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Abstract. We examine the evidence for the widespread belief that heavy tail dis-
tributions enhance the search for minima on multimodal objective functions. We
analyze isotropic and anisotropic heavy-tail Cauchy distributions and investigate
the probability to sample a better solution, depending on the step length and the
dimensionality of the search space. The probability decreases fast with increasing
step length for isotropic Cauchy distributions and moderate search space dimen-
sion. The anisotropic Cauchy distribution maintains a large probability for sam-
pling large steps along the coordinate axes, resulting in an exceptionally good
performance on the separable multimodal Rastrigin function. In contrast, on a
non-separable rotated Rastrigin function or for the isotropic Cauchy distribution
the performance difference to a Gaussian search distribution is negligible.

1 Introduction
The optimization of multimodal objective functions is recognized as a fundamental
problem in several areas of science and engineering. Stochastic search procedures such
as Simulated Annealing or Evolutionary Algorithms are well-established methods to
optimize multimodal objective functions. New candidate solutions are often sampled
from isotropic multivariate Gaussian distributions. The choice of Gaussian distribu-
tions has several reasons. Isotropic Gaussian distributions do not favor any direction in
the search space. Gaussian distributions are amenable to mathematical analysis because
they are the only stable distribution—where the sum of iid variates has the same type of
distribution as its summands—with finite variance. For a given variance, the Gaussian
distribution has the maximal entropy, which can be interpreted in that the distribution
shape contains the least additional assumptions on the objective function to be opti-
mized. Finally, Gaussian distributions suggest themselves for bioinspired algorithms
as they are widely observed in nature as for example in the distribution of phenotypic
traits.

On the other hand, it is a common belief that, when employed for the optimiza-
tion of multimodal objective functions, the exponentially decreasing tails of Gaussians
are ineffective [8]. Instead, it is argued that heavy tails, such as those of the Cauchy
distribution, are more appropriate, as long jumps occasionally lead to better solutions,
that eventually lie within the attraction region of a better (local) optimum. Long jumps
that produce worse solutions should be disregarded in general.3 In this context several

3 A search strategy is highly susceptible to divergence, if worse solutions from long jumps are
accepted. The danger of divergence is way smaller, if an accepted worse solution is originated
from a short step. Alternatively, worse solutions from long jumps can be exploited with local
optimization, which is not considered in this paper.
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search strategies that apply heavy tail distributions have been investigated, including
Fast Simulated Annealing [6] and Fast Evolution Strategies [8]. In these strategies one
key difference concerns the use of isotropic [6] and anisotropic [8] heavy tail distribu-
tions. The importance of the anisotropy of the coordinate-wise iid multivariate Cauchy
distribution was already recognized in [5, 2]. Obuchowicz [2] observed a degradation
of performance of the anisotropic distribution when rotating the search space. He pro-
posed isotropic Gauss and Cauchy distributions with norms distributed as their one-
dimensional counter parts with mixed results.

Rowe and Hidovic [4] investigated the use of a scale free distribution that allowed
searching simultaneously on a given range of scales. In one-dimensional problems, the
scale free distribution is uniformly distributed on the log scale in that Pr(x ∈ [a, b]) ∝
log b− loga, given a and b are in the supported range. We found the n-dimensional ver-
sion of this scale free distribution to be highly anisotropic (similar to Fig. 3, lower right).
Surprisingly, even with a (1+1)-selection scheme the scale free distribution shows ex-
ceptional performance on the multimodal Rastrigin function and this is explained with
the advantage of long jumps. We summarize the common hypothesis.

Hypothesis 1 Long jumps, attributed to sampling from heavy-tail or scale free distri-
butions, occasionally lead to better solutions. They are therefore helpful for searching
multimodal objective functions.

On the other hand, for the unimodal sphere model, where f(x) =
∑n

i=1 x2
i , the-

oretical investigations and experiments show that compared to the Cauchy distribution
the Gaussian consistently leads to faster convergence of the (1, λ)-evolution strategy,
regardless of the choice of λ [5].

This paper investigates why and when heavy tails can help for global optimization.
The goal is (a) to quantify the possible effect of heavy tails and (b) to separate the
effects of the heavy tail and the anisotropy of the search distribution in a carefully
chosen experimental set-up. The paper is structured as follows: in Sect. 2 the relation
between step length and search space volume is discussed. In Sect. 3 search distributions
are introduced. Their characteristics and potential impact are investigated in Sect. 4. In
Sect. 5 simulations of an evolutionary algorithm are presented and Sect. 6 gives a short
conclusion.

2 The Search Space Volume Phenomenon

The so-called curse of dimensionality casts doubt on Hypothesis 1: the search space
volume increases exponentially fast with increasing dimension and large steps become
more and more unsuccessful. Rechenberg [3, p.160ff] analyzes the situation for the
30-dimensional Rastrigin function. He finds only a narrow evolution window for jumps
that can initiate successful new subpopulations. Here jumps are not expected to produce
better solutions but to converge to better local optima in a local optimization. Smaller
steps fall back into the originating local optimum, larger steps converge into worse
optima.

The volume covered by a step of length r is given by the hypersphere surface area
Sn(r) = 2πn/2

Γ (n/2) rn−1, where r is the distance to the center, n is the dimension, and Γ is
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Fig. 1. Probability to hit the unit hyperball (solid) sampling from rv as mean with an optimal
isotropic distribution, where v ∈ R

n and ‖v‖ = 1. The plots on the right show results for
n = 2, 3, 5, 10, 20, from above to below. Dashed lines depict the approximation 1

3 r
n−1 .

the Gamma function. The covered volume increases with rn−1 making it increasingly
difficult to hit a particular area of given volume.

We investigate an idealized scenario for the probability to find a better solution by
jumping into another region of attraction, as depicted in Fig. 1 (left).

The arrow depicts a vector v with unit length. The starting point is rv, located on
the dotted circle on the right. Its closest local minimum is inside the dotted circle. A
second volume of better solutions lies on the left, inside the unit hyperball around the
coordinate system origin. We compute the probability to hit the unit hyperball by sam-
pling around rv isotropically. We assume an optimal step-length distribution, where all
steps lie on the hypersphere surface, corresponding to the dashed arc on the left. To hit
the unit hyperball the angle between the sampled vector and −v has to be smaller than
αmax = arcsin(1/r). Using the cumulative distribution function of the angle between
a reference vector and a random vector uniformly distributed on the unit hypersphere
[1, Theorem 9] we deduce the probability to hit the unit hyperball as

1

2
− 1

2

Γ (n/2)

Γ (1/2)Γ ((n − 1)/2)

∫ 1− 1

r2

0

t−
1

2 (1 − t)(n−3)/2dt . (1)

The probability is plotted as a function of r in Fig. 1 (right) using Matlab’s function
betainc. Dashed lines depict 1

3 rn−1 , resembling the dependency of the hypersphere
surface area on r, which turns out to be a reasonable approximation of (1). Even for
moderate dimensions the probability drops fast with increasing r and becomes 10−4

for r = 6, 2, 1.5 and n = 5, 10, 20 respectively. For r = 1 the scenario resembles the
sphere function and the success probability is 0.5 (for infinitesimally small step length).
Our observations are summarized in an alternative hypothesis.

Hypothesis 2 Long jumps virtually never lead to better solutions in high dimensional
search spaces, because they get lost in the huge search space volume.
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Fig. 2. Densities of the univariate normal (Gaussian) distribution (dashed) and the standard
Cauchy distribution (solid) in a linear and a semi-log plot. The standard deviation of the normal
distribution σ = 1.4826 is chosen such that the quartile values equal −1, 0, 1 (vertical dotted
lines) as for the Cauchy distribution.

3 Search Distributions

3.1 Univariate Gaussian and Cauchy Distribution

The distributions that will be used in this paper are derived from the univariate standard
normal and Cauchy distribution. The univariate normal distribution with zero mean and
variance σ2 obeys the density

fN (0,σ2)(x) =
1

σ
√

2π
exp

(

− x2

2σ2

)

. (2)

The univariate Cauchy distribution with median zero and upper quartile τ obeys

fC(0,τ)(x) =
1

τ π

1

x2/τ2 + 1
=

1

π

τ

x2 + τ2
. (3)

A standard Cauchy distributed number, where τ = 1 can be sampled by dividing two
independent, standard normally distributed random numbers. Furthermore C(0, τ) ∼
τC(0, 1), and N (0, σ2) ∼ σN (0, 1). Figure 2 shows the densities of both univariate
distributions.

3.2 Multivariate Distributions

We consider both isotropic and anisotropic distributions [4, 7, 8], and as isotropic distri-
butions we consider a heavy-tail distribution and a distribution with exponentially fast
decreasing tail.

We use Gn to denote an n-dimensional Gaussian (normally) distributed random vec-
tor with zero mean and identity covariance matrix. The distribution Gn can be sampled
by sampling independent standard (0, 1)-normally distributed random numbers from
Eq. 2 for each component of a vector. Furthermore, let Un denote a uniform distribution
on the n-dimensional unit hypersphere, where Pr(‖Un‖ = 1) = 1. The distribution Un
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can be sampled by sampling Gn and normalizing the resulting vector to length one, i.e.
Un = Gn/‖Gn‖.

The following search (mutation) distributions are used.

Cn ∈ R
n, an (anisotropic) n-dimensional Cauchy distribution, where each coordinate

is independent standard (0, 1)-Cauchy distributed. This distribution is used, for ex-
ample, in Fast Evolution Strategies [8] and Fast Evolutionary Programming [7].

Ciso
n ∼ ‖Cn‖ × Un, an isotropic n-dimensional distribution with the norm distributed

as for Cn.
Gn ∼ ‖Gn‖ × Un, the n-dimensional Gaussian (normal) distribution which is widely

used in Evolutionary Algorithms such as Evolution Strategies or Evolutionary Pro-
gramming. The distribution is isotropic (spherical), its norm is χn-distributed.

The distributions Cn and Ciso
n have polynomially decreasing (heavy) tails. The dis-

tributions Ciso
n and Gn are isotropic (spherical), and can be sampled by a product of a

random number, i.e. a scalar representing the norm, and Un.

4 Characteristics of the Distributions

Figure 3 shows 10000 sampled points of C2 and G2 visualizing the characteristics of
the distributions in 2D. For values between −3 and 3 the results of the Gaussian (first
row) and the Cauchy distribution (second row) are comparable. While the Gaussian
rarely realizes steps larger than five, the Cauchy distribution reveals a surprising pic-
ture. Zooming out further the distribution starts to resemble a cross parallel to the coor-
dinate system (third row). That means, the distribution comes close to coordinate-wise
sampling on the large scale.

Figure 4 presents data in the 10-dimensional case. Shown are densities of the vector
norms (left) and densities along rv ∈ R

10, where r is a scalar and v is fixed, ‖v‖ = 1
(right). The density for the norm of C iso

10 was obtained by Monte-Carlo simulations
(about 109 samples), the respective density on the right by dividing with the hypersphere
surface area Sn(r) = 2πn/2

Γ (n/2) rn−1. The remaining densities are well-known or can be
easily obtained analytically.

Comparing the lower and the upper bold graph in the right figure, again a striking
difference between diagonal and coordinate axis parallel density can be recognized for
Cn. As can be derived from (3) (the multivariate density derives from a product of
the univariate) the coordinate axis parallel density drops proportional to r2, while the
diagonal drops proportional to r2n, for large r.

Two Gaussian densities along rv are shown. First 3.8× G10 (dashed graph), where
the median of the norm corresponds to the one of the Cauchy distributions. Second
1.25 × G10, where the density for small r compares to the one of the Cauchy distribu-
tions.

We compare the Gaussians with the isotropic Cauchy distribution (middle bold
graph). In one case the density of the Gaussian drops below the Cauchy density for r
larger than about 5.6. In the other case only for r between about 8 and 17 the Gaussian
reveals a larger density than the isotropic Cauchy distribution C iso

n . For larger r Gaussian
and Cauchy densities drop fast: for C iso

n the slope is approximately r−10. For example,
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Fig. 3. Ten thousand 2D sample points from the Gaussian distribution 1.4826 × G2 (upper row)
and the Cauchy distribution C2 (middle and lower row). Shown are the same sampled points on
different scales (±1,±3,±10,±30, . . .). The clippings contain 26, 91, and 100% of the points
for G2 and 25, 67, 88, 96, 98.72, and 99.55% of the points for C2. For the larger scales Cn be-
comes mainly coordinate-wise sampling.

the probability to hit a volume in a distance of 60 = 3 × 20 is about 310 ≈ 105 times
lower than to hit the same volume in distance 20, a distance where C iso

n and 3.8 × Gn

have comparable densities. The other way around, the volume that can be found with a
comparable probability by steps being three times longer needs to be 105 times larger.
In contrast, for the coordinate axis direction the density drops slowly and volumes far
away have a considerable probability of being reached.

We can draw two conclusions from these figures. First, the anisotropy of the Cauchy
distribution might have a considerable effect on the search behavior. Second, compared
to the Gaussian distribution that operates on a reasonable scale of search, the heavy tails
should not be of great help. Both conclusions are confirmed in our experimental results.



7

100 102 104−9

−8

−7

−6

−5

−4

−3

−2

−1

10−1 100 101 102−20

−18

−16

−14

−12

−10

−8

−6

−4

Fig. 4. Densities for n = 10 on the log10 scale. Left: Density of norms, ‖C10‖ and ‖Ciso
10 ‖

(same solid graph), and 3.8 × ‖G10‖ (dashed), where the factor is chosen such that the median
equals to 11.7 as for ‖C10‖. Right: densities along rv ∈ R

n versus r, where ‖v‖ = 1. For Cn

(solid) in coordinate axis direction (v = (1, 0, . . . , 0)T, upper graph) and in diagonal direction
(v = (1, . . . , 1)T/

√
10, lower graph), for Ciso

n
(middle solid graph), for 3.8 × Gn (dashed), and

for 1.25 × Gn (dashed dotted).

5 Simulation Results for the (1+1)-EA

5.1 The Test Functions and Evolutionary Algorithm

We use the highly multimodal Rastrigin function

fRastrigin : x 7→ 10n +

n
∑

i=1

y2
i + 10 cos(2πyi) ,

where y = Mx and M is an orthogonal matrix (M−1 = MT). We investigate two
situations. First, the axis parallel Rastrigin function fRastrigin, where M = I is the
identity matrix. The axis parallel Rastrigin function is separable and can therefore be
solved by n one-dimensional optimization procedures parallel to the coordinate axes.
Second, we consider the rotated Rastrigin function, with a randomly chosen M , where
all columns of M are uniformly distributed on the unit hypersphere and orthogonal,
achieved by Gram-Schmidt orthogonalization of Gn-distributed vectors. In the relevant
region for x ∈ [−5, 5]n, the local optima of the Rastrigin function have function val-
ues that are close to integer values, which makes the integer bin centers used for the
frequency histograms below particularly meaningful.

We apply the (1+1) evolutionary algorithm (EA) as depicted in Fig. 5 (left) in order
to address the question whether and how the heavy tails can influence the global search
performance. If not stated otherwise, we choose α = 10

1.2
104n , θfinal = 10−3, and the ini-

tial θstart = 103, leading to 50000×n iteration steps, and initial x = M−1(5, . . . , 5)T.
The values for α result into α ≈ 1.0000921, 1.0000553, 1.0000276, for n = 3, 5, 10,
all smaller than 1 + 10−4.

Neither (self-)adaptation nor a large population is applied so as to not interfere with
the effects of the search distribution. Adaptation of distribution parameters, like the
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The Algorithm

choose Dn, θstart, θfinal, α
initialize x, θ = θstart

while θ > θfinal

x′ = x + θ ×Dn

if f(x′) ≤ f(x)
x= x’

θ← θ/α
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Fig. 5. The Evolutionary Algorithm (left), and paths and sampled points of two runs in 2D, where
Dn = Gn, θ = 0.25 (square marks �), and Dn = Cn, θ = 0.01 (circle marks ◦). The marks
denote realized steps, where f(x′) ≤ f(x). The optima lie on an axis parallel grid allowing the
Cauchy distribution to reach the vicinity of the global optimum about ten times faster.

step-size θ, is not expected to improve the global search performance, as it usually drops
step lengths much faster than the given schedule. Large populations, and eventually
recombination, will usually improve the performance, but this should be true for all
distributions applied. The rationale behind this set-up is to slowly move through all
scales and to allow any scale, in case, to conduct the search successfully. It takes about
2500n iterations to reduce θ by a factor of two.

Figure 5 shows two runs on the axis parallel Rastrigin function, where n = 2 and
α = 1, one run with Dn = Gn and θ = 0.25, one run with Dn = Cn and θ = 0.01. In
both cases θ is chosen much too small. While the Cauchy distribution needs about 9000
iterations, the Gaussian needs about 80000 iterations to approach the global optimum.
Having in mind the 2D image of the Cauchy distribution Cn the result and the resulting
picture are not surprising.

5.2 Results

Methods We conducted experiments on the axis parallel and the rotated Rastrigin func-
tion for dimensions n = 3, 5, 10, performing in each case 50 runs. We judge perfor-
mance in terms of reached final function value and success rate to reach the global
optimum with a precision of 10−2. We compared success rates with the χ2-test and the
median final function values with the rank sum test.

Results The final distribution of function values for n = 3, 5, and 10 is shown in Fig. 6.
For n = 3 the global optimum is found in most cases for all experimental conditions. On
the axis parallel function Cn achieves a success probability of 100% and is slightly better
than Ciso

n and Gn. For n = 5 the difference becomes much more pronounced. While the
success probability drops to about five percent for C iso

n and Gn, on the axis parallel
function Cn has still a success probability of 100%. For n = 10 (Fig. 6, right) the
success probability drops to zero in all cases but for Cn on the coordinate axis parallel
function, where it is still one. The distributions in the five other cases are statistically
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Fig. 6. Frequency of the final function value for, from above to below, Cn, Ciso
n

, and Gn. Left:
n = 3, Middle: n = 5, Right: n = 10. For n = 3 on the coordinate axis parallel function Cn has
a significantly higher success probability than Ciso

n
(p < 1.3 × 10−4) and Gn (p < 10−2). For

n = 5 and n = 10 the difference regarding distribution median and success probability between
Cn on the coordinate axis parallel function and all other cases is highly significant (p < 10−15).

indistinguishable and the best final function value is close to four. In all dimensions all
distributions perform virtually identical on the rotated function, and only Cn performs
significantly different from the other distributions in the coordinate axis parallel case
while the performance of Gn and Ciso

n is invariant under rotation of the search space.

Validation of the Annealing Scheme To investigate the influence of the choices of θstart

and θfinal we ran simulations for all combinations of values θstart = 1010, 109, . . . , 10−5

and θfinal = 105, 104, . . . , 10−10 for n = 5, where θstart ≥ θfinal and the number
of iterations are 50 000 × 5, choosing α respectively. The best result is obtained with
θstart = 1, θfinal = 0.1 for C5 and θstart = θfinal = 1 for G5. The respective average
final function values are 1.7 and 1.6, compared to 2.8, and 2.4 for the set-up chosen in
the last section. The results confirm that the annealing schedule is reasonably chosen
and does not dominate the outcome.

6 Summary and Conclusion

We analyzed densities of isotropic and anisotropic heavy-tail Cauchy distributions with
respect to their effectiveness when employed in searching for optima in multimodal ob-
jective functions. The densities are determined to a great extent by the volume of the
hypersphere surface area. Consequently, for isotropic search distributions the density
(i.e. the probability to hit a given volume) must decrease faster than r−n, where r is
the distance to the distribution center.4 For Gaussian distributions the density decreases
exponentially fast with r, for the investigated isotropic Cauchy distribution the depen-
dency is r−2n. Even for moderate dimensions (n = 5 to 10), the relevance between
polynomial and exponential decrease on the search performance becomes questionable
and cannot be observed in our experiments.

In contrast, the effect of anisotropy of a search distribution on the search perfor-
mance can be tremendous, in particular in higher dimensions (n ≥ 10). The Cauchy

4 Otherwise the density is not integrable for r→∞.
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distribution, where coordinates are sampled independently, is highly anisotropic in that
large steps occur most often close to the coordinate axes (see e.g. Fig. 3). Hence, it
can perform exceptionally well on separable functions, like any algorithm performing
coordinate-wise search. Therefore, the anisotropy of heavy-tail distributions is the most
likely explanation for remarkable performance improvements on separable functions,
e.g. of Fast Evolution Strategies [8] and of the so-called scale-free distribution [4]. If
the coordinate system is rotated or the distribution is modified to become isotropic—
keeping the distribution of the vector norm unchanged—the performance becomes in-
distinguishable from the Gaussian distribution in our experiments.

We believe that our result can be generalized beyond the specifically chosen set-up
stating the following conjecture: heavy tails are useful on multimodal objective func-
tions (for global optimization) only if the large variations take place mainly in a low
dimensional (sub-)space and the low dimensional space contains the better optima.
This is the case, for example, either if the search space by itself is low dimensional
(n 6� 3), or if the search distribution is highly anisotropic with respect to the coor-
dinate system and the objective function is separable. A challenging question arising
from our conjecture is whether and how low dimensional subspaces can be found, such
that the exceptional performance of the anisotropic Cauchy distribution on separable
functions can be carried over to non-separable functions.
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