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Abstract. We present a comparative review of Evolutionary Algorithms that generate new
population members by sampling a probability distribution constructed during the optimiza-
tion process. We present a unifying formulation for five such algorithms that enables us to
characterize them based on the parametrization of the probability distribution, the learning
methodology, and the use of historical information. The algorithms are evaluated on a number
of test functions in order to assess their relative strengths and weaknesses. This comparative
review helps to identify areas of applicability for the algorithms and to guide future algorithmic
developments.
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1. Introduction

A class of continuous Evolutionary Algorithms (EA) generates new popula-
tion members by sampling from a probability distribution that is constructed
during the optimization process. The probability distribution characterizes
the objective function that is being optimized. For this purpose, one can
employ machine learning algorithms to effectively exploit the information
that is being obtained during the optimization process. When a priori knowl-
edge is available regarding the type of the underlying distribution, a suit-
able parametrization can lead to fast convergence rates (Rechenberg, 1973;
Schwefel, 1995). However, when such knowledge is not available a strategy
is needed in order to learn this distribution from the information available by
the selected individuals.

The learning of probability distributions in EAs such as Evolution Strate-
gies (ES) and Genetic Algorithms (GA) has received renewed attention in
recent years. One of the key concepts in these algorithms involves the iden-
tification of correlations between parameters of selected individuals and the
use of these correlations in an effort to accelerate the convergence rate of the
algorithms.�
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In the field of ES, learning of probability distributions has a long history
starting from the 1/5th-success-rule postulated by Rechenberg (1973). This
algorithm uses a Gaussian probability distribution to sample new individuals
while the variance of the distribution is varied based on past success rates. A
number of different learning strategies have been proposed over the years and
Beyer and Schwefel (2002) present an overview of several such approaches.

In GAs, a key motivation for the development of model learning mech-
anisms was the desire not to destroy, by recombination, favorable partial
blocks that appear in the variable vector. The basis for introducing learn-
ing in GAs was established with the Population Based Incremental Learning
(PBIL) algorithm proposed by Baluja and Caruana (1995). In PBIL, the re-
combination operator is replaced by a vector of independent probabilities
of each binary variable. This vector of probabilities is used to sample off-
spring and is adapted in every generation by an update rule. The basic ideas
of PBIL were further enhanced by considering, for example, dependencies
between variables. The class of GAs that employ learning and sampling of
probability distributions is usually referred to as Estimation of Distribution
Algorithms (EDA) or Probabilistic Model Building Genetic Algorithms (PM-
BGA) (Mühlenbein and Paass, 1996; Pelikan et al., 1999). They try to find
adaptively correlations among the building blocks of variables in order to
prevent the recombination operator from deteriorating the performance of the
algorithm. Larrañaga (2002) presents a summary of EDAs used in continuous
domains.

The goal of this paper is to compare how probability distributions are
learnt in different continuous EAs. The comparison includes the following
algorithms: the ( 
��
 )-ES with 1/5th-success-rule (Rechenberg, 1973), the
ES with Cumulative Step Size Adaptation (CSA-ES) (Ostermeier et al., 1994),
the ES with Covariance Matrix Adaptation (CMA-ES) (Hansen and Oster-
meier, 1996), Iterated Density Estimation Evolutionary Algorithms (ID � As)
(Bosman and Thierens, 2000a) with Gaussian distributions, and the Mixed
Bayesian Optimization Algorithm (MBOA) (Ocenasek and Schwarz, 2002).
We compare their structural components such as the parametrization of the
underlying distribution, their learning methodologies, and the use of histor-
ical information. The performance of the algorithms is assessed by direct
comparison on a number of unimodal and multimodal test functions.

The remainder of this paper is organized as follows: In Section 2, a com-
mon algorithmic structure of the selected EAs is outlined and the different
algorithms are described. In Section 3, the algorithms are compared analyti-
cally based on the aspects stated above. The experimental comparison follows
in Section 4. Finally, the paper is concluded in Section 5.
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2. Description of the Algorithms

We consider the application of EAs to the minimization of the objective func-
tion ��������� �������� ��� �"! , where � is the optimization variable and� � is the # -dimensional continuous search space. In the following, $ %& � � �('('(')���"*,+ denotes a population/set of individuals �.-�/0�1� . In this sec-
tion, we outline the common structure of the algorithms and detail their im-
plementation.

2.1. COMMON STRUCTURE OF THE COMPARED EAS

The EAs under consideration can be described by a common pseudo-code,
which is given in Figure 1. The evolution loop consists mainly of the follow-
ing operations:

1. selection of the parent population from the base population;

2. (re-)estimation of the probability distribution based on the parent popu-
lation;

3. sampling and evaluation of the offspring population;

4. replacement of the base population.

Figure 2 illustrates the evolution loop and the populations involved. The
populations $32(46587 , $:9 46;<7>=�? , and $:@6A)5 9 ; have sizes denoted as B 2C465<7 , B 9 46;87>=D? ,
and B @6A)5 9 ; , respectively.

2.2. ( 
E�F
 )-ES WITH 1/5th-SUCCESS-RULE

The ( 
G�H
 )-ES is one of the first and simplest EAs proposed for optimization.
Starting from a single parent, ��IKJML9 46;87N=�? , in every generation a single offspring
is generated as a realization of a Gaussian distributed random vector O :� IPJRQ � L@6AS5 9 ; %FOT� OVUXWY� � IKJRL9 46;<7>=D?R��Z IKJML �([ !R� \]%F^_�`
a�Dbc�('('('a' (1)

where the step size Z IPJRL /d� Q determines the distribution variance at genera-
tion \ . The base population consists of the two individuals from Equation (1).
The individual with the better objective function value is selected to be the
parent for the next generation:

� IPJRQ � L9 46;<7>=�? % e � IPJRQ � L@6AS5 9 ; � if ��� � IKJMQ � L@6A)5 9 ; !gfh��� � IPJRL9 46;<7>=�? !�EIPJRL9 46;<7>=�? otherwise.
(2)
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\��K%�^
initialize $iIPJRL2(465<7 , jEIPJRL2(465<7 , k IKJML
while not l�m(naoqp>#srtl6m do

( $uIPJRL9 46;<7>=�? ��v IKJML ) := select ( $iIPJRL2(465<7 �RjEIPJRL2(465<7 )k IKJRQ � L :=estimate_probability_distr ( $YIKJRL9 46;<7>=D?Cw ��v IPJRL ��k IPJRL>x )$iIPJRQ � L@6AS5 9 ; := sample ( k IKJRQ � L )j IKJMQ � L@6A)5 9 ; := evaluate ( $ IKJMQ � L@6A)5 9 ; )

( $ IPJRQ � L2(465<7 �Rj IKJRQ � L2(46587 ) :=

replace ( $IKJMQ � L@6A)5 9 ; �RjEIPJRQ � L@6AS5 9 ; w ��$uIPJRL2(465<7 �RjEIPJRL2(465<7 ��$yIPJRL9 46;<7>=�? �RjEIPJRL9 46;<7>=�? x )\z�K%:\{�F

end do

Figure 1. Common algorithm structure of the compared EAs. | : Population of individuals
(set of search points). } : Vector of objective function values according to | . ~ : Probability
distribution. � : Ranking of population |��6�������N� due to selection. Optional input parameters,
not used in all algorithms, are put into square brackets.

Rechenberg (1973) proposed the so-called 1/5th-success-rule to adapt the
global step size Z based on the rate of successful mutations whereas a muta-
tion is considered successful if ��� ��IKJRQ � L@6A)5 9 ; !��:��� �EIPJRL9 46;<7>=�? ! . We propose here an
alternative simple implementation of this concept:

Z IPJRQ � L %3Z IPJRL�� eH�
if ��� �EIPJRQ � L@6A)5 9 ; !gf:��� ��IPJRL9 46;<7>=�? !� I�� ����� L otherwise,

(3)

with
� %�b ��� � 1. This implementation differs from the implementation pro-

posed by Schwefel (1995), in that it accumulates the information about suc-
cess or failure directly into the step size Z . The new implementation is sim-
pler, as it uses only one strategy parameter

�
for the change rate. In contrast,

the “classical” formulation uses one strategy parameter for the change rate,
a second strategy parameter for update frequency, and a third strategy pa-
rameter for the averaging time to measure the success rate. These strategy
parameters are typically set to ^_'��_
)� , # , and 
(^a# , respectively. Compared to
the “classical” implementation, we expect the new implementation to achieve
the predefined success rate, depending on the choice of

�
, faster and/or more

precisely. Reasonable values for
�

are between b ��� � and b . The value b ��� �
resembles the change rate for Z , that has a good performance on the sphere
function, � 5 9C� 7>;<7 � ��!"%y� �-�� �_� �- , for all # .

1 The exponent (-1/4) corresponds to the success rate of 1/5.
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Figure 2. Illustration of the evolution loop. Circles denote populations, boxes denote opera-
tors. Arrows pointing to a population indicate their complete replacement. Solid lines apply to
all algorithms. Dashed lines apply only to the specified algorithms.

2.3. ES WITH CUMULATIVE STEP SIZE ADAPTATION (CSA-ES)

The CSA-ES, developed by Ostermeier et al. (1994), adapts the global step
size Z by using the path traversed by the parent population over a number of
generations.

In the following, the formulation of the ( ���S�¡ a�R¢ )-ES with CSA is given,
where �£¤B 9 46;87N=�? is the number of parents, ¢F£¥B @6A)5 9 ; %¥B 2C465<7 is the
number of offspring, and the subscript ¦ denotes intermediate recombination.
The offspring � IKJRQ � L§ are sampled from a Gaussian distribution:�.IPJRQ � L§ %�O § � O § UXW©¨aª ��« IPJRL¬ ��Z IPJRL �`[® � ¯]%°
a�('('(')�R¢s� (4)

where ª ��« IPJRL¬ % �¬ � ¬-�� � � IKJRL- is the result of intermediate recombination of
the � best individuals of generation \ , and �i�©¢ . The evolution path ± of
generation \²��
 incorporates the mutation steps of the recombined selected
individuals and is calculated by

± IKJRQ � L %°�6
�³µ´`! � ± IPJRL ��¶ ´·��b,³¸´(! �.¹ �Z IKJRL ¨aª ��« IKJRQ � L¬ ³hª ��« IKJML¬  � (5)
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where 
)��´ is the backward time horizon for ± IKJRL typically set to a value be-
tween ¹ # and # . The global step size Z IPJRQ � L is adapted by comparing the
length (Euclidean norm) of the evolution path, ºN± IKJRQ � L º , with the expected
length of the evolution path under random selection, »��RºNWY� ^_� [ !)ºM! :

Z IKJMQ � L %FZ IPJRL �(¼C½_¾H¿ ´À²Á ºN± IKJRQ � L º»ÃÂDºNWY� ^_� [ !)ºRÄ ³h
CÅ�Æ,� (6)

where »H�RºNW� ^_� [ !)ºM!.% ¹ b¡Ç.� � Q �� !���Ç.� � � !"È ¹ #1�6
¡³ �� � � ��M� � � ! and
À È°


is a damping parameter. The strategy parameters ´ and
À

may be chosen as
follows: ´É%Y
(^Ê�_�<#��Ëba^Ê!R� À %FÌ]Í ½ Á 
a� Î �#��F
(^ Å �X´�' (7)

The initial evolution path is ± IPÏ�L %�Ð .

2.4. ES WITH COVARIANCE MATRIX ADAPTATION (CMA-ES)

Hansen and Ostermeier (1996; 2001) extended the CSA-ES with a derandom-
ized adaptation of the covariance matrix. In the following, a brief summary of
the �<���S�   �R¢Ñ! -CMA-ES with additional update of the covariance matrix by a
rank- � matrix (Hansen et al., 2003) is given.

The offspring � IKJMQ � L§ are sampled from a Gaussian distribution:�EIKJMQ � L§ %FO § � O § UËW©¨aª ��« IPJRL¬ ��Z IPJRL � ��Ò IKJRL  � ¯1%Y
a�('('(')�R¢ (8)

where ª ��« IPJRL¬ % �¬ � ¬-�� � � IKJRL- . The adaptation mechanism of the CMA-ES

consists of two parts: (i) the adaptation of the covariance matrix Ò IKJML , and
(ii) the adaptation of the global step size Z IKJRL . The covariance matrix Ò IPJRL is
adapted by the evolution path ± IKJMQ � LÓ and by the � difference vectors between
the recent parents and the mean value of the previous parents. The evolution
path is computed analogously to that of the CSA:

± IKJRQ � LÓ %Ô�6
�³µ´ Ó ! � ± IKJMLÓ � ¶ ´ Ó ��b{³Õ´ Ó ! � ¹ �Z IKJML ¨�ª �.« IPJRQ � L¬ ³hª �E« IKJRL¬ 
(9)

Ò IKJRQ � L %Ô�6
�³µ´MÖ @�× ! �SÒ IKJRL �X´MÖ @�× � Á 
� ± IKJRQ � LÓ ¨N± IPJRQ � LÓ cØ � (10)

Á 
É³ 
� Å 
� ¬Ù-�� � 
Z IKJML � ¨M� IKJRQ � L- ³hª ��« IKJML¬  ¨M� IKJMQ � L- ³hª ��« IPJRL¬  Ø Æ '
The last term in Equation (10) is a matrix with rank Ì]Ú�ÛÜ�<����#�! . The strat-
egy parameter ´CÖ @�× / w ^_�`
 w determines the rate of change of the covariance
matrix Ò . The adaptation of the global step size Z IPJRQ � L is analogous to that

ncpaper-corrected.tex; 10/03/2004; 9:41; p.6



7

of the CSA-ES. In the CMA-ES it is based on a “conjugate” evolution path± IKJMQ � LÝ :± IPJRQ � LÝ %Þ�6
�³¸´ Ý ! � ± IKJMLÝ � (11)¶ ´ Ý ��b{³µ´ Ý ! �)ß IPJRL ��à IKJRL ! � � � ß IPJRL ! � � ¹ �Z IPJRL ¨aª ��« IPJRQ � L¬ ³hª ��« IKJRL¬  '
The matrices ß IKJRL and à IPJRL are obtained through a principal component
analysis: Ò IPJRL % ß IKJML ¨Mà IKJRL  � ¨ ß IKJML cØ � (12)

where the columns of ßáIKJRL are the normalized eigenvectors of ÒâIPJRL , and à IKJML
is the diagonal matrix of the square roots of the eigenvalues of Ò IPJRL . The
global step size Z IKJRQ � L is determined by

Z IKJMQ � L %FZ IPJRL �)¼C½c¾H¿ ´ ÝÀ:Á ºN± IKJRQ � LÝ º»ÃÂDºNWY� ^_� [ !)ºRÄ ³h
CÅ"Æ,' (13)

The parameters ´ Ý and ´MÖ @�× control independently the adaptation time scales
for the global steps size and the covariance matrix. Default settings for ´ Ó , ´ Ý ,´MÖ @�× , and

À
are´ Ó % ã#�� ã � ´ Ý % 
(^#��Ëba^ � À %FÌ]Í ½ Á 
a� Î �#��3
(^ ÅÕ�X´ Ý � (14)

´MÖ @�× % 
� b�<#�� ¹ bÊ! � � Á 
�³ 
� Å Ì]Ú�Û Á 
a� b��d³ä
�<#��Ëbå! � �0� Å ' (15)

Note that for ��æç# ,
À

is large and the change of Z is negligible compared to
that of Ò . The initial values are ±�IPÏ�LÝ %X±.IPÏ�LÓ %�Ð and Ò IPÏ�L % [

.
By choosing � IPÏ�L and ÒVIPÏ�L appropriately, the CMA-ES is invariant with

respect to any linear transformation of the search space. By choosing � I�Ï�L
appropriately, the CMA-ES is invariant with respect to any orthogonal linear
transformation of the search space, like ( 
.��
 )-ES and CSA-ES.

In the experimental part of this paper, we use an implementation of the
CMA-ES (Hansen et al. (2003)) as described above, that additionally uses
weighted recombination (Hansen and Ostermeier (2001)). The default set-
tings from the latter paper are used for parent number �h%è¢Ñ�ab and for the
recombination weights. Our earlier experiments indicate that the algorithm
with weighted recombination and the algorithm with �è%é¢ê� ã and equal
weights perform similarly.
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2.5. THE ITERATED DENSITY ESTIMATION EVOLUTIONARY

ALGORITHM (ID � A)

The ID � A framework proposed by Bosman and Thierens (2000a) formal-
izes EDAs in continuous domains. To estimate the distribution of the parent
population, ID � A exploits the fact that every multivariate joint probability
distribution can be written as a conditional factorization: ë1�<ì � �('('(')��ì � !�%í �-�� � ë��<ìî-�ï ìî- Q � ��ìî- Q � �('('(')��ì � !R' The probabilistic model ð %ñ�>òT�DóÜ! of
the parent population $ 9 46;<7>=�? is rebuilt in every generation. Here ò denotes
the structure of the model describing a truncated conditional factorization.
Weak variable dependencies are omitted and the maximum number of de-
pendencies per variable may be limited to a fixed number ô . ó is a vector of
parameters of the elementary (conditional) probability distributions contained
in the factorization. ò can be represented by an acyclic directed dependency
graph, where arcs indicate conditional dependencies. An example is given in
Figure 3.

x1

x3

x4

x5

x2

Figure 3. Example of a conditional factorization graph
representing the factorization of the joint distributionõgöø÷ �6ù�ú6ú�ú6ù ÷gû�ü®ýqõgöø÷Eþ�ü ÿ6õgöø÷�û � ÷gþ�ü_ÿ�õgöø÷ � � ÷gû�ü ÿ�õgöø÷ � � ÷gþ ù ÷gû�ü ÿ6õgöø÷�� � ÷ ��ù ÷gþ�ü

.

To learn a suitable conditional factorization, an incremental search al-
gorithm is used starting from an empty graph. In each iteration, an arc is
introduced which maximizes a predefined metric � . The graph construction is
terminated, when introducing a new arc does not further increase the metric.
In this paper, the metric known as the Bayesian Information Criterion (BIC)
is used:

���Ü ��µ%Y³
	�ÛÜ�����>òÉï ë�Õ� $39 46;87N=�? !�!�!��ä¢ Ó 	�Ûs��ï ò�ï !(ï ó"ïK� (16)

where � �>ò�ï ë�Õ� $:9 46;<7>=D? !�! is the likelihood of the model structure ò given
the distribution of the parent population $ 9 46;<7>=D? , and ¢ Ó is a regularization
parameter determining the amount of penalization of the model complexity.
An extensive discussion of different search algorithms and metrics for the
factorization search in ID � A is given in Bosman and Thierens (2000b).

In this paper, we focus on ID � As that use Gaussians as elementary prob-
ability distribution. Once the factorization is learnt, the parameters of the
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(conditional) Gaussian distributions are computed from the sample averageª ��« IPJRL9 46;<7>=�? and the sample covariance matrix Ò as follows: For each p0%
a�('('('S��# ë1� � -�ï � - Q � �('('('S� � � !"%XWY�<oq-���Z®->!
��� ¼���¼ ��� �� Z - % �� Ò�� � I - � - Loq-q%Þª � -N« IKJRL9 46;<7>=D?T³ ��� �Ñ- Q � Ò � � I � � - LÒ � � I - � - L ¨ � � ³:ª � � « IPJRL9 46;<7>=�?  (17)

ª ��«DIPJRL9 46;<7>=�? % ¨aª � � «DIPJRL9 46;<7>=�? '('('Sª � � «DIKJML9 46;87N=�?  Ø % 
B 9 46;<7>=�? * �6���P�8�>�Ù§ � � �EIKJML§ (18)

Ò % 
B 9 46;<7>=D? * �6�������N�Ù§ � � � �EIPJRL§ ³:ª �.«DIKJRL9 46;87>=D? !C� �gIPJRL§ ³:ª ��«DIKJRL9 46;<7>=D? ! Ø ' (19)

Bosman and Thierens (2001) also present ID � A instances that learn mix-
tures of Gaussians. In this case, the parents are first clustered, and then for
every cluster a probabilistic model is learnt, as outlined above. The use of
mixture of Gaussians is claimed to be advantageous for the optimization
of non-linear and highly epistatic problems. We investigated ID � As using
Gaussian distributions both with and without clustering.

In every generation, � � B 2(465<7 individuals of the base population are se-
lected as parents. The probabilistic model distribution, ë  �>ò¡�Dós! , is learnt
from the parent population. If ë� is a single peak Gaussian, the offspring are
sampled by� IKJRQ � L§ %FO § � O § U � - WY�<oq-���ZG-N!R� ¯1%Y
a�('('('S��B @6AS5 9 ; ' (20)

The base population of the next generation is obtained by merging the off-
spring population and the parent population of the current generation.

The strategy parameters are set as follows. Population sizes B 9 46;<7>=�? %� B 2(46587 , B @6A)5 9 ; %°�6
E³!�®!�B 2C465<7 , and the fraction ��%F^_' Î . The regularization
parameter for penalizing the model complexity is ¢ Ó %F^_'#" , and the maximum
number of dependencies is ôz%3#d³h
 .

2.6. THE MIXED BAYESIAN OPTIMIZATION ALGORITHM (MBOA)

In MBOA (Ocenasek and Schwarz, 2002), a Bayesian network with local
structures in the form of decision trees captures the mutual dependencies
among the parent individuals. The first EDA employing the Bayesian net-
work model with decision trees was the hierarchical Bayesian Optimization
Algorithm (hBOA) (Pelikan et al., 2000). MBOA is an extension of hBOA
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from binary to continuous domains. In fact, MBOA is able to deal with dis-
crete and continuous parameters simultaneously, but in this paper we focus
on continuous parameters only.

In every generation, the parent population $�9 46;<7>=�? of size B 9 46;<7>=�? %� � B 2(46587 is selected from the base population using tournament selection.
Then the probability distribution of $ 9 46;<7>=�? is estimated and B @6A)5 9 ; offspring
are sampled. The offspring population is used to replace part of the base popu-
lation. For effective diversity preservation, restricted tournament replacement
is used (Pelikan and Goldberg, 2001).

The probabilistic model ð % �%$z�DóÜ! of the parent population $i9 46;<7>=D?
is rebuild in every generation. $ % &�& � �('('('S� & � + is a set of decision trees
defining the structural part of the model whereas ó are the quantitative para-
meters of the model. Each decision tree

& - defines the conditional distributionë1�<ìî-�ï(' ->! of the variable ì]- , pT%Y
a�('('(')��# . Domain ' - denotes the subspace
spanned by the variables that affect the value of ìz- . The subspace is cho-
sen with regard to all previously generated trees, such that no bidirectional
dependencies occur.

To define split nodes in the decision tree
& - , a variable and a split boundary

are chosen using Bayesian-Dirichlet metrics. The split nodes hierarchically
decompose ' - , the domain of ë1�<ì]-Dï(' ->! , into rectangular axis-parallel par-
titions, ' - � , )q%�
a�Dbc�('('(' , that correspond to the leaves of the decision tree.
In each leaf, ì]- is approximated by a univariate probability density function
using Gaussian kernels (also known as Parzen window (Parzen, 1962)). Let' - � /*' - denote the partition that traverses to the ) -th leaf of

& - . Consider
all parent individuals that traverse to '1- � , and let the set

& � -N+ � denote their
realizations of variable ì1- . Then the Gaussian kernel distribution in the ) -th
leaf can be expressed as:

ë1�<ì - ï + - /�' - � !�% 
ï & � -�+ � ï Ù
,.-0/2143�5�6 WY�<oÕ��Z �- � ! (21)

All the kernels in the same leaf have the same height 
)� ï & � -6+ � ï and the
same width Z®- � . In our experiments, we set

Z®- � % Ì]Í ½ & � -�+ � ³µÌ]Ú�Û & � -�+ �ï & � -�+ � ï�³ä
 � (22)

Figure 4 illustrates the structure of learnt distributions in MBOA on a two
dimensional example.

The offspring population $ @6A)5 9 ; is sampled from the estimated model�EIKJRQ � L§ %FO § � O § U � - ë1�<ì - ï('87�!R� ¯1%Y
a�('('('S��B @6AS5 9 ; ' (23)B @6A)5 9 ; is set to half of the base population size B 2(46587 , and the fraction of$:2(46587 selected as parent population is set to �z%F^_'#" .
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Figure 4. Example of the structure of a two dimensional joint probability distributionõgöø÷ � ù ÷ � ü in MBOA.
õgöø÷ � ù ÷ � ü is factorized as

õgöø÷ � ù ÷ � ü®ýqõgöø÷ � ü�ÿ õgöø÷ � � ÷ � ü . õgöø÷ � ü
is described by the density function 9 � ö;: � ü and

õgöø÷ � � ÷ � ü by the density function 9 � ö;: � � : � ü ,
with 9 � ö;: � � : � üGý 94< � ö;: � ü if

: �>=@? ú ACB and 9 � ö;: � � : � üGý 94< <� ö;: � ü if
: �ED@? ú AFB .

3. Structural Comparison

We compare the algorithms by highlighting their similarities in the type and
the parametrization of the employed probability distributions. We also distin-
guish their differences based on their learning strategies and the exploitation
of past information available during the optimization process.

3.1. THE PROBABILITY DISTRIBUTION AND ITS PARAMETRIZATION

In the EAs presented herein the employed probability distributions are com-
posed of a single or multiple Gaussian distributions. The Gaussian distribu-
tions are characterized by their mean and the covariance matrix, as W��G� Ò ! .

Both the ( 
É�
 )-ES and the CSA-ES learn an isotropic Gaussian � Ò %Z � [ ! , while the CMA-ES and ID � A employ arbitrary Gaussian distributions.
If clustering is applied in ID � A, a mixture of arbitrary Gaussian distributions
is learnt. MBOA operates with a Gaussian kernel distribution, defined on par-
titions of the search space. The kernels involve a diagonal covariance matrix
that is constant within each partition.

The algorithms are distinguished in the way they determine the para-
meters of their Gaussian distributions. The ESs use a fixed parametrization
as determined by the mean vector and the covariance matrix. In contrast,
the parametrizations of the distributions in ID � A and MBOA change from
generation to generation as the model structure is being rebuilt. In ID � A, the
model structure is a conditional factorization graph that is changing in every
generation, thus resulting in different parametrizations of the corresponding
Gaussian distributions. Similarly, in MBOA, the decision trees that constitute
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the model structure are re-estimated in each generation resulting as well in
changes in the associated Gaussian kernels.

3.2. STATISTICAL MEASURES USED IN THE LEARNING PROCESS

The probability distributions are being learned by employing statistical mea-
sures based on³ the position of individuals in the search space and³ relative rank information among different individuals as determined by

the values of the objective function.

Note that using rank information as opposed to function values themselves,
has the advantages that it makes the algorithms (i) invariant to any monotonous
transformation of the objective function and (ii) insensitive to small-scale per-
turbations of the objective function. On the other hand, not using the objective
function values results in a larger number of evaluations in the case of smooth
unimodal objective functions.

In the ( 
É�
 )-ES with 1/5th-success-rule, the only statistical measure is
the success rate that is used to adapt the global step size. In the CSA-ES and
CMA-ES, the mean of the population is used in order to compute the evo-
lution path ± . The comparison of this evolution path with an evolution path
under random selection is used to determine the global step size Z . This com-
parison is an indirect measure of the correlation of the subsequently selected
mutation steps. To adapt the covariance matrix Ò of the underlying probabil-
ity distribution, the CMA-ES uses the covariance matrix of the evolution path± Ó which has rank one, and the covariance matrix of the parent individuals
which has rank Ì]Ú�Ûs�<����#�! . To compute the latter covariance matrix, the mean
of the previous distribution is used as reference point. This is in contrast to
the computation of the empirical covariance matrix using the sample mean as
reference point.

In ID � A, the factorization search and the estimation of the parameters
of the Gaussian distributions is based on the mean and the empirical covari-
ance matrix of the selected individuals. The Bayesian Information Criterion
(BIC) is used to measure the likelihood of candidate model structures regular-
ized by a term that penalizes model complexity. Once the model structure is
learnt, the distribution parameters have to be estimated based on the parents.
MBOA uses a measure derived from the Bayesian-Dirichlet metrics to split
the search space into axis-parallel partitions. The span of the parents within
the partitions is used to estimate the variances.
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Table I. Generation-varying parameters of the algorithms. Initializa-
tion is given for parameters with constant initialization. Algorithms not
listed do not have generation-varying parameters.

Distribution Parameters Internal State Parameters

( HJIKH )-ES LNMPO.Q
CSA-ES LNMPO Q R>SUTWVX ýKY

CMA-ES LNM�O Q , Z S(TWV ý![ RJSUTWVX ýKY
, RJSUTWV\ ýKY

3.3. LEARNING STRATEGIES AND USE OF HISTORICAL INFORMATION

The algorithms compared in this paper use two different approaches to learn
the probability distribution. The ESs incrementally update their distributions
in every generation using the new information provided by the offspring.
In contrast, ID � A and MBOA rebuild the probability distribution in every
generation. Referring to Figure 1, the latter algorithms do not require the
argument k for the estimate_probability_distr procedure.

The considered EAs use two different mechanisms for preserving and
reusing historical information:³ elitist population strategy and³ generation-varying parameters which are modified by deterministic

update rules.

The elitist strategy affects the replacement procedure and helps to preserve
former parent solutions in the population. Only elitist strategies feed back the
parent population or the entire base population to the replacement operator as
shown in Figure 2. Additional generation-varying parameters involve distri-
bution parameters of k or additional internal state parameters attached to k .
These parameters are summarized in Table I.

In this framework the ( 
E��
 )-ES uses an elitist population strategy and a
single distribution parameter, the global step size Z . Internal state parameters
are not used. The CSA-ES and CMA-ES do not use the elitist population
strategy. Both algorithms have internal state parameters and distribution para-
meters that are being modified by deterministic update rules. The CSA-ES
uses the evolution path ± , which is an internal state parameter, to adapt
the global step size Z . In the CMA-ES, two different evolution paths ± Ó
and ± Ý are used to update the covariance matrix and the overall variance,
respectively.

Both ID � A and MBOA use an elitist population strategy. They use nei-
ther internal state parameters nor distribution parameters as information is
provided solely by the population itself.

ncpaper-corrected.tex; 10/03/2004; 9:41; p.13



14

Table II. Strategy Parameters of the Algorithms] �6�������N� ]�^�_�` �6� Other

( HaIbH )-ES 1 1 c ý
d �fehg
, success rate Hji�k

CSA-ES l ý
]nm � ` � i d o�ýK]�m � ` � p ý � Tg Q � T , q ýbrtsvu Â H ù þxwg Q � T Ä I p
CMA-ES l ý
]nm � ` � i d o�ýK]�m � ` � p X ý � Tg Q � T , q ýbrtsju Â H ù þxwg Q � T Ä I p Xp \ ý �g Q � , pzy ^f{ ý �w �S g Q}| � V�~I Â H�� �w Ä r��U� ¨ H ù � w � �S g Q � V ~ Q w 

ID � A � ]nm � ` � ö H��N� ü�]nm � ` � � ý ? ú B , o \ ý ? ú k , � ýK� �@H
number of clusters

threshold for adding a cluster

MBOA � ]nm � ` � ]nm � ` � i d � ý ? ú k , window size kF�

3.4. STRATEGY PARAMETERS

The implementation of the considered EAs involves the specification of sev-
eral strategy parameters that can, for example, be determined via a priori
knowledge of the objective function at hand or by extensive experimenta-
tion. A common strategy parameter is the size of the base population B 2(46587 .
Further strategy parameters are summarized in Table II.

The ( 
É�
 )-ES as formulated in Subsection 2.2 employs only one strat-
egy parameter,

�
, that controls the rate of change of the global step size.

In the CSA-ES, the rate of change of the global step size is controlled by
the damping factor

À
. The life span of the information accumulated in the

evolution path is controlled by the accumulation parameter ´ . In the CMA-ES,
additionally to ´ Ý ,

À
(which have the same meaning as in the CSA-ES), and ´ Ó ,

the parameter ´(Ö @N× is used to control the learning rate of the covariance matrixÒ . In this way, the distribution estimation task is detached from the choice of
the population size. The number of parents is set to B 9 46;<7>=D? % B 2C465<7 �ab and
the number of offspring is set to B @6A)5 9 ; %FB 2(46587 . B 9 46;87>=D? does not reflect the
true selection pressure, because the parents are weighted for the estimation
procedure.

The ID � A employs a regularization parameter, ¢ Ó , that determines the
amount of penalization for the model complexity in the BIC-metric used for
the factorization search. If clustering is used, ID � A additionally uses two
strategy parameters in the leader clustering algorithm namely a threshold and
a maximum number of clusters. The maximum number of parent variables
for each variable is limited by ô . The fraction � of selected parent individuals
is a further strategy parameter. Similar to ID � A, the MBOA algorithm em-
ploys a strategy parameter that penalizes complexity. This penalty parameter
is used in the metric for building decision trees. By appropriately choosing
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Table III. Test functions and initialization intervals (coordinate-wise), where�8� ý�� � � ù�ú�ú6ú6ù � g������ , i.e. � 3 ýK� �3 � , see text.

Name Function Init

Plane � �z� ���6� ö � üêýb: � � ? ú k ù H ú k � g
Diagonal plane � �z� ���6���z� �x� ö � üGý �g � g3�� � : 3 � ? ú k ù H ú k � g
Sphere � ` ���6�8�P� ö � üGý � g3�� � : �3 � � B`ùh� � g
Ellipsoid � ��� � � ö � üGý � g3�� � ¨ H ?F?E�¡ £¢¤  £¢ � 3  � � � B`ùh� � g
Cigar � y � ����� ö � ü®ý � �� IbH ? � � g3�� � � �3 � � B`ùh� � g
Tablet � �ø� m � ��� ö � üGý H ? � � �� I � g3�� � � �3 � � B`ùh� � g
Rosenbrock ��¥ ^x` �8� ö � ü®ý � g � �3�� � Â H ?�? ÿ(ö;: �3 � : 3 Q � ü � I ö;: 3 �¦H ü � Ä � �§k ù k � g
Rastrigin ��¥ � ` �ø�¨� �x� � ö � üGý H ? � I � g3�� � Â � �3 �©H ?«ªz¬� ö�dv® � 3 ü Ä � � B`ùh� � g
Scaled Rastrigin ��¥ � ` �ø�¨� �x� � � T ö � üGý H ? � I � g3�� � Â ö H ? �¡ £¢¤  £¢ � 3 ü � � � � B`ùh� � gH ?«ªz¬� ö�dj® H ? �¡ £¢¤  £¢ � 3 ü Ä

this parameter, one can avoid to overfit the model. In the restricted tourna-
ment replacement, the window size determines the number of individuals any
offspring has to compete with.

4. Experimental Comparison

4.1. TEST FUNCTIONS, ALGORITHM IMPLEMENTATION, AND TESTING

PROCEDURE

The test functions used in this paper are summarized in Table III. Unless
otherwise noted experiments are conducted for dimension # % 
(^ . All
test functions are minimized except for the plane and the diagonal plane
which are maximized. We study functions of the variables � and functions
of the transformed variables ¯ . The transformation reads ¯©�K%±°z� where° % w(² � �('('('S� ² � x Ø implements an angle-preserving (i.e. orthogonal) lin-
ear transformation of � , and each ² - is uniformly distributed on the unit
hypersphere surface (Hansen and Ostermeier, 2001). For °Ô% [

(without
transformation), the Rosenbrock function is the only nonseparable function
of the test suite. For °´³% [

, the respective functions become nonseparable.
The functions � 7Wµ(µ(¶ , ��Ö ¶(·�46; , � ?<462Cµ 7�? , �¹¸ 4658?8;%¶(·º¶ = , and �¹¸ 465�?<;f¶(·º¶ = � Ï are tested both
without and with transformation. The transformed functions are also referred
to as rotated functions. To test the performance of the algorithms, we consider
20 different runs for each function. To optimize a transformed function, we
use ten different transformations and for each of them we perform two runs.
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We performed our experiments with implementations provided by the
authors of the algorithms, with the exception of the ( 
î� 
 )-ES where a
MATLAB implementation of the equations in Subsection 2.2 was used. The
MATLAB code of the CMA-ES supports large population sizes and uses
weighted recombination (compare end of Subsection 2.4). The same code
is used for the CSA-ES by setting ´`Ö @N× %Y^ . The ID � A implementation was
provided in C. It uses Gaussians as elementary probability distributions, the
BIC-penalized negative log-likelihood as metric in the factorization search,
and the leader algorithm for the clustering. For MBOA, a C implementa-
tion was used. In order to facilitate the reproducibility of this investigation
the source code of all algorithms, as they were used, is available under
http://www.icos.ethz.ch/software/optimization/nc/.

For all test functions, our performance criterion was the number of func-
tion evaluations to reach a certain function value � 5�?<@ 9 . This number depends
strongly on the initialization, on the value of � 58?8@ 9 , and on the size of the
population. We used the following experimental setup:

Initialization: The initial intervals are given in Table III. For MBOA and
ID � A, the initial population distribution and the initial distributionk (see Figure 1) is a uniform distribution on the initial interval. For
( 
]� 
 )-ES, CSA-ES, and CMA-ES, the initial distribution is set tok %ÔWY��G��Z � [ ! , where G is uniformly sampled from the initial
interval and Z equals half of the interval size.

In preliminary experiments, we varied the size and location of the initial
interval, and observed the following: For ID � A, it is essential that the
starting region contains the optimum, otherwise ID � A does not find the
optimum. For MBOA, it is beneficial that the starting region contains
the optimum. For ( 
��u
 )-ES, CSA-ES, and CMA-ES the performance
is insensitive against the placement of the starting region on unimodal
test functions.

Termination criterion: Each run is stopped when the function value is
smaller than � 58?8@ 9 %Y
(^ � � Ï (minimization), except for the plane and the
diagonal plane where � 58?8@ 9 %é
(^ � Ï (maximization). Additionally, the
run is stopped if a certain number of function evaluations was exceeded
or the optimization converged prematurely. Premature convergence is
indicated by a vanishing variance of the learnt model distribution before� 58?8@ 9 is reached. Experiments in which not all of the 20 runs reached� 58?8@ 9 are marked in Table IV.

Performance results are highly sensitive to the chosen value of � 5�?<@ 9 .
Therefore, for all simulations we supply graphs in which the perfor-
mance for function values »ä� 58?8@ 9 can be seen.
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Population size: For the ( 
S�]
 )-ES we performed ba^ runs. For the remaining
algorithms, we used as population size the testing sequence B 2(465<7 %w 
(^_�Dba^_�v"a^_�`
(^·^_�Dbå^·^ � ã ^·^_�R�a^å^_�S
4¼·^·^_� Î b·^·^ x performing ba^ runs for each
population size. The number of function evaluations to reach � 58?8@ 9 are
given for the smallest population size, where all ba^ runs reached � 5�?<@ 9 .
If � 58?8@ 9 was not reached in all 20 runs, we report results for that B 2(465<7
with the most successful runs. If no single run reached � 5�?<@ 9 , we report
the best achieved function value. For ID � A using 10 clusters, the upper
limit for B 2(46587 was 
4¼¡^·^·^ on �¹¸ @�587>= , �¹¸ 465�?<;f¶(·º¶ = , and �0¸ 4658?8;%¶(·º¶ = � Ï .

The best population size strongly depends on the algorithm and on the
test function. Therefore, the procedure to increase the population size
could also be valuable in practice. But, there is a clear disadvantage in
this method: Results achieved with different population sizes are not
necessarily comparable.

Strategy parameters: Beyond testing different population sizes as outlined
before, and testing different cluster sizes in ID � A, we did not test
different strategy parameter systematically. Instead, we use strategy
parameters suggested by the authors of the algorithms. Their values are
given in Subsections 2.2-2.6.

ID � A with clustering was only applied to ��¸ @�5<7>= , �¹¸ 4658?8;%¶(·º¶ = , and�¹¸ 465�?<;f¶(·º¶ = � Ï , where different numbers of clusters with varying threshold
values were tested (see Subsections 4.3.6, 4.4.1, and 4.4.2).

Figures 6-18 show the function values over the number of function evalu-
ations for the 10-dimensional test functions described in Table III. Bold lines
are the median of the function values from 20 runs. Thin lines show the curves
of the minimum and maximum function value. The five symbols per each
measurement represent minimum, 25-percentile, median, 75-percentile, and
maximum function values. The population sizes are given in the caption. The
performance ratios of the algorithms on all test functions are summarized in
Table IV.

After studying the runtime of the algorithms in Subsection 4.2, we start
our discussion on unimodal test functions in Subsection 4.3, and continue
with multimodal test functions in Subsection 4.4.

4.2. RUNTIME STUDY

The CMA-ES, ID � A, and MBOA are computationally expensive algorithms,
compared to the ( 
t�q
 )-ES and the CSA-ES. To assess the computational cost
of the three expensive algorithms, we measure CPU time consumption on an
Intel Pentium 4, 2.5 GHz processor on the Rosenbrock function �½¸ @�587>= . The
time to compute the function value of � ¸ @�5<7>= is small compared with the time
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Figure 5. CPU times per function evaluation in seconds versus search space dimension
�

on
a Pentium 4, 2.5 GHz, processor. CMA-ES (+); ID � A ( ¾ ); MBOA ( ¿ ).

]Àm � ` � ý k ? (solid),]nm � ` � ý A ?F? (dashed).

to perform the algorithms, e.g., decomposing the covariance matrix in CMA-
ES, or the learning parts in MBOA or ID � A. To make a fair comparison, all
three algorithms should be tested using the same programming language. We
therefore use a C-implementation of the CMA-ES.2

For the dimensions # %Á"c�`
(^_�Dba^_� ã ^ , we measure the total CPU time
needed by the algorithm and divide it by the number of function evaluations
during that time. In Figure 5, CPU times per function evaluation are plotted,
where B 2(46587 %Â"a^ and ã ^·^ . The CPU times are between b � 
(^ �ÄÃ # �

andb � 
(^ �ÄÅ # �
seconds per function evaluation.

When comparing algorithms, we are interested in the scale-up of the al-
gorithms. In our case, scale-up is limited by the computational cost of the
experiments. Our experiments, presented for dimension #:% 
(^ , took more
than 2 months of CPU time on Intel Pentium 4 processors with 2.5 and 3
GHz. How long would it take to do all experiments for larger dimensions?
We did single scale-up experiments where the number of function evaluations
to reach � 58?8@ 9 was measured for larger dimensions. Increasing the dimension
by a factor of two (i) increases the number of function evaluations to reach� 58?8@ 9 by a factor of at least two to four, and (ii) increases the CPU time per

2 In small dimensions, the C-implementation is faster than the MATLAB-implementation,
but for

�ÇÆ B ? the runtimes become similar.
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function evaluation by a factor of four (Figure 5), resulting in a total CPU
time consumption increase by a factor of about ten. This means, to get the
complete picture for #�%�ba^ and ã ^ would take about b and ba^ years of CPU
time, respectively.

4.3. LINEAR AND UNIMODAL TEST FUNCTIONS

4.3.1. Plane function
The plane function tests the ability of the algorithms to enlarge the overall
population variance as within a small enough neighborhood, a linear function
is a reasonable approximation for any smooth function. Therefore, � 9 µ 46=C7 is a
good test case for a situation where the population variance is (far) too small.

The performance on � 9 µ 46=C7 is similar for the ( 
,� 
 )-ES, CSA-ES, and
CMA-ES, see Table IV and Figure 6. These algorithms increase the variance
fast. The slope for the ( 
{� 
 )-ES is defined by

�
(see Equation 3) and is

somewhat arbitrary.3 While the ESs need around 
(^�È function evaluations to
reach � 5�?<@ 9 , MBOA needs almost 
(^ Å function evaluations. ID � A does not
reach values better than 2 after 
(^ Å function evaluations. ID � A not only fails
to increase the overall distribution variance, but even worse, the distribution
variance converges to zero on a linear function.

The results for the diagonal plane, � 9 µ 46=C7WÉC¶ 4z· , do not differ fundamentally
from those on � 9 µ 46=C7 , see Figure 7. Only MBOA is around 30 times faster than
on � 9 µ 46=M7 , requiring a much smaller population size. In contrast to � 9 µ 46=C7 , inde-
pendent sampling (as substitute for recombination) can improve the offspring
compared to the parents on � 9 µ 46=C7WÉC¶ 4z· .

The reason for the high number of function evaluations needed in MBOA
and for the failure of ID � A is the (missing) concept for overall variance
control. While the ESs adapt their global step sizes, MBOA and ID � A do
not exhibit an adaptation of the overall distribution width. Estimating the
empirical variance of the selected population decreases the overall variance
of ID � A in the generation sequence. Without an opposite mechanism, this
decrease easily leads to premature convergence.

4.3.2. Sphere function
On � 5 9C� 7>;<7 , ( 
s�0
 )-ES, CMA-ES, and CSA-ES perform as well as one would
expect on a well-scaled function. They need three to five times less func-
tion evaluations than ID � A to reach � 58?8@ 9 , see Figure 8. ID � A performs
reasonably well for the given population size. MBOA performs almost "a^
times slower than the ( 
,� 
 )-ES. The reason for the slow convergence is
the restricted tournament replacement which prevents the overall variance

3 Here, the choice of c has a large influence on the performance of the ( H�I�H )-ES. Choosingc ý
d
instead of c ý
d ¢¤ makes the ( HÄIÊH )-ES

�
times faster. Choosing c8Ë d enhances its

performance on � �z� ���6� , but will have deteriorating effects on most other functions.
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Table IV. Performance ratios where
� ý H ? . The performance ratio of an

algorithm on a given function is defined as follows: The number of function eval-
uations to reach � ` � ^ � with the median of

d ? runs divided by the same measure
for the fastest algorithm on this function. For a ratio of 1 (fastest algorithm), we
put the number of function evaluations in round brackets. The * symbol indicates
that the algorithm did not reach � ` � ^ � in every run. Square brackets include the
obtained function values in cases when the median run did not reach � ` � ^ � . TheÌ symbol indicates that the distribution variance decreases below H ? � � û before
reaching � ` � ^ � . Besides the number of function evaluations, all numbers are given
with precision of two digits.

Function ( HJIKH )-ES CSA-ES CMA-ES ID � A MBOA

Plane 1.0 1.6 1.4 Ì 1100
(790) [1.63]

Diagonal plane 1.0 1.5 1.3 Ì 49
(836) [2.76]

Sphere 1.0 1.6 1.3 5.0 48
(1370)

Ellipsoid 66 110 1.0 1.6 14
(4450)

Cigar 610 800 1.0 4.6 12
(3840)

Tablet 27 38 1.0 1.7 14
(4380)

Rotated ellipsoid 64 110 1.0 13 1800
(4490) [1.1E-6]

Rotated cigar 600 800 1.0 38 2100
(3840) [1.2E-1]

Rotated tablet 25 36 1.0 6.8 910
(4400) [4.7E-6]

Rosenbrock * 51 180 1.0 210 1100
(7190) [7.5] [3.3E-3]

Rastrigin Ì 14 1.0 20 3.6
[3.9E1] (64000)

Scaled Rastrigin Ì 110 1.0 30 6.0
[1.1E2] (40400)

Rotated Rastrigin Ì 14 1.0 * 38 78
[4.4E1] (64000) [3.0]

Rotated scaled Ì 65 1.0 * 120 74
Rastrigin [1.2E2] (67200) [8.1]
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Figure 6. Plane function. ( HÍI
H )-ES (’—
	

—’). Population sizes:
] m � ` � ý H ? for CSA-ES

( < � ÿ �.Î�� ÿ � ’) and CMA-ES (’- - -+- - -’);
]Àm � ` � ý HºÏ ?F? for ID � A (’— ¾ —’);

]�m � ` � ý B d ?F?
for MBOA ( < � ÿ �Ð¿b� ÿ � < ).
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Figure 7. Diagonal plane function. ( HJI
H )-ES (’—
	

—’). Population sizes:
]Àm � ` � ý H ? for

CSA-ES ( < � ÿ �ÑÎN� ÿ � ’) and CMA-ES (’- - -+- - -’);
]�m � ` � ý HºÏ ?F? for ID � A (’— ¾ —’);]nm � ` � ý H ?F? for MBOA ( < � ÿ �8¿b� ÿ � < ).
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Figure 8. Sphere function. ( H�IÐH )-ES (’—
	

—’).
]�m � ` � ý H ? for CSA-ES ( < � ÿ �©Î.� ÿ � ’)

and CMA-ES (’- - -+- - -’);
]�m � ` � ýÒd ?F? for ID � A (’— ¾ —’);

]�m � ` � ý H ?�? for MBOA
( < � ÿ �Ó¿K� ÿ � < ).
from fast shrinking. Without restricted tournament replacement, the variance
shrinks too fast and premature convergence occurs. Like on � 9 µ 46=C7 , the (miss-
ing) concept for estimating the overall distribution variance plays the key role
for the performance on � 5 9C� 7>;<7 .
4.3.3. Ellipsoid function
The CMA-ES and ID � A are the fastest methods on the axis-parallel � 7Wµ(µ(¶ ,
followed by MBOA, ( 
T�Ë
 )-ES, and CSA-ES, see Figure 9. Up to a function
value of 
(^ � �

and 
(^ Ï , respectively, ID � A and MBOA outperform the CMA-
ES. They are able to shrink fast into the subspace spanned by the coordinate
axes with high scaling coefficients.

The reason for the bad performance of ( 
G�H
 )-ES and CSA-ES is that they
cannot provide different variances in different search directions. They work
with a single step size only. Thus, they are not able to adapt to badly scaled
functions such as � 7Wµ(µ(¶ .

By rotating the ellipsoid, the function becomes more difficult to optimize.
For the ( 
��y
 )-ES, CSA-ES, and CMA-ES, the number of function evalua-
tions to reach � 58?8@ 9 on the rotated � 7Wµ(µ(¶ remains the same as on the non-rotated� 7Wµ(µ(¶ , see Figure 10. For ID � A and MBOA, the population sizes raise by a
factor of 8 and 16, respectively. The number of function evaluations increases
for ID � A by the same factor. The CMA-ES is clearly the fastest strategy.
MBOA performs worse by a factor of more than 
s�a^·^ (!) here.
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Figure 9. Ellipsoid function. ( H4IPH )-ES (’—
	

—’).
]Àm � ` � ý H ? for CSA-ES ( < � ÿ �ÔÎ�� ÿ � ’)

and CMA-ES (’- - -+- - -’);
]�m � ` � ýÒd ?F? for ID � A (’— ¾ —’);

]�m � ` � ý H ?�? for MBOA
( < � ÿ �Ó¿K� ÿ � < ).
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Figure 10. Rotated ellipsoid function. ( HÀIÕH )-ES (’—
	

—’).
]Àm � ` � ý H ? for CSA-ES

( < � ÿ �.Î�� ÿ � ’) and CMA-ES (’- - -+- - -’);
]Àm � ` � ý HºÏ ?F? for ID � A (’— ¾ —’);

]�m � ` � ý HºÏ ?F?
for MBOA ( < � ÿ �Ð¿b� ÿ � < ).
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Running ID � A with B 2C465<7 % 
4¼a^·^ on the axis-parallel ellipsoid function
gives the same result as on the rotated function. The identical performance
suggests that, given a sufficiently large population size, ID � A is able to
precisely learn the correct dependencies. This is not the case for MBOA. In
MBOA the generated search distribution does not match the objective func-
tion topology sufficiently well. The reason could either be that it is impossible
to produce an appropriate search distribution for the rotated � 7Wµ(µ(¶ with MBOA,
or that the learning procedure is inappropriate.

Why do ID � A and MBOA perform on the axis-parallel function much
better than on the rotated one? With a small population size the data basis for
learning the model structure is poor. As a suggestive measure, the regular-
ization penalty enforces a structure with a low number of edges. Therefore,
independent sampling is privileged and the performance in the axis-parallel
case is exceptional compared with the rotated function.

4.3.4. Cigar function
On the axis-parallel �·Ö ¶(·�46; , the sequence of fastest to slowest algorithm is
CMA-ES, ID � A, MBOA, CSA-ES, and ( 
��X
 )-ES, see Figure 11. Like � 7Wµ(µ(¶ ,� Ö ¶(·�46; is a badly scaled function, and the strategies with adaptation of only
one step size, ( 
g�F
 )-ES and CSA-ES, are unacceptably slow: While CMA-
ES, ID � A, and MBOA reach � 58?8@ 9 in ã ^·^·^ , 
`�¡^·^·^ , and ã "¡^·^·^ function
evaluations, respectively, ( 
 �V
 )-ES and CSA-ES need more than two million
function evaluations.

In the rotated case, see Figure 12, again CMA-ES, CSA-ES, and ( 
��1
 )-ES
have the same performance as in the non-rotated case. For ID � A and MBOA,
the situation is very close to that on � 7Wµ(µ(¶ : The population sizes raise by a
factor of 8 and 16, respectively; for ID � A, the increase in number of function
evaluations due to the rotation corresponds to the increase in population size,
and the performance with a large population size is identical in the rotated and
the axis-parallel case. MBOA performs as poor as ( 
.�F
 )-ES and CSA-ES.

4.3.5. Tablet function
The results on the axis-parallel � ? 462Cµ 7�? , see Figure 13, are comparable to those
on the axis-parallel � 7Wµ(µ(¶ (see 4.3.3). Only the ( 
 � 
 )-ES and the CSA-ES
are considerably faster than on � 7Wµ(µ(¶ , although still outperformed by the other
strategies.

The results on the rotated � ?<462Cµ 7�? are comparable to those on the rotated� 7Wµ(µ(¶ . Besides the CMA-ES, all strategies are two to three times faster than
on the rotated � 7Wµ(µ(¶ . Still, the CMA-ES outperforms the second best strategy,
ID � A, by a factor of seven.
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Figure 11. Cigar function. ( H�IÓH )-ES (’—
	

—’).
]Àm � ` � ý H ? for CSA-ES ( <C� ÿ �@Î�� ÿ � ’)

and CMA-ES (’- - -+- - -’);
]�m � ` � ý A ?F? for ID � A (’— ¾ —’);

]�m � ` � ý H ?�? for MBOA
( < � ÿ �Ó¿K� ÿ � < ).
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Figure 12. Rotated cigar function. ( HÖIÒH )-ES (’—
	

—’).
]�m � ` � ý H ? for CSA-ES

( <f� ÿ �.Î�� ÿ � ’) and CMA-ES (’- - -+- - -’);
]Àm � ` � ý B d ?F? for ID � A (’— ¾ —’);

]�m � ` � ý HºÏ ?F?
for MBOA ( < � ÿ �Ð¿b� ÿ � < ).
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Figure 13. Tablet function. ( H}I8H )-ES (’—
	

—’).
]�m � ` � ý H ? for CSA-ES ( <�� ÿ �¦Ît� ÿ � ’)

and CMA-ES (’- - -+- - -’);
]�m � ` � ýÒd ?F? for ID � A (’— ¾ —’);

]�m � ` � ý H ?�? for MBOA
( < � ÿ �Ó¿K� ÿ � < ).
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Figure 14. Rotated tablet function. ( H�I×H )-ES (’—
	

—’).
]Àm � ` � ý H ? for CSA-ES

( <h� ÿ �ØÎÙ� ÿ � ’) and CMA-ES (’- - -+- - -’);
]�m � ` � ý HºÏ ?F? for ID � A (’— ¾ —’);

]nm � ` � ýKÚ ?�?
for MBOA ( < � ÿ �Ð¿b� ÿ � < ).

ncpaper-corrected.tex; 10/03/2004; 9:41; p.26



27

4.3.6. Rosenbrock function
In contrast to the previous test functions, the Rosenbrock function cannot
be linearly transformed into � 5 9C� 7>;<7 . The Rosenbrock function consists of a
narrow ridge. Early in the optimization, the valley floor is reached. Travel-
ing from the valley floor to the optimum requires to change the direction
continuously. We suppose that the overall direction change is almost Û # ra-
dians. To efficiently traverse the search space towards the optimum, a local
search mechanism, that travels along the ridge, must continuously adapt to
the changing ridge direction. It is unclear whether a different, “global” search
approach is possible on �Ü¸ @�5<7>= .

While the CMA-ES reaches � 58?8@ 9 after about 7 000 function evaluations on� ¸ @�587>= , the ( 
E�F
 )-ES and the CSA-ES are "a^ and 
`�a^ times slower, respec-
tively (see Figure 15). Both MBOA and ID � A are even much slower: They
do not reach values better than 0.03 and 10 after 
(^ Å function evaluations,
respectively. These algorithms are either not able to learn a reasonable prob-
ability distribution for �}¸ @�5<7>= , or suffer from premature convergence. ID � A
was tested with 1, 10, and 20 clusters and corresponding base population
sizes B 2(46587 of up to Î ba^·^ , 
4¼¡^·^·^ , and 
4¼¡^·^·^ , respectively. Using this limited
number of experiments, the clustering did not lead to a substantial improve-
ment of the algorithm on �Ü¸ @�5<7>= . In contrast, Bosman and Thierens (2001)
reported successful convergence within 82575 objective function evaluations
for experiments with ¯ -means clustering, where #V%Ò" and ¯]%Y
(^ .

4.4. MULTIMODAL TEST FUNCTIONS

4.4.1. Rastrigin function
The Rastrigin function is a parabolic function with a superposed cosine term
of high amplitude. The number of local optima in the search region is ap-
proximately 
(^ � . Two successful search mechanisms are conceivable. First,
the underlying global parabolic shape can guide an algorithm to the global
optimum. Second, separability can be exploited, in that # one-dimensional
problems with only about 10 local optima are solved.

On �0¸ 4658?8;%¶(·º¶ = , see Figure 16, the ( 
î��
 )-ES is not able to locate the
global optimum in any run. With sufficiently large population sizes, CMA-
ES, MBOA, CSA-ES, and ID � A can locate the global optimum reliably.

The successful location of the global optimum on ��¸ 4658?8;%¶(·º¶ = by CSA-ES
and CMA-ES is a result that has not been reported before. The sufficient
population size for CSA-ES and CMA-ES on ��¸ 4658?8;%¶(·º¶ = (where all 20 runs
converge to the global optimum), is about 40 to 80 times larger than the
population size B 2C465<7 % 
(^ , used for the unimodal functions in the previous
sections. The difference in B 2(46587 between CSA-ES and CMA-ES is statis-
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Figure 15. Rosenbrock function. ( H8IÝH )-ES (’—
	

—’).
]�m � ` � ý k ? for CSA-ES

( < � ÿ �ÞÎÐ� ÿ � ’) and CMA-ES (’- - -+- - -’); ß ý H ù ]�m � ` � ý B d ?�? for ID � A (’— ¾ —’);]nm � ` � ý HzÏ ?F? for MBOA ( < � ÿ �Ð¿b� ÿ � < ).
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Figure 16. Rastrigin function. ( HÐIàH )-ES (’—
	

—’).
] m � ` � ý A ?F? for CSA-ES

( <�� ÿ ��Î¦� ÿ � ’) and
]nm � ` � ý*Ú ?F? for CMA-ES (’- - -+- - -’); ß ý H ù ]�m � ` � ý A ?F? for

ID � A (’— ¾ —’);
]�m � ` � ý
d ?�? for MBOA ( <£� ÿ �Ó¿K� ÿ ��< ).
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Figure 17. Rotated Rastrigin function. ( H�I�H )-ES (’—
	

—’).
]Àm � ` � ý A ?�? for CSA-ES

( < � ÿ �©Î�� ÿ � ’) and
]�m � ` � ýKÚ ?�? for CMA-ES (’- - -+- - -’); ß ý H ù ]�m � ` � ý A ?�? for ID � A

(’— ¾ —’);
]nm � ` � ý A ?F? for MBOA ( < � ÿ �Ó¿b� ÿ � < ).

tically significant. The CMA-ES needs a larger population size, because the
overall variance can shrink faster than in the CSA-ES.

While ( 
Ê��
 )-ES, CSA-ES, and CMA-ES perform on the rotated �½¸ 4658?8;%¶(·º¶ =
like on the axis-parallel �Ü¸ 465�?<;f¶(·º¶ = , the performance of ID � A is a factor of two
slower and � 58?8@ 9 cannot be reached in all runs. Although performing well on�¹¸ 465�?<;f¶(·º¶ = , MBOA fails to locate the global optimum on the rotated �½¸ 4658?8;%¶(·º¶ = .
From our results we cannot decide whether MBOA gets trapped into a lo-
cal optimum or exhibits only slow convergence. Therefore, we suppose that
CMA-ES and CSA-ES exploit the global parabolic shape to locate the global
optimum, while MBOA exploits the separability of ��¸ 465�?<;f¶(·º¶ = . The latter sup-
position is supported by the previous results that show the poor performance
of MBOA on rotated functions in general.

Apart from the different learning concepts, ID � A and CMA-ES are simi-
lar search algorithms if the population size is large. Therefore, it is surprising
that their performance on �Ü¸ 4658?8;%¶(·º¶ = is so different. The difference cannot be
attributed to the overall variance estimation because in the CMA-ES with
large populations ( B 2(46587 %é�a^·^ ) the estimation of the global step size is
irrelevant compared with the estimation of the covariance matrix. We assume
that the reason for the different performance lies in the elitist replacement
strategy in ID � A: A single individual, located in a local optimum, can prevent
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Figure 18. Scaled Rastrigin function. ( H�IáH )-ES (’—
	

—’).
]Àm � ` � ýâÚ ?�? for CSA-ES

( < � ÿ ��Î¦� ÿ � ’) and
]nm � ` � ý A ?F? for CMA-ES (’- - -+- - -’); ß ý H ù ]�m � ` � ý A ?F? for

ID � A (’— ¾ —’);
]�m � ` � ý
d ?�? for MBOA ( < � ÿ �Ó¿K� ÿ � < ).

convergence to the global optimum for a long time. This effect also explains
the large variation in how long ID � A needs to reach � 5�?<@ 9 .

4.4.2. Scaled Rastrigin function
The scaled Rastrigin function, �}¸ 465�?<;f¶(·º¶ = � Ï , differs from the Rastrigin func-
tion, �0¸ 4658?8;%¶(·º¶ = , in that the coordinate axes are differently scaled. The scaling
factor for “adjacent” axes is about 
a' Î for #�% 
(^ , and the scaling factor
between longest and shortest axis is ten. In both functions, local minima are
located on an axes-parallel lattice. In ��¸ 4658?8;%¶(·º¶ = , the distances between neigh-
boring local optima is the same in all coordinate axes, while in �½¸ 465�?<;f¶(·º¶ = � Ïthe distances differ on the different axes.

The results on �Ü¸ 4658?8;%¶(·º¶ = � Ï are very similar to those on �}¸ 4658?8;%¶(·º¶ = , see Fi-
gure 18. There is one exception: The CSA-ES needs four times as many
function evaluations on the scaled version. This is not surprising, because
the CSA-ES cannot adapt to the scaling of the function. More surprisingly,
the global optimum can still be located although the scaling cannot be learnt.

The effect of rotating � ¸ 465�?<;f¶(·º¶ = � Ï is similar to the effect of rotating�¹¸ 465�?<;f¶(·º¶ = . ID � A gets slightly worse and MBOA fails to locate the global
optimum, see Figure 19.
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Figure 19. Rotated scaled Rastrigin function. ( HãIÕH )-ES (’—
	

—’).
]Àm � ` � ýäÚ ?�? for

CSA-ES ( < � ÿ �¦Î.� ÿ � ’) and
]nm � ` � ý
Ú ?F? for CMA-ES (’- - -+- - -’); ß ý H ù ]�m � ` � ý HºÏ ?F?

for ID � A (’— ¾ —’);
]�m � ` � ý B d ?F? for MBOA ( < � ÿ �8¿b� ÿ � < ).

4.5. SUMMARY OF EXPERIMENTAL RESULTS

The main findings of our experiments are summarized as follows:

³ The ( 
î� 
 )-ES is about 50 % faster than the CSA-ES on unimodal
functions. Because both strategies work with a single step size only,
their performance is poor on badly-scaled functions. Rotations do not
affect their behavior. On multimodal functions, the ( 
]� 
 )-ES gets
stuck in a local optimum typically. Although not designed for this pur-
pose, the CSA-ES can be applied with large population sizes. Then, the
global optimum can often be located and the CSA-ES clearly outper-
forms the ( 
��F
 )-ES on multimodal functions. Nevertheless, the rate of
convergence is slow.

In conclusion, ( 
É�
 )-ES and CSA-ES work well only on well-scaled
unimodal functions.³ The CMA-ES performs equally well on rotated and non-rotated func-
tions. For unimodal functions, small population sizes like B 2(465<7 % 
(^
are sufficient, and only on � 5 9C� 7>;<7 the CMA-ES is slightly outperformed
by the ( 
��y
 )-ES. On unimodal, non-separable functions the CMA-ES
is by far superior to all compared algorithms.

ncpaper-corrected.tex; 10/03/2004; 9:41; p.31



32

For multimodal functions, the CMA-ES performs surprisingly well,
when sufficiently large population sizes are used. Then, the CMA-ES
outperforms all other tested algorithms on the multimodal test functions.³ Compared to the ESs, ID � A needs larger population sizes even on
unimodal functions. It is successful in adapting to convex-quadratic
topologies, but can fail in more complex situations like the Rosenbrock
function. On separable (axis-parallel) functions the sufficient population
size is much smaller than on the rotated ones, because on separable
functions the correct model structure is an empty structure. Then the
performance is comparable to that of the CMA-ES on � 7Wµ(µ(¶ and � ?<462Cµ 7�? .
In ID � A, even on a linear function, the overall distribution variance
shrinks to zero continuously. Variance shrinking in a linear test case must
be regarded as a major shortcoming (Beyer and Deb, 2001). It implies
that the algorithm is highly vulnerable to premature convergence.

On multimodal functions, ID � A is able to locate the global optimum,
even on the non-separable functions. Probably due to the elitist re-
placement strategy, the convergence is slow and the performance is
comparable to that of the CSA-ES.³ On unimodal separable functions, MBOA can cope with different scal-
ings, but the convergence rate is slow. The slow convergence can be
attributed to restricted tournament replacement, which on the other hand
prevents premature convergence. Despite the slow convergence, MBOA
performs quite well on multimodal separable functions.

On non-separable functions, the performance of MBOA is poor. MBOA
is not able to generate a reasonable search distribution in any of the
non-separable test functions in our study.

5. Summary, Conclusions, and Outlook

We have investigated a class of evolutionary algorithms that estimate a
probability distribution from a population of individuals to sample new in-
dividuals. In particular, we studied five algorithms: ( 
²� 
 )-ES, CSA-ES,
CMA-ES, ID � A, and MBOA by comparing their structural characteristics
and by assessing their performance experimentally.

Based on their structural characteristics the algorithms can be divided into
three groups. First, ( 
²�©
 )-ES and CSA-ES sample a spherical Gaussian
distribution with one degree of freedom. Second, CMA-ES and ID � A sample
an arbitrary Gaussian distribution. ID � A additionally provides the possibility
to sample a mixture of Gaussians by clustering the population. However, in
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our experiments mixtures of Gaussians did not show any advantage compared
with the single Gaussian approach. Third, MBOA samples Gaussian kernel
distributions in each variable, such that the sampling may or may not depend
on the value of the previously sampled variables.

On the test functions used, the performance difference between best and
worst algorithm was typically two to three orders of magnitude. Reasons
for performance degradation are multimodality and non-separability of the
objective function. We give a performance summary, listing algorithms that
perform within one order of magnitude of the best algorithm, ordered from
best to worst. On well-conditioned unimodal functions the order is: ( 
��y
 )-
ES, CMA-ES and CSA-ES; on badly scaled separable unimodal functions
the order is: CMA-ES and ID � A; on separable multimodal functions: CMA-
ES and MBOA; on non-separable functions: CMA-ES. Note that different
population sizes are chosen for the different test functions.

Only the ESs can be used effectively with small population sizes. This is
not too surprising. First, only the ESs use additional time-varying parameters.
These parameters supplement the information prevalent in the population.
Second, only the ESs use explicit control concepts for the overall distribution
variance. The advantage of these concepts can be seen in small populations—
in particular on unimodal functions, where small population sizes are often
advantageous. An efficient estimation of overall distribution variance is an
open issue in ID � A and MBOA. In ID � A, the variance is prone to decreas-
ing too fast, leading to premature convergence. In MBOA, a sufficiently fast
change of the variance is not possible, leading to slow convergence.

On multimodal functions, only CMA-ES and MBOA show competitive
performance. Interestingly, these algorithms have different search strategies
to achieve their global search capability. The CMA-ES relies on a topology
which is characterized by a large and symmetric overall basin that leads to
the global optimum. Multimodality is due to local modulations of the global
structure. In contrast, MBOA relies on an objective function that is separable
with respect to the given coordinate system. We note that the independent sub-
spaces, into which the function can be separated, can have dimensions larger
than one. In principle, even a limited number of dependencies between these
subspaces can be covered. However, we have no empirical results supporting
the advantage from this possibility in the continuous domain. While in each
subspace, the optimum needs to have a reasonably large attractor basin, the
overall basin volume can be very small. Therefore, non-separable functions
are hard to solve for MBOA, as was demonstrated by our experiments. For the
CMA-ES, functions are hard to solve where the attractor volume of the global
optimum is small, and an overall topology pointing to the global optimum is
missing.

Our experimental investigation was conducted for problem dimension#Ë% 
(^ . The comparison of the scaling of the algorithms is part of ongoing
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investigations. This comparison appears to be interesting in particular in the
multimodal case, where the suite of test functions should be extended as
well. For multimodal functions, the different search strategies might reveal
significantly different scaling behaviors.
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