages) and is completely
specified without any hidden, numerically involved procedures such as a singular
value decomposition.

On the unimodal problems, the steady-state algorithms perform better than
the generational MO-CMA-ES. Here the greedy steady-state (µ≺+1)-MO-CMA-
ES performs best. But on the multi-modal problems, the generational algo-
rithms are superior. However, the (µ+1)-MO-CMA-ES is not significantly worse,
whereas the performance of the greedy (µ≺+1)-MO-CMA-ES is so bad that it
should not be considered as an alternative to the generational MO-CMA despite
its good performance on the other test problems.

Thus, we recommend the (µ+1)-MO-CMA-ES. The selection strategy of this
variant is equal to the strategy in the SMS-EMOA proposed in [7, 8], only the

Table 4. Median results over 100 trials on rotated quadratic benchmark functions after
25000 evaluations and 50000 evaluations, respectively.

hypervolume indicator
algorithm ELLI1 ELLI2 CIGTAB1 CIGTAB2

25000 evaluations

(µ+µ) 0.003931 0.000037 0.003466 0.000037
(µ+µ)chol 0.004050 0.000037 0.003486 0.000042

(µ≺+1) 0.003771II 0.000018I,II,IV 0.003092I,II,IV 0.000015I,II,IV

(µ+1) 0.003963 0.000039 0.003132I,II 0.000031I ,II

50000 evaluations

(µ+µ) 0.003468IV 0.000012II 0.003382II 0.000004
(µ+µ)chol 0.003611 0.000019 0.003400 0.000004

(µ≺+1) 0.003575 0.000005I,II,IV 0.003068I,II 0.000002I,II,IV

(µ+1) 0.003592 0.000012II 0.003077I,II 0.000004

ε-indicator
algorithm ELLI1 ELLI2 CIGTAB1 CIGTAB2

25000 evaluations

(µ+µ) 0.006015 0.000120 0.005835 0.000196
(µ+µ)chol 0.005981 0.000134 0.005897 0.000214

(µ≺+1) 0.004717I,II,IV 0.000060I,II,IV 0.004294I,II,IV 0.000145I,II,IV

(µ+1) 0.005191I,II 0.000122 0.004463I,II 0.000185I,II

50000 evaluations

(µ+µ) 0.005742 0.000056II 0.005779 0.000149II

(µ+µ)chol 0.005823 0.000073 0.005759 0.000152

(µ≺+1) 0.004261I,II 0.000045I,II,IV 0.004030I,II 0.000142I,II,IV

(µ+1) 0.004313I,II 0.000047II 0.004030I,II 0.000148II

variation operators and the strategy adaptation differ between SMS-EMOA and
(µ+1)-MO-CMA.

References

1. Rechenberg, I.: Evolutionsstrategie: Optimierung Technischer Systeme nach
Prinzipien der Biologischen Evolution. Werkstatt Bionik und Evolutionstechnik.
Frommann-Holzboog, Stuttgart (1973)

2. Schwefel, H.P.: Evolution and Optimum Seeking. Sixth-Generation Computer
Technology Series. John Wiley & Sons (1995)

3. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2) (2001) 159–195

4. Kern, S., Müller, S., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.: Learn-
ing probability distributions in continuous evolutionary algorithms – A compara-
tive review. Natural Computing 3 (2004) 77–112

5. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective
optimization. Evolutionary Computation (2006) Accepted.

Table 5. Median results over 100 trials on new rotated benchmark functions after
25000 evaluations and 50000 evaluations, respectively.

hypervolume indicator
algorithm ZDT4’ IHR1 IHR2 IHR3 IHR4 IHR6

25000 evaluations

(µ+µ) 0.18487III 0.00750 0.04023 0.02678 0.00484III 0.17635

(µ+µ)chol 0.19488III 0.00759 0.03960 0.02686 0.00496III 0.18078

(µ≺+1) 0.48206 0.00119I,II,IV 0.03877I,II,IV 0.02634IV 0.01753 0.03198I,II,IV

(µ+1) 0.21022III 0.00813 0.03927I,II 0.02654 0.00521III 0.13856I,II

50000 evaluations

(µ+µ) 0.14438III,IV 0.00161II 0.03799 0.02633 0.00415III,IV 0.03522II

(µ+µ)chol 0.16716III 0.00658 0.03789I 0.02633 0.00402III,IV 0.03928

(µ≺+1) 0.42775 0.00082I,II,IV 0.03785I,II 0.02633IV 0.01746 0.02749I,II

(µ+1) 0.18228III 0.00115I,II 0.03787I,II 0.02633 0.00501III 0.03034I,II

ε-indicator
algorithm ZDT4’ IHR1 IHR2 IHR3 IHR4 IHR6

25000 evaluations

(µ+µ) 0.18533III 0.01440 0.14304 0.04360 0.00526III 0.18192

(µ+µ)chol 0.19352III 0.01446 0.14269 0.04367 0.00533III 0.18782

(µ≺+1) 0.45294 0.00444I,II,IV 0.14268I,II,IV 0.04321IV 0.01666 0.06542I,II,IV

(µ+1) 0.20867III 0.01515 0.14284I,II 0.04340 0.00537III 0.15154I,II

50000 evaluations

(µ+µ) 0.14594III,IV 0.00553II 0.14066 0.04320 0.00393III,IV 0.05598II

(µ+µ)chol 0.16683III 0.01345 0.14046 0.04320 0.00408III 0.06493

(µ≺+1) 0.37796 0.00362I,II,IV 0.14043I ,II 0.04320 0.01665 0.06490

(µ+1) 0.17945III 0.00446I,II 0.14046 0.04320 0.00474III 0.05340II

6. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6(2) (2002) 182–197

7. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervol-
ume measure as selection criterion. In Coello Coello, C.A., Zitzler, E., Hernandez
Aguirre, A., eds.: Third International Conference on Evolutionary Multi-Criterion
Optimization (EMO 2005). Volume 3410 of LNCS., Springer-Verlag (2005) 62–76

8. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection
based on dominated hypervolume. European Journal of Operational Research
(2007) In press.

9. Igel, C., Suttorp, T., Hansen, N.: A computational efficient covariance matrix
update and a (1+1)-CMA for evolution strategies. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 2006), ACM Press (2006)
453–460

10. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evolutionary Computation 11(1) (2003) 1–18

11. Grewal, M.S., Andrews, A.P.: Kalman Filtering: Theory and Practice. Prentice-
Hall (1993)

12. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley
(2001)

13. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms
– a comparative case study. In Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.P., eds.: Fifth International Conference on Parallel Problem Solving from Nature
(PPSN-V), Springer-Verlag (1998) 292–301

14. Whitley, L.D.: The GENITOR algorithm and selection pressure: Why rank–based
allocation of reproductive trials is best. In Schaffer, J.D., ed.: Proceedings of
the Third International Conference on Genetic Algorithms (ICGA’89), Morgan
Kaufmann Publishers (1989) 116–121

15. Syswerda, G.: Uniform crossover in genetic algorithms. In Schaffer, J.D., ed.: Pro-
ceedings of the Third International Conference on Genetic Algorithms (ICGA’89),
Morgan Kaufmann Publishers (1989) 2–9

16. Iorio, A., Li, X.: Solving rotated multi-objective optimization problems using dif-
ferential evolution. In Webb, G.I., Yu, X., eds.: Proceeding of the 17th Joint Aus-
tralian Conference on Artificial Intelligence. Volume 3339 of LNCS., Spriner-Verlag
(2005) 861–872

17. Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of
stochastic multiobjective optimizers. TIK-Report 214, Computer Engineering and
Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich
(2005)

18. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.:
Performance assesment of multiobjective optimizers: An analysis and review. IEEE
Transactions on Evolutionary Computation 7(2) (2003) 117–132

19. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – A platform and pro-
gramming language independent interface for search algorithms. In Fonseca, C.M.,
Fleming, P.J., Zitzler, E., Deb, K., Thiele, L., eds.: Evolutionary Multi-Criterion
Optimization (EMO 2003). Volume 2632 of LNCS., Springer-Verlag (2003) 494 –
508

20. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint
handling with evolutionary algorithms—Part II: Application example. IEEE
Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans
28(1) (1998) 38–47

21. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: Empirical results. Evolutionary Computation 8(2) (2000) 173–195

22. Deb, K., Sinha, A., Kukkonen, S.: Multi-objective test problems, linkages, and evo-
lutionary methodologies. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO 2006), ACM Press (2006) 1141–1148

23. Iorio, A.W., Li, X.: Rotated test problems for assessing the performance of multi-
objective optimization algorithms. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2006), ACM Press (2006) 683–690

