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Abstract. The performance of Evolution Strategies (ESs) depends on a suitable 
choice of internal strategy control parameters. Apart from a fixed setting, ESs 
facilitate an adjustment of such parameters within a self-adaptation process. For step- 
size control in particular, various adaptation concepts were evolved early in the 
development of ESs. These algorithms mostly work very efficiently as long as the 
relative sensitivities of the parameters to be optimized are known. If this scaling is not 
known, the strategy has to adapt individual step-sizes for the parameters. In general, 
the number of necessary step-sizes (variances) equals the dimension of the problem. 
In this case, step-size adaptation proves to be difficult. 

The algorithm presented in this paper is a development based on the derandomized 
scheme of mutative step-size control. The new adaptation concept uses information 
accumulated from the preceding generations with an exponential fading of old 
information instead of using information from the current generation only. Compared 
to the conventional adaptation scheme, this enables a less locally determined step-size 
control and allows a much faster adaptation of individual step-sizes without 
increasing disturbing random effects and without additional evaluations of the fitness 
function. The adaptation of the general step-size can be improved as well. 

Keywords evolution strategy, adaptation, self-adaptation, mutative step-size 
control, step-size, individual step-size, scaling 

Introduction: Step-size Adaptation in ESs 

In biology, mutation rates are of essential importance for evolutionary progress. In the 
case of real-valued continuous parameter optimization with ESs, the biological mutation 
rate can be interpreted as the standard deviation of mutation steps in the parameter space. 

In ESs, there are two common ways of realizing a step-size adaptation. One is Rechen- 
berg's 1/5-success-rule (Rechenberg 1973). This algorithm works satisfying in most cases 
but depends on the applicability of an external model of parameter space topology and is 
only able to adapt one general step-size but no individual step-sizes. 

The other method is the mutative step-size control proposed by Rechenberg (1973, 
1978) and Schwefel (1977, 1981). This adaptation scheme does not depend on an external 
model and in principle facilitates the adaptation of individual step-sizes. Here, the strategy 
parameters (step-sizes) are part of the parameter sets of the individuals and affected by 
mutation and selection. 

Mutative step-size control generally works very well on the adaptation of a general step- 
size. A corresponding adaptation of individual step-sizes is not possible within simple ESs 
with small populations, as Schwefel (1987) pointed out. Schwefel favors the use of more 
complex ESs with larger populations. The problem is, that to enable a reliable individual 
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step-size adaptation the resulting population sizes have to be much larger I than necessary 
concerning the object parameter optimization. 

The problem of individual step-size adaptation can be explained from a general point of 
view by interpreting step-size adaptation as a problem of disturbed optimization 
(Rechenberg 1994). "Disturbed" means that the fitness value is not exactly measurable. 

l ) e r a n d o m i z e d  m u t a t i v e  s t ep - s i ze  c o n t r o l  

Derandomized mutative step-size control (cf. Ostermeier 1994) enables a reliable 
adaptation of individual step-sizes even in small populations. Basically, the selection of 
large or small 2 mutations in every generation results directly in a corresponding 
increase/decrease of the step-sizes. The second, more important difference to conventional 
mutative step-size control is that the step-size variations passed from one generation to the 
next are much smaller than the variations within one generation. This reduces the 
adaptation rate per generation without reducing the step-size variations within the 
populations. Therefore the information required for a certain step-size adaptation is not 
gathered in one generation of a large population but in the generation sequence of a 
smaller population. 

D e r a n d o m i z e d  m u t a t i v e  s t ep -s ize  c o n t r o l  u s i n g  a c c u m u l a t e d  i n f o r m a t i o n  

According to the previous section, a sensible adaptation of step-sizes for small 
populations is only possible in a generation sequence. The adaptation scheme proposed 
here makes use of this fact. It does not analyze the sizes of the mutations of the last 
generation only, but the sizes of the variations resulting from adding up the mutations 
selected in the preceding generations. 

Apart from some averaging effects, this method would make no fundamental difference, 
if the selected mutations in successive generations are uncorrelated. In fact, successively 
selected mutations are correlated in general: In the case of step-sizes being too large, 
selected mutations tend to compensate preceding mutations. In effect, the selected 
mutations are correlated antiparallel in the generation sequence. Correspondingly, too 
small step-sizes cause parallel correlated mutations. 

A parallel correlation of successive mutation steps increases the absolute value of the 
resulting sum and vice versa. The following algorithm utilizes these correlations -no t  
simply the absolute values of the single mutation steps- by adding up successive 
mutations. Only the absolute values of the accumulated mutations are evaluated for step- 
size adaptation. 

The adaptation scheme of the individual step-sizes remains formally the same as in the 
algorithm of derandomized step-size adaptation (Ostermeier 1994). Only the absolute 
values of the selected mutations have to be replaced by the absolute values of the 
accumulated selected mutations. 

1 Our investigations suggest population sizes about 10*n (n: dimension of the problem). In 
smaller populations, individual step-sizes that have become small due to stochastic fluctuations 
perform almost random walks. This leads to long stagnation periods of the optimization if only 
individual step-sizes but no inclination angles (correlated mutations) are adapted. We interpret 
the reliable convergence of Schwefel's strategy variant with correlated mutations only partly as a 
result of a sensible adaptation process. Its uncritical behaviour mainly results from rotating the 
mutation ellipsoids almost randomly through parameter space. This ensures the variation of all 
parameters in spite of some individual step-sizes being arbitrarily small. The inclination angles 
are uncritical strategy parameters because of their cyclical characteristic: they cannot drift away. 

2 "Large" or "small" refers to the mean variation of the underlying random distribution. 
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The weighting of the last generation and the lifespan of the information of preceding 
generations respectively is determined by the newly introduced constant c ~ (0,1]. The 
factor (c/(2-c)) 1/2 normalizes the mean variations of the resulting distributions to one 
(when no selection takes place). It results from the geometric series of the mean variations 
of the added mutations: 

l i r a  ~c~+(~'(1-d)'+(~(1-c)~) ~+.- +(c-( l -c)m) z = 42C-c 

The adaptation scheme of the general step-size uses the convergence of the X- 

distribution: 17~l-- ~ ~ N G f 6 , 0 . 5 ) .  

(1 ,  ~,)-ES algorithm with derandomized mutative step-size control 
using accumulated information 
(all multiplications and powers of vectors refer to components) 

Creation of ~, offspring: 

- "Sscal 'Zk (k  = 1, . . . ,~.)  

Selection: 

XE g+l .= 2 g N, et 

Accumulation of selected mutations: 

2 g = ( 1 - c ) Z  g-I + CZse I 2o=0 

Adaptation of general and individual step-sizes: 

1281 - 1  + 
8 g+l = 8 g" exp .,,/h-. /2__~c g-h 

cal = 8~scal" + 0 . 3 5  * 

Symbols used: 
/,/ 

~g 
X~/N 

(absolute value of vector 
1/(5n) is a correction for 
small dimensions n.) 

(absolute value of components) 

number of parameters to be optimized (dimension of all vectors used) 

parameter vector of generation g (E: parent / N: offspring) 

* N(0,1)+-distributed step-sizes ]Z I would cause systematically decreasing step-sizes, because the 
geometric mean of this distribution is less than one. The geometric mean of ([Z l + 0.35) 
approximately equals one. 
It is also possible to transform IZ[ by an integral transformation into a logarithmic normal 
distribution. This solves the problem in an elegant but much more costly way and, corresponding 
to our tests, does not affect the performance of the algorithm. 
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~g 

2 

sel 

c = 

= 

~scal = ] / n 

general step-size of generation g 

-0  
individual step-sizes of generation g ~scal = (l  . . . . .  1) 

(Zl, ... ,Zn) with ~ (0,1)-normally distributed 

index of selected offspring of generation g 

The factor "e" determines how fast the contribution of former 
generations declines. The loss is about a factor 3 every 1/e 

i 
enerations. For n ~ o,, (c ~ 0) ; n = 10 (c _=_ 0.3) resp. holds: 

X 

l i r a  (1 - c) 1/c = _1 = 0 . 3 7 "  (1 - 0 . 3 )  1 / ~  = 0 . 3 )  
c-~0 e ' 

Adaptation speed and precision depend on these two exponents. 
Sensible values are in the range (0, I). Small values facilitate a 
precise but time-consuming adaptation and vice versa. The 
given values yield a good compromise. See next section, figure 
3. In the case of very difficult problems, a reduction of ~scal 
might be necessary. 

Simulations 
Tests of the described algorithm have been performed with ~ = 10. Thus, the number of 

function evaluations equals ten times the number of generations. Simulations have been 
done on axis-parallel hyper-ellipsoids, Schwefel's problem, a generalized Rosenbrock's 
function, on a sum of different powers and on a Steiner-net. 

In order to assess the performance of the derandomized step-size adaptation using 
accumulated information, results from the derandomized step-size adaptation (without 
using accumulated information) and from a (8,50)-ES according to Schwefel (1981) are 
also presented. Schwefel's strategy with discrete global recombination adapts n individual 
step-sizes and n(n-1)/2 inclination angles. This means that not only the sizes of the axes of 
the mutation ellipsoid vary, but it can also be rotated arbitrarily with respect to the 
coordinate system. A strategy variant that adapts only individual step-sizes and no 
inclination angles would correspond better to the algorithm presented here, but works 
- according to our experiments - very unsatisfactorily (cf. also Hoffmeister & B~ick 1991). 
The simulations with Schwefel's (8,50)-ES have been carried out with the Evolution 
Machine developed by Voigt, Born and Treptow (1991). Except for the adaptation using 
accumulated information, all other results are taken from Ostermeier (1994). 

Axis-parallel Hyper-Ellipsoids: 

Objective function: (Not to be confused with the considerable different fct. Y~ l'X 2 ) 

n 

Fn(~ ) = Z ( i . x i )  2 ~ m i n i m u m  (=0) 
i=1 

-0 (1, 1) Flo,30,10o(X 0) = 10 -1~ x . . . . . .  = 3 8 5 ,  9 4 5 5 ,  3 3 8 3 5 0 ,  F~top 

The simulation results (see figures 1 and 2) show that optimization speeds up 
considerably with adaptation of individual step-sizes. The feasible speed-up factor 
(10 ... 100 here) increases with the ratios of the ellipsoid-axes. 
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The optimization runs shown in figure 1 demonstrate that the step-size adaptation using 
accumulated information is able to adjust the correct set of individual step-sizes by which 
the problem is transformed into a hypersphere. After about 3000 function evaluations, the 
step-sizes are adapted correctly and the convergence rate is as high as with fixed 
individual step-sizes that are preadjusted correctly. 
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1 0 8  
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i - -  n - ~Q" step-sizes (adjusted correctly) 

7 ' ~  . . . . . . . . . . . . . . . .  i . . . . . . . . . . . . . . . . . . . .  I I I  (1,10)-ES with/without adaptation 
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l / _ \ ~ i ~ . . . . [ ~ $ . . 1 - .  0 q l "  (1.10)-ES with adaptation of indiv. 
I [ - I ~  ......... I s.s. using cumulated informtion 
t t ~ ~  . . . .  ---- ~ - ~  []  (8,50)-ES according to Schwefel 
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-'~-1 0-7 
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5 .0E4 1 .0E5 1 .5E5 ~ 2 .0E5 
function evaluat ions 

2 .0E3  4 .0E3 6 .0E3 8 .0E3 1 .0E4  1 .2E4  
function eva luat ions 

Figure 1 
Convergence plots 

of optimization runs 
with the hyper- 
ellipsoid. The figure 
below is an enlarged 
detail of the first 
12000 function eva- 
luations of the same 
optimization runs 
shown above. 

In order to assess 
the quality of step- 
size adaptation, an 
optimization run 
with the optimal set 
of (fixed) ]ndividual 
step-sizes is also 
shown. 

In order to clarify the adaptation process, figure 2 - additionally to the fitness values - 
shows plots of the average ratio of the individual step-sizes to their correct values 
( rC(6scal ) ). In figure 2a optimization runs with and without using accumulated information 
are compared. The plots of n(6scal) show an acceleration of the step-size adaptation by 
about a factor three, using accumulated information. Additionally, the adaptation of the 
correct step-sizes is kept more precisely. The value of rt(~iscal) stagnates at approximately 
1.25 compared to 1.35 without using accumulated information. Figure 2b demonstrates the 
effect of varying ~scal. Reducing [3seal (---0.01) facilitates a more precise but time 
consuming adaptation. Increasing 13scal (= 0.1) causes more stochastic fluctuations of the 
individual step-sizes. 

To find out how to choose [3seal, the number of function evaluations needed to reach 
Fstop were measured for different values of [~scal (see figure 3). The minima result from the 
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conflict of fast versus precise adaptation. Large values of 13scal provoke such stochastic 
fluctuations that no sensible adaptation is possible. The acceleration of optimization using 
accumulated information is mainly caused by the faster individual step-size adaptation (cf. 
also figures 1 and 2). The improvement revealed for ~scal = 0 (no adaptation of individual 
step-sizes) is caused by the general step-size adaptation. Using accumulated information, 
the adaptation process acts less locally. In the case of varying curvatures of the quality 
surface (narrow valleys), this effect increases the general step-size and therefore 
accelerates the optimization. 

According to figure 3, the optimal values of ~scal depend on the dimension n. Additional 
simulations have shown that this dependency does not change significantly with different 
ratios of the ellipsoid-axes. Thus, the value ~scal = l /n seems to be a good choice for a 
wide range of different problems. Compared to the simple derandomized step-size 
adaptation, the use of accumulated information does not change the range of sensible 
values for ~scal. All following simulations have been carded out with ~seal = l/n, that is no 
special adjustment to the different test problems has been done. 

4 ~ ' ~ -14yperellipS~ ' 

~ -24  

m 

v ~-aa 

-45 a ~ a f i g u r  el i 
-52 a , i " i - , ~ ~ ,", 

O.OEO 5.0E8 1.0E4 1.5E4 2.0E4 2.50EO 
function evaluations 

5.0E3 1.0E4 1.5E4 2.0E4 
function eva lua t ions  

2.6 

2.4 

2.2 

Z.O 

1.8 
tO 

1.6 le 

1.4 

1.2 

1.0 
2.5E4 

F i g u r e  2 Convergence plots of  optimization runs on the hyperellipsoid. The quantity ~(~seal) 
(the average deviation of  the individual step-sizes) is defined as follows: 

~(~scal) := exp(a(ln(Sscali" i))) (i=l,. . . ,n ; (;: m e a n  var iat ion)  

1 07 r- ~ ...... ! .... 

" x i 

10S " " 

~o~ . " - ~ - - _  _~:~ 

* : ex t rbpo la ted  

1 0 9  ~ 2 3 2 3 2 3 
0 10-a  1 0-2 J~scal 1 0-1 1 0 0  

F i g u r e  3 The symbols indicate the 
number of function evaluations to 
reach Fstoo (average of 20 runs). For 
~scal > 0.5; 0.1 (n=30; 100 resp.) the 
results of the simulations are influ- 
enced by the numerical precision of 
computation and thus are unreliable. 
The parameter settings of the deran- 
domized ES with accumulated in- 
formation are chosen as described 
above. Only ~scal varies. For 
13seal = 0 no adaptation of individual 
step-sizes takes place. So only one 
general step-size is adapted (Symbols 
on the left). The dashed lines refer to 
step-size adaptation without 
accumulated information (simple). 
Schwefel's (8,50) ES (empty sym- 
bols) does not depend on the para- 
meter ~scal. The results are shown 
here for comparison merely. 
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Schwefe l ' s  problem 
Objective function: 

n f  i ~2 
F(~)=i~=llj~=lXJ~ ~ minimum (=O); n = 2 0 , - 6 5 < 1 ~  

This problem represents - with respect to the coordinate axes - rotated hyperellipsoids. 
Thus, correlated mutations should be superior to uncorrelated ones. The simulations 
(figure 4) show that the simple (1,10)-ES with adaptation of only one general step-size is 
about four times faster than Schwefel's (8,50)-ES with correlated mutations. This suggests 
that no actual adaptation of the correlations to the topology of the problem takes place. 

By the derandomized adaptation of individual step-sizes, optimization slows down by 
about 30 %. This is caused by the stochastic fluctuations of the individual step-sizes 
induced by the adaptation process. Because of the rotation of the ellipsoid axes, the 
initialization with identical individual step-sizes is optimal or nearly optimal. The 
acceleration of optimization using accumulated information is caused by an increased 
general step-size. This is comparable to the axis-parallel hyperellipsoids without 
adaptation of individual step-sizes. 

10S 

104 

10a 
> 
,- 102 
0 

o 101 
r -  
-,,I 

10o 
r  

-ca 10-1 

1 0-2 

10-a 
O.OEO 

SChwefel's Problem 
.............................................. ti~,~O ................................................. 

1.0E4 2.0E4 3.0E4 4.0E4 5.0E4 6.0E4 
funct ion evaluations 

Figure 4 
Convergence plots 

of optimizations with 
Schwefel's problem 

�9 (1,10)-ES with 
(~scal = 0.05 = I/n) 
and without (~scal = 0) 
adaptation of individual 
step-sizes 
�9 (1,10)-ES with 
adaptation of individual 
step-sizes using accu- 
mulated information. 
~l (8,50)-ES according 
to Schwefel 

Generalized Rosenbrock Function 

Objective function: 

F ( 2 )  = ~ 100.  Xi+l-X i + ( 1 - x i )  2 ~ minimum ( = 0 )  
i=1 

n = 3 0 ,  Y ~  ... , 0 ) ,  F ( Y ~  

This problem is characterized by the quadratic association of adjoining parameters. Thus 
correlated mutations of adjoining parameters should be superior. Schwefel's (8,50)-ES 
facilitates a sensible adaptation only in the final stage of optimization (see figure 5). 
Derandomized adaptation of individual step-sizes accelerates the entire optimization cycle 
by increasing the step-sizes of adjoining parameters for which variations are of topical 
relevance. 
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G e n e r a l i z ~ n b r o c k ' s  Functioln Figure 5 
101  C o n v e r g e n c e  p l o t s  

i i  of optimizations with 
�9 10o !1 the generalized 
= : Rosenbrock function 

10-1  

e- [ ]  (1,10)-ES with 
10-2 (~SCal = 0.033 = l/n) 

o and without (13scal = 0) 
adaptation of individual ~ 10-3 

g l 0 .  4 =  ...... 1_ 1~=q~!.=.0-033__ i ................. ~ ~ i e a , = 0 . 0  i " ] step-sizes 

adaptation of individual 
10-s " " step-sizes using accu- 
10-6 mulated information. 

O.OEO 4.0E5 8.0E5 1.2E6 t .6E6 2.0E6 2.4E6 ~1 (8,50)-ES according 
function evaluations to Schwefel 

Sum of different Powers 

Objective function: 
n 

F(2) = ~_. Xi[ (i+l) ~ minimum (=0) 
i=1 

n=30, x-~ . . . . .  1), F(:~~ 
This problem cannot be transformed into a hypersphere by an appropriate constant 

scaling. The sensitivity relations of the parameters (partial deviat ions of the quality fct.) 
continuo.usly worsen when approaching the optimum. The derandomized ES is able to 
adapt  the individual  step-sizes according to the deteriorating scaling conditions. Its 
constant progress on the logarithmic scale is shown in figure 6. Schwefel ' s  (8,50)-ES 
achieves a better quality than the (I ,10)-ES without individual  step-size adaptation but 
cannot deal  with the deteriorating scaling conditions.  

1-4 
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l-6 
I-7 
)-8 
1-9 
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1-11 
I-1 : 
F-1 : 
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-1 

p1 I 

'!il 
b-21 
)-2; 
-21 

O.OEO 

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: F i g u r e  6 

~ ~  ~ ~a-: n - n ~  . . . . . . . . . . . . . . . . . . . .  .................... : . . . . . . . . . . . . . . .  ~-: ................ of optimizations with 
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i!ii )ii iii iii ii i!iii  ii iii  owors [] (I,10)-ES with 

and  w i thou t  (~sca l  = 0)  
adaptation of individual 
step-sizes 
�9 ' (1,10)-ES with 
adaptation of individual 
step-sizes using accu- 

. mulated information. 

1.0E5 2.0E5 3.0E5 4.0E5 5.0E5 [~1 (8,50)-ES according 
function evaluations to Schwefel 
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The Steiner-Net (with fixed topology) 

The difficulty with this problem is comparableto the sum of different powers. The 
optimization problem is to minimize the length of a Steiner-net by finding the optimal 
positions of the Steiner-points (points of branching). The topology of the Steiner-tree is 
fixed (see figure 7). 

The worsening sensitivity relations of the parameters and premature step-size 
convergence are caused by the linear dependency of the net-length on shiftings of Steiner- 
points that are located on "house" positions. The corresponding partial deviations of the 
quality function stay constantly about +1/-1 while the others converge to zero when 
approaching the optimum. As a result, the (1,10)-ES with mutative control of only one 
general step size and Schwefel's (8,50)-ES do not find the optimal Steiner-point positions. 

> Figure 7 
X ~ 180 420 / (~  ~ 4 8 0  The points to be con- 

120 ~ 120 nected by the Steiner-net 
i i i -  

~ 6 0 0  are symbolized by houses. ", The dots represent Steiner- 
points. The topology of the 
net is fixed as shown. Only 

24 X__~:: 300 " ~  , / the positions of the 
240 Steiner-points are subject 

240 "'" r "0 )ca to optimization. In the 
~ ~ 2 4 0  ~ /  42 optimal solution, four of 

300 q~_]\ the nine Steiner-points are 
/,. 300 480 located at "house" 

360 360 360 positions. 
120 
420 

Tests with the algorithm proposed here, have shown that it converges reliably to the 
optimum without premature step-size convergence. The (1,10)-E S without individual step- 
sizes and Schwefel's (8,50)-ES mostly converge to nets that are 1 to 10 units longer. 
Figure 8 shows some optimization runs. 
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~1 02 
t -  
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~-10o 
t -  
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10-a 
O.OEO 

Steiner'Net 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  n = ~ e  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i - ;  . . . . . . . .  . . . . . . . . . . . . . . .  

. . . . . . .  i . . . . . . . .  i i . . . . . . . . . .  

5.0E3 1.0E4 1.5E4 2.0E4 2.5E4 3.0E4 
function evaluations 

Figure 8 
Convergence plots 

of optimizations runs 
with the Steiner-Net. 
The function values 
plotted are the actual 
net-length minus 
1229.40854 which is 
the length of the 
minimal net. 
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Conclusions 

A reliable adaptation of individual step-sizes is of essential importance for the 
applicability of the ES. Otherwise, the convergence rates can slowdown by orders of 
magnitude for badly scaled problems. Even if the parameter-scaling seems not to be 
questionable, the lack of an appropriate adaptation of individual step-sizes can cause 
premature convergence of the general step-size. 

Without modifications, mutative step-size control cannot be used for a reliable 
adaptation of individual step-sizes. Based on the concept of "Derandomized mutative step- 
size control", which enables a reliable step-size adaptation, the use of accumulated 
information decreases the locality of the adaptation process. Especially in small 
populations, the local character of step-size adaptation is disadvantageous because of the 
poor statistics involved. The additional information utilized by accumulation results from 
the generation sequence in a very simple way. Only the absolute values of the accumulated 
selected mutations have to be analyzed. The improvement achieved arises from the 
implicit use of correlations of the selected mutations in the generation sequence. 
Consequently, the step-sizes are adapted to such values that successive selected mutations 
tends to be orthogonal on average. This seems to be characteristical for optimal step-sizes 
in general. 

Simulations show that the adaptation of individual step-sizes is accelerated considerably 
and becomes more precise and reliable at the same time. The adaptation of the general 
step-size can be improved as well. This occurs if the topology of the quality function 
resembles narrow valleys. In such cases the local character of step-size adaptation causes a 
too small step-size. Proceeding less locally, the use of accumulated information enables 
the adaptation of larger step-sizes and so accelerates the optimization. 

References 
Hoffmeister, F. & B~ick, T. (1991). Genetic algorithms and evolution strategies: 

Similarities and differences. In (Schwefel & M~inner 1991), pages 455-470. 
Ostermeier, A., Gawelczyk, A., HansOn, N. (1994). A Derandomized Approach to Self 

Adaptation of Evolution Strategies. In Evolutionary Computation (to be published). 
Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach 

Prinzipien der biologischen Evolution. Stuttgart: Frommann-Holzboog. 
Rechenberg, I. (1978). Evolutionsstrategien. In B. Schneider and U. Ranft (Eds.), Simula- 

tionsmethoden in der Medizin und Biotogie, Berlin: Springer. 
Rechenberg, I. (i994). Evolutionsstrategie "94. Stuttgart: Frommann-Holzboog (in print). 
Schwefel, H.-P. (1977). Numerische Optimierung yon Computer-Modellen mitteIs der 

Evolutionsstrategie. Volume 26 of Interdisciplinary systems research. Basel: 
Birkh~iuser. 

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models. Chichester: Wiley. 
Schwefel, H.-P. (1987). Collective phenomena in evolutionary systems. In Preprints of the 

31st Annual Meeting of the International Society for General System Research, 
Budapest, 2: 1025-32. 

Schwefel, H.-P. & M~inner, R. (Eds.) (1991). Parallel Problem Solving from Nature, 
volume 496 of Lecture Notes in Computer Science. Berlin: Springer. 

Voigt, H.-M., Born, J. & Treptow, J. (1991). The Evolution Machine. Manual. iir, 
Informatik, Informationen, Reporte. 


