
LB+IC-CMA-ES: Two Simple
Modifications of CMA-ES to Handle

Mixed-Integer Problems

Tristan Marty1,2 , Nikolaus Hansen2(B) , Anne Auger2 , Yann Semet1 ,
and Sébastien Héron1

1 Thales Research and Technology, Palaiseau, France
2 Inria and CMAP, Ecole Polytechnique, IP Paris, Palaiseau, France

nikolaus.hansen@inria.fr

Abstract. We present LB+IC-CMA-ES, a variant of CMA-ES that han-
dles mixed-integer problems. The algorithm uses two simple mechanisms
to handle integer variables: (i) a lower bound (LB) on the variance of inte-
ger variables and (ii) integer centering (IC) of variables to their domain
middle depending on their value. After presenting the algorithm, we eval-
uate the different variants ensuing from these modifications on the BBOB
mixed-integer testbed and compare the performance with the recently
introduced CMA-ES with margin.

Keywords: mixed-integer optimization · CMA-ES · Evolution
Strategies

1 Introduction

Mixed-integer optimization problems appear commonly in applications. Apply-
ing a continuous optimizer, for example the CMA-ES algorithm [5], as is to
mixed-integer problems often leads to premature convergence of the integer coor-
dinates on the wrong plateau. For this reason, different variants of CMA-ES
have been proposed in recent years to handle mixed-integer problems, including
CMA-ES with margin for the (μ/μw, λ)-CMA-ES [3] and also for the (1 + 1)-
CMA-ES [14]. In order to prevent stagnation, the CMA-ES with margin sets
lower bounds on the marginal probabilities to mutate integer variables. Other
Evolution Strategies to handle mixed-integer problems include DX-NES-ICI [10]
which has been designed specifically for mixed-integer problems where contin-
uous variables are more decisive than integer ones, or MIESs [11] that uses a
different mutation operator for non-continuous variables.

In this context, we build on a version of CMA-ES that bounds the variance
of integer coordinates from below [12]. First, we propose a theoretically moti-
vated setting of the lower bound. Second, we introduce the centering of mutated
integer variable values to the middle of the integer plateau. This latter mecha-
nism usually introduces a bias on the sample population average for which we
consequently correct.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Affenzeller et al. (Eds.): PPSN 2024, LNCS 15149, pp. 284–299, 2024.
https://doi.org/10.1007/978-3-031-70068-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70068-2_18&domain=pdf
http://orcid.org/0009-0003-0163-796X
http://orcid.org/0000-0001-7788-4906
http://orcid.org/0009-0008-0912-2764
http://orcid.org/0009-0006-7164-2475
http://orcid.org/0000-0002-7275-4173
https://doi.org/10.1007/978-3-031-70068-2_18

Two Simple Modifications of CMA-ES to Handle Mixed-Integer Problems 285

The paper is organized as follows. Section 2 presents CMA-ES and the two
modifications introduced to improve the performance on mixed-integer problems.
Section 3 illustrates the impact of both mechanisms by showing single runs on an
ill-conditioned ellipsoid function with some integer variables. Section 4 assesses
the performance of the different variants on the mixed-integer BBOB testbed
as well as on functions with varying fraction of integer variables and Sect. 5
concludes the paper.

2 Two Simple Modifications of CMA-ES to Handle
Mixed-Integer Problems

We describe the CMA-ES algorithm for numerical minimization of a function
f : RN → R and our two modifications to handle mixed-integer problems.

When given a mixed-integer function f(x) where some coordinates of x
belong to Z and other coordinates belong to R, we denote by SZ the index
set of integer coordinates and SR the index set of real coordinates. The cardi-
nality of SZ equals Nint = |SZ| and we have N = |SZ| + |SR|. Then, xi ∈ Z for
i ∈ SZ and xi ∈ R for i ∈ SR. We define the function

int[.] : R → Z, x �→ �x + 1/2� (1)

yielding the “integer value” of x ∈ R. When we apply a continuous algorithm
to a mixed-integer function, we apply int[.] to each integer coordinate before we
evaluate f .

2.1 CMA-ES

The (μ/μw, λ)-CMA-ES samples λ solutions x at each iteration t distributed
according to a multivariate normal distribution x

(t)
i ∼ N (m(t), (σ(t))2D(t)

C(t)D(t)) where m(t) ∈ R
N represents the incumbent mean solution. The covari-

ance matrix of the sampling distribution is decomposed into three parts: (i)
the overall step-size σ(t); (ii) the covariance matrix C(t) containing informa-
tion about the sensitivity in some principal axes; (iii) the diagonal matrix D(t)

introduced in [1] to scale the distribution in the given coordinate system.
For sampling λ solutions, we transform samples from an isotropic normal

distribution, z(t)
i ∼ N (0, I), using D(t) and C(t),

y
(t)
i =

√
C(t)z

(t)
i ; x

(t)
i = m(t) + σ(t)D(t)y

(t)
i for i = 1, . . . , λ , (2)

where
√
C(t) is symmetric and positive definite. The candidate solutions are

ranked according to their objective function f . The index i :λ, as defined by the
next equation, refers to the ith solution when ordered by their f -value,

f(x(t)
1:λ) ≤ f(x(t)

2:λ) ≤ . . . ≤ f(x(t)
λ:λ) . (3)

286 T. Marty et al.

The new mean is a weighted recombination of the sorted solutions

m(t+1) = m(t) + σ(t)D(t)

μ∑

i=1

wiyi:λ (4)

with μ = �λ/2� and wi ∝ log((λ + 1)/2) − log(i) such that
∑μ

i=1 wi = 1.

Step-Size. The parameter σ(t) is updated using the length of a so-called evolu-
tion path, p(t+1)

σ ∈ R
N . The step size is increased if ‖p(t+1)

σ ‖ is larger than the
expected length of a standard normally distributed random vector and decreased
if it is smaller, specifically

p(t+1)
σ = (1 − cσ)p(t)

σ +
√

cσ(2 − cσ)μeffC(t)−
1
2

μ∑

i=1

wiyi:λ (5)

σ(t+1) = σ(t) exp

(
cσ

dσ

(
‖p(t+1)

σ ‖
E (‖N (0, I)‖)

))

, (6)

where cσ determines the decay of p and, by default, cσ = μeff+2
N+μeff+5 with μeff =

1/
∑

i w2
i and the step-size damping dσ = 1 + 2max

(
0,

√
μeff−1
N+1 − 1

)
+ cσ.

Covariance Matrix. Finally, the covariance matrix C(t) is updated with both
rank-one and rank-μ updates, the latter of which makes use of negative weights.
Like for the step size update, the covariance matrix update relies on an evolution
path updated as

p(t+1)
c = (1 − cc)p(t)

c + hσ

√
cc(2 − cc)μeff

μ∑

i=1

wiyi:λ , (7)

where hσ prevents a rapid increase of variances in C(t) when the step-size is
already increasing, for example in the first iterations, and reads

hσ =

{
1 if ‖p(t+1)

σ ‖2

1−(1−cσ)2t < 2N(1 + 2
N+1)

0 otherwise
. (8)

Given the weights w1 ≥ w2 ≥ . . . ≥ wμ > 0 ≥ wμ+1 ≥ wλ [6, Appendix A], we
introduce

w◦
i =

⎧
⎨

⎩

wi if wi ≥ 0
wi

N

‖
√

C(t)−1yi:λ‖2
otherwise . (9)

Two Simple Modifications of CMA-ES to Handle Mixed-Integer Problems 287

To guaranty positive definiteness, we further scale down the negative weights
when necessary [1, Sec 3.2]. The covariance matrix update then reads:

C(t+1) =

(

1 + c1(1 − hσ)cc(2 − cc) − c1 − cμ

λ∑

i=1

wi

)

C(t)

+ c1p
(t+1)
c (p(t+1)

c)� + cμ

λ∑

i=1

w◦
i yi:λy

�
i:λ . (10)

Learning rates and the cumulation parameter are set to c1 = 2
(N+1.3)2+μeff

,

cμ = min
(
1 − c1, 2μeff+1/μeff−1.75

(N+2)2+μeff

)
and cc = 4+μeff/N

N+4+2μeff/N .

The diagonal matrix D(t) is not updated here but will be utilized to set a
lower bound for integer variables.

2.2 Lower Bounding the Standard Deviation on Integer Coordinates

Applying CMA-ES as presented in the previous section to mixed-integer func-
tions can lead to premature convergence of integer variables at a nonoptimal
value when their standard deviation gets much smaller than 1/2. As the step-
size converges to zero, also the probability to sample a solution with a different
integer value converges to zero and the variable is trapped. This behavior can be
observed in Figure 3a which shows the coordinates of the mean m(t) during the
optimization of a 30-dimensional mixed-integer ellipsoid function. We observe
that four integer variables converge to a nonoptimal value.

To prevent the premature convergence of integer coordinates, we impose a
lower bound, σLB, on their standard deviation by updating the diagonal matrix
D(t). Let · j,j denote the jth diagonal element of a matrix. We define

σ
(t)
std(j) = σ(t)D(t)

j,j

√
C(t)

j,j for j = 1, . . . , N , (11)

and update the diagonal matrix right before Eq. (2) as

D(t)
j,j ←

max
(
σLB, σ

(t)
std(j)

)

σ(t)

√
C(t)

j,j

for j ∈ SZ (12)

which changes D(t)
j,j only when σ

(t)
std(j) < σLB and ensures that σ

(t)
std(j) ≥ σLB.

Setting the Lower-Bound. The choice of σLB indirectly controls the minimal
mutation rate of integer variables. In order to allow the mutation rate to be small
enough to not disrupt the optimization of continuous variables, we propose the
lower bound

σLB = min
(μeff

N
, 0.2

)
. (13)

288 T. Marty et al.

We estimate the effect of σLB on the mutation rate (the proportion of candi-
date solutions which is on a different integer plateau than the mean) based on the
following simulation. We optimize the one-dimensional function x �→ �x + 1/2�2

with a fixed step-size starting at x = 0 and record at each iteration the fraction
of solutions which are outside of [−0.5, 0.5]. The average is taken between iter-
ation 3t0 and max(100 t0, 104/2) or at most 107, where t0 is the first iteration
with one mutation, i.e., with one candidate solution sampled outside [−0.5, 0.5].
The mutation rate, p1, is shown in Fig. 1 for different step-sizes and different
population sizes.

Fig. 1. Fraction of mutated individuals per iteration versus the step-size of the sample
distribution for different population sizes.

The mutation rate can be well approximated by p1 ≈ σ/μeff/2 when σ < 0.1.
This dependency on μeff is somewhat surprising, because the speed of the random
walk is proportional to 1/

√
μeff.

We now derive (13). Let pN denote the probability that at least one integer
coordinate of a solution is mutated (integer-different from the mean) and λEC

denote the effective continuous population size, that is, the average number of
solutions that are unaffected from integer mutations (that have in all integer
coordinates the same integer value as the mean). Given that Δf → 0 in the
continuous subspace when σ → 0, f -changes induced by an integer mutation
dominate the f -values when σ is small. Therefore, to ensure progress in the
continuous subspace, we want several solutions to be unaffected from integer
mutations.

Two Simple Modifications of CMA-ES to Handle Mixed-Integer Problems 289

We have the following equations

p1 ≈ σ

2μeff
if σ < 0.1 (14)

pN ≈ p1 × Nint if pN ≤ 1/2 or σ � μeff/Nint (15)
λEC ≈ λ(1 − pN) (16)

λEC � γ
Nint

N
+

N − Nint

N
λ if Nint < N (17)

Equation (14) follows from Fig. 1. Equation (15) approximates, when p1 is
small, 1 − pN = (1 − p1)Nint assuming independence. Equation (16) approxi-
mates the unaffected population size, λEC. Equation (17) gives a heuristic lower
bound for λEC, where γ represents the smallest reasonable population size for
the continuous subspace (when Nint is close to N).

Combining the first two and the last two equations yields, respectively,

pN ≈ σNint

2μeff
and pN � Nint

N

(
1 − γ

λ

)
, (18)

and combining these gives an upper bound for the step-size

σ � 2μeff

N

(
1 − γ

λ

)
and σ � 4μeff

3N
for γ � λ/3 . (19)

Equation (19) reveals the largest step-size that presumably allows for an effective
search in the continuous subspace and is hence an upper bound for σLB.

Fig. 2. Empirical cumulative distribution of simulated (bootstrapped) runtimes, mea-
sured in number of f -evaluations, divided by dimension (FEvals/DIM) for the 51 tar-
gets 10[−8..2] in dimension 40. (Legend: algorithm IC-LBx0.25, IC-LBx0.5, IC-LBx1,
IC-LBx2, IC-LBx4 are CMA-ES with integer centering and a lower bound defined
σLB = min

(
αµeff

N
, 0.2

)
where α takes respectively the values 0.25, 0.5, 1, 2, and 4)

To evaluate the validity of (13), we run LB-CMA-ES on the bbob-mixint
testbed [13] with lower bound σLB = min

(
αμeff

N , 0.2
)

for α ∈ 0.25, 0.5, 1, 2, 4.

290 T. Marty et al.

Figure 2 shows some exemplary results on two functions in dimension 40. On the
separable ellipsoid, more difficult target values are reached about twice as fast
with α = 1 as with the other tested values (p ≈ 10−4.5). We observe the same
behavior on the 40D sphere function (p ≈ 10−3.5, not shown). On the linear
slope in dimension 40, larger values for α are generally faster: with α = 1, we
reach the more difficult targets two times slower than with α ∈ 2, 4 (p ≈ 10−3.5)
but at least 3 times faster than with α ∈ 0.5, 0.25 (p ≈ 0.02). A lower bound
which is two times larger than Eq. 13 but still clipped at 0.2 has mostly similar
performance but is more at risk to disrupt convergence.

2.3 Integer Centering

When σ
(t)
std(j) is small, a successful integer mutation will often have little effect

because its value is likely to be close to the original integer value and because the
impact of a single solution on the mean update diminishes with increasing pop-
ulation size. To mitigate these effects, we set successfully mutated values to the
center of the integer interval. Furthermore, we aim to maintain the unweighted
“unselected” average taken over the μ best sampled solutions.

Let (.)j denote the j-th coordinate of a vector, let Iμ = {1:λ, . . . , μ:λ} denote

the index set of the μ best solutions from (3), and for i ∈ Iμ let x
(t−)
i = x

(t)
i

from (2). Before applying Eq. (4), we set

(x(t)
i)j ← int

[
(x(t−)

i)j

]
if int

[
(x(t−)

i)j

]
�= int

[
(m(t))j

]
, (20)

for i ∈ Iμ and j = 1, . . . , N . That is, we apply integer centering to (x(t)
i)j if it

has a different integer value than the mean.
The centering of the candidate solutions introduces a bias,

b
(t)
j =

∑

i∈Iμ

(
(x(t)

i)j − (x(t−)
i)j

)
forj = 1, . . . , N . (21)

To compensate for this bias, we set for i ∈ Iμ and j = 1, . . . , N

(x(t)
i)j ← (x(t−)

i)j + 11(i, j)αjΔij (22)

such that αj ≤ 1 minimizes b
(t)
j , where Δij = int

[
(x(t−)

i)j

]
− (x(t−)

i)j and

11(i, j) =

⎧
⎨

⎩
1 if int

[
(x(t)

i)j

]
= int

[
(m(t))j

]
and b

(t)
j Δij < 0

0 otherwise
. (23)

That is, when (x(t)
i)j has not been centered yet, we move it by αj towards its

centered version, given this move reduces the bias (21).
These modifications do not change the f -value of the solutions, that is,

f(x(t)
i) = f(x(t−)

i), hence they do not change (3). The y
(t)
i from (2) are reas-

signed according to (20) and (22).
All our code is based on the cma Python package, commit 334abfc.

https://github.com/CMA-ES/pycma
https://github.com/CMA-ES/pycma/commit/334abfca441a2cc5d6db548dc9328fc15edde3c4

Two Simple Modifications of CMA-ES to Handle Mixed-Integer Problems 291

3 Single Runs of the Different Variants

To illustrate the effect of the above modifications, some optimization runs are
shown in Fig. 3. All graphs result from the optimization of the 30-dimensional
mixed-integer ellipsoid function (see caption). We desire the continuous variables
to linearly converge to the optimum at zero and the integer variables to end up
in [−0.5, 0.5].

Without integer handling (Fig. 3a), integer variables get stuck after about
1400 iterations where four variables assume a nonoptimal value. Because the
step size converges to zero, they will not change their final position anymore.

When the standard deviations are lower bounded according to Sect. 2.2, inte-
ger variables cannot get anymore stuck and end up in the optimal interval
[−0.5, 0.5] where their behavior resembles a bounded random walk (Fig. 3b).
With integer centering only, variables appear to move more swiftly before iter-

Fig. 3. Evolution of the mean, m(t), of CMA-ES with default population size λ = 14

on the 30-dimensional ellipsoid function felli(x) =
∑N

i=1 106 i−1
N−1 x2

i where variables with
even/odd index are continuous/integer and plotted in dashed/solid, respectively. Initial
mean and step-size are m(0) = (2, ..., 2) and σ(0) = 0.1, respectively. Integer variable
values in [−0.5, 0.5] are optimal.

292 T. Marty et al.

ation 1000, however, two integer variables still get stuck at a nonoptimal value
(Fig. 3c). The effect of combining lower bound and integer centering appears
to be additive (Fig. 3d): integer variables appear to move more swiftly, and all
integer variables reach the optimal interval within about 800 iterations.

4 Performance Assessment

We assess the impact of lower bounding the standard deviations of integer
variables and of integer centering on the 24 functions of the bbob-mixint
testbed [13]. The functions are benchmarked in dimensions 5, 10, 20, 40 and 80
where 20% of these variables are continuous and the rest are integer, 20% with
arity 2, 4, 8 and 16, respectively. The k-ary variables take values between 0 and
k−1. For each function, 51 target f -values are defined as fopt +Δf where fopt is
the minimal function value and Δf = 10k with k = 2, 1.8, . . . ,−8. The number
of function evaluations to reach each target is then recorded.

As the objective function remains constant for integer values smaller than
0 and larger than k, we bound their search domain to [−1/2, k + 1/2]. Contin-
uous variables are not bounded. Boundaries are handled by adding a penalty
term to the objective function [9] with the cma.BoundPenalty class. The initial
coordinate-wise standard deviation is set to one fifth of the bounded range and
to 10/5 = 2 for continuous variables.

We benchmark all four combinations with and without LB and/or IC,
referred to as base-CMA, LB-CMA, IC-CMA and LB+IC-CMA. All tested vari-
ants use IPOP-CMA-ES [2]: if a termination condition is met before the allowed
budget is exhausted, we restart CMA-ES with doubled population size. The ter-
mination conditions tolflatfitness and tolfunhist are changed from their
default values to 5 and 0, respectively.

We compare our variants with two previously benchmarked algorithms: CMA-
ES-pycma, with some basic integer handling [13] and CMA-ES with margin
(CMA-ESwM) which, similar to LB+IC-CMA, modifies coordinate-wise standard
deviations and the mean vector to ensure a minimal marginal probability of
exploring new integer variables [3,4].

Empirical runtime distributions [7] are shown by function groups in Fig. 4
and for each function in Figs. 5 and 6.1 Mentioned p-values are computed within
the COCO platform [8] and represent the result of a ranksum test.

First we investigate the effect of the lower bound. The LB-CMA algorithm
takes at least 10 times less functions evaluations than base-CMA for solving the
target Δf = 10−7 on the separable ellipsoid f2 in dimension 10, 20, 40 and
80 (p ≈ 10−4.5). Also, LB-CMA reaches the target Δf = 10−7 at least 5 times
faster than base-CMA on the 80D functions f1, f5, f12, f13 (p ≈ 0.02 for f12,
p ≈ 10−2.5 for f13, p ≈ 10−3.5 for f5 and p ≈ 10−4.5 for f1). On the other hand
base-CMA does not reach any target faster than LB-CMA. Introducing a lower

1 All data and a code example can be found at https://trmarty.github.io/LB-IC-
CMA-ES-data/.

https://cma-es.github.io/apidocs-pycma/cma.constraints_handler.BoundPenalty.html
https://trmarty.github.io/LB-IC-CMA-ES-data/
https://trmarty.github.io/LB-IC-CMA-ES-data/

Two Simple Modifications of CMA-ES to Handle Mixed-Integer Problems 293

bound on the standard deviations mostly improves the behavior of the algorithm
on unimodal functions.

Next, we examine the effect of integer centering. The IC-CMA reaches the
target Δf = 10−7 at least twice as fast as base-CMA on the 80D functions f2,
f14, f18 (p ≈ 0.02 for f18, p ≈ 10−2.5 for f14 and p ≈ 10−4.5 for f2). However,
base-CMA solves function f15 eight times and function f24 four times out of 15
whereas IC-CMA never succeeds.

With both lower bound and integer centering (LB+IC-CMA), the number of
functions evaluations to reach the target 10−7 is reduced by a factor 4 compared
to LB-CMA on the 80D functions f14, f17 and f18 (p ≈ 10−2.5 for f18, p ≈
10−3.5 for f17 and p ≈ 10−4.5 for f14). However, LB-CMA optimizes f24 up to
the final target while LB+IC-CMA does not even reach the easy target of Δf =
10. Overall, LB+IC-CMA has lower runtimes than the base-CMA in dimension
80 on functions f1, f2, f12, f13, f14, f17 and f19 at the expense of not solving
the multimodal functions f15 and f24.

Finally, the LB+IC-CMA-ES algorithm is compared with CMA-ES with mar-
gin. The target Δf = 10−7 is reached faster with LB+IC-CMA than with CMA-
ESwM on functions f8 and f24 in dimension 5, f1, f2, f8, f12, f14, f17 in
dimension 10, f1, f2, f7, f12, f13, f15 and f17 in dimension 20, f1, f2, f7,
f12 and f13 in dimension 40 and on functions f2, f12, f17 and f18 in dimen-
sion 80 (p < 0.05 for all functions). On the other hand, CMA-ESwM is 2, 4 and
10 times faster on the linear slope f5 in dimension 20, 40 and 80, respectively
(10−5 < p < 10−3) which has its optimum on the boundary of the domain.
Removing the boundary handling speeds up LB+IC-CMA by a factor of three
to hit the last target Δf = 10−8 (p ≈ 10−5).

In all other cases, both algorithms have similar performance. In summary,
LB+IC-CMA performs better than CMA-ESwM on 24 of 120 functions and worse
on three.

Table 1. Final population size in dimension 40 and 80 for functions with at least one
successful trial and one restart.

function id min med max

f1, 80D 17 34 34

f2, 40D 15 15 30

f2, 80D 34 34 34

f5, 40D 15 15 30

f5, 80D 34 34 68

f7, 40D 120 240 960

function id min med max

f12, 40D 15 15 30

f12, 80D 17 17 34

f13, 40D 15 15 30

f13, 80D 17 17 34

f14, 40D 15 15 60

f14, 80D 17 17 34

function id min med max

f15, 40D 60 120 240

f17, 40D 15 30 30

f17, 80D 34 68 136

f18, 40D 15 30 120

f18, 80D 68 136 272

f21, 40D 15 30 480

f21, 80D 34 34 136

Table 1 shows final population sizes for functions with at least one successful
run and at least one restart in dimensions 40 and 80 (11 functions). The default

294 T. Marty et al.

Fig. 4. Bootstrapped empirical cumulative distributions of the number of f -evaluations
divided by dimension for 51 targets with target precision in 10[−8..2] for all functions
and subgroups in 40-D. The performance of CMA-ESwM on the moderate function
group is negatively affected by missing data on f9.

Two Simple Modifications of CMA-ES to Handle Mixed-Integer Problems 295

Fig. 5. Empirical cumulative distributions of simulated (bootstrapped) runtimes, mea-
sured in number of f -evaluations divided by dimension, for the 51 targets 10[−8..2] in
dimension 40.

296 T. Marty et al.

Fig. 6. Empirical cumulative distribution of simulated (bootstrapped) runtimes, mea-
sured in number of f -evaluations divided by dimension, for the 51 targets 10[−8..2] in
dimension 40.

Two Simple Modifications of CMA-ES to Handle Mixed-Integer Problems 297

population size is 15 and 17 in dimension 40 and 80, respectively, and with
IPOP each restart doubles the population. Hence, the final population size also
implies the number of conducted restarts. The largest population sizes can be
observed on the step ellipsoid function f7 (up to 960). In dimension 80, LB+IC-
CMA often restarts even on the sphere function f1. Apparently, the tolfun
termination condition triggers too early in larger dimension.

Fig. 7. Average number of function evaluations to solve the 40D sphere and ellipsoid
function up to f = 10−10 with LB+IC-CMA, plotted versus the number of integer
variables. Results are for the mean m(t) in the continuous (orange) and the integer
(green) subspace and for the best solution on the overall mixed-integer problem (blue).
The number of successful runs out of 10 is given too. (Color figure online)

Finally, Fig. 7 shows average runtimes versus the percentage of integer vari-
ables on the sphere function and the ellipsoid function (see Fig. 3) with a condi-
tioning of 106 in dimension 40. A run is successful if the best solution reaches the
target value of 10−10. On the sphere integer function (Fig. 7a), problems with
at least one continuous variable are solved within 7000 to 11 000 evaluations.
Adding only few integer variables to this continuous problem does not increase
the evaluation time by much (×1.1 between 0 and 4 integer variables), how-
ever adding a few continuous variables to an integer-only problem has a much
larger impact (×10 between 40 and 36 integer variables). The ellipsoid function
(Fig. 7b) is harder to solve. With increasing number of integer variables, the suc-
cess rate falls below 100% and with 36 integer variables, the success rate drops to
10%. The integer-only and continuous-only problems takes around 3500 evalua-
tions to find the optimum which is approximately 10 times faster than all other
mixed problems that are solved with a probability larger than 50%. With 20%
continuous variables, the BBOB benchmark represents comparatively difficult
problems in terms of fraction of integer variables.

5 Summary and Conclusion

We propose two comparatively simple modifications of CMA-ES to improve the
performance of the algorithm on problems with (some) integer variables. First,

298 T. Marty et al.

we derived a lower bound for the standard deviation of integer coordinates which
depends on the dimension of the problem and the population size. The bound
aims to be low enough to preserve a large enough effective population size in the
continuous subspace. Second, we move successfully mutated integer variables to
the center of their integer interval to adopt good mutations of integer variables
more swiftly.

The lower bound greatly reduces the runtime of CMA-ES on functions f1,
f2, f5, f12 and f13 of the bbob-mixint suite [13]. Additional integer centering
leads to faster convergence on functions f14, f17 and f18, however also to a
performance degradation on the multimodal functions f19 and f24 and, in higher
dimension, on f15. The cause of this degradation remains unclear. We suspect
that restarts on f1 and f7 lead to unnecessary performance impediments too.
The LB+IC-CMA-ES compares overall favorably to the CMA-ES with margin
[4], especially on functions f2 and f12 in dimension 10–80 and on eight other
functions depending on the dimension.

Many BBOB mixed-integer multimodal functions remain unsolved by the
current algorithms. The proposed variant, LB+IC-CMA-ES, however improves
over previous versions and is a comparatively simple new baseline to compare
with.

References

1. Akimoto, Y., Hansen, N.: Diagonal acceleration for covariance matrix adaptation
evolution strategies. Evol. Comput. 28(3), 405–435 (2020)

2. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing pop-
ulation size. In: 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp.
1769–1776. IEEE (2005)

3. Hamano, R., Saito, S., Nomura, M., Shirakawa, S.: Benchmarking CMA-ES with
margin on the bbob-mixint testbed. In: Proceedings of the Genetic and Evolution-
ary Computation Conference Companion, pp. 1708–1716 (2022)

4. Hamano, R., Saito, S., Nomura, M., Shirakawa, S.: CMA-ES with margin: lower-
bounding marginal probability for mixed-integer black-box optimization. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 639–647
(2022)

5. Hansen, N.: A CMA-ES for mixed-integer nonlinear optimization. INRIA research
report, RR-7751 (2011)

6. Hansen, N.: The CMA evolution strategy: a tutorial. arXiv preprint
arXiv:1604.00772 (2016)

7. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., Brockhoff, D.: COCO:
a platform for comparing continuous optimizers in a black-box setting. Optim.
Methods Softw. 36(1), 114–144 (2021)

8. Hansen, N., et al.: COmparing Continuous Optimizers: numbbo/COCO on Github
(2019). https://doi.org/10.5281/zenodo.2594848

9. Hansen, N., Niederberger, A.S., Guzzella, L., Koumoutsakos, P.: A method for
handling uncertainty in evolutionary optimization with an application to feedback
control of combustion. IEEE Trans. Evol. Comput. 13(1), 180–197 (2008)

http://arxiv.org/abs/1604.00772
https://doi.org/10.5281/zenodo.2594848

Two Simple Modifications of CMA-ES to Handle Mixed-Integer Problems 299

10. Ikeda, K., Ono, I.: Natural evolution strategy for mixed-integer black-box optimiza-
tion. In: Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 831–838 (2023)

11. Li, R., et al.: Mixed integer evolution strategies for parameter optimization. Evol.
Comput. 21(1), 29–64 (2013)

12. Marty, T., Semet, Y., Auger, A., Héron, S., Hansen, N.: Benchmarking CMA-ES
with basic integer handling on a mixed-integer test problem suite. In: Proceed-
ings of the Companion Conference on Genetic and Evolutionary Computation, pp.
1628–1635 (2023)

13. Tušar, T., Brockhoff, D., Hansen, N.: Mixed-integer benchmark problems for single-
and bi-objective optimization. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 718–726 (2019)

14. Watanabe, Y., Uchida, K., Hamano, R., Saito, S., Nomura, M., Shirakawa, S.:
(1+1)-CMA-ES with margin for discrete and mixed-integer problems. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference, pp. 882–890 (2023)

