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Abstract. We employ local meta-models to enhance the efficiency of
evolution strategies in the optimization of computationally expensive
problems. The method involves the combination of second order local
regression meta-models with the Covariance Matrix Adaptation Evolu-
tion Strategy. Experiments on benchmark problems demonstrate that
the proposed meta-models have the potential to reliably account for the
ranking of the offspring population resulting in significant computational
savings. The results show that the use of local meta-models significantly
increases the efficiency of already competitive evolution strategies.

1 Introduction

The optimization of a large number of engineering processes, ranging from multi-
disciplinary design to manufacturing, can only be formulated as black-box prob-
lems. The fitness function in this context is usually computationally expensive
and may involve noise and multiple optima. Evolutionary Algorithms (EAs)
have been shown to cope successfully with noise and multimodality, and there
is an ongoing effort to further extend their efficiency for expensive problems
by incorporating local or global meta-models of the fitness function [1]. The
use of meta-models based on global function approximation, even for moderate
dimension, is hindered by the inhomogeneity of the data collected during the
optimization. Several methods have been proposed to overcome this difficulty
ranging from restricting the training data to the closest, most recently evaluated
points [2] to sophisticated sequential update techniques [3, 4]. Alternatively, lo-

cal meta-models have been developed ranging from simple nearest neighborhood
regression to local quadratic models [5–7].

Meta-models have been shown to improve the efficiency of EAs in many cases,
but a number of open questions remain, including the choice of the meta-model
complexity with regard to the underlying EA, as well as the balance between the
use of the meta-model and the true objective. In this paper we address these open
problems by investigating the use of local meta-models of varying complexity in
conjunction with Covariance Matrix Adaptation (CMA-ES) [8–10]. The CMA-
ES employs rank based selection, relaxing for the meta-model the requirement
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of approximating the objective function. We propose a local meta-model CMA-

ES (lmm-CMA) and investigate its performance on benchmark problems. We
find that the lmm-CMA enhances significantly the performance of the standard
CMA-ES.

The paper is organized as follows: In Sect. 2 we address model quality mea-
sures and the control of data points used as meta model support. Section 3 gives
an introduction to Locally Weighted Regression as a class of meta models for
EAs. In Sect. 4, the choice of complexity of the local model is investigated. In
Sect. 5 we propose the lmm-CMA and determine the optimal bandwidth of the
local model. In Sect. 6 the performance of the proposed lmm-CMA is examined
on well known test-functions and compared to previous results. A summary and
conclusions are presented in Sect. 7.

2 Meta-model quality and controlled model assistance

In meta-modeling the definition of optimal prediction needs to be consistent with
the operators of the optimization algorithm [11]. Optimal prediction is usually
associated with a minimum error in the quantitative approximation of the ob-
jective function by the meta-model. For rank-based EAs maintaining the fitness
based ranking of the population is sufficient and therefore more appropriate.

Measuring meta-model quality. In this paper we use meta-model quality mea-
sures in order to: (i) investigate the optimal complexity of the local models to
be learned, and (ii) control the adaptive use of the local models in the EA. In
both cases we are interested in the deviation of the offspring ranking predicted
by the meta-model f̂ from the true ranking determined by the fitness function
f in each generation g.

When the true fitness function values yi = f(xi) are known for the complete

population of size λ, we propose a quality measure adopted from sorting that
counts pair inversions in the approximate ranking. For an approximate rank-
ing F̂ = 〈ŷ1, . . . , ŷλ〉, with ŷi ≤ ŷj , 1 ≤ i < j ≤ λ, the normalized pair inversion
count ρinv is defined as

ρinv(F̂ ) =
4

λ(λ − 1)

∣

∣{(i, j)|1 ≤ i < j ≤ λ and f(xr(i)) > f(xr(j))}
∣

∣ , (1)

where r(i) is the index mapping function determined by the model based ranking,

i.e. ŷi = f̂(xr(i)). The normalization factor λ(λ − 1)/4 is the expected pair
inversion count for a randomly ranked population which can be easily proven
by induction; it holds 0 ≤ ρinv ≤ 2. If not all individuals in one generation are
evaluated, the measure (1) cannot be applied since the correct ranking of the
population is only partially known.

Meta-model assisted ranking procedure. An elegant way to control model quality
without knowing the correct ranking of the complete population is the approx-

imate ranking procedure [7]: In every generation, the offspring are successively
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1 approximate: build f̂(xk), k = 1, . . . , λ based on evaluations in training set S

2 rank : based on f̂ generate rankingµ
0 of the µ best individuals

4 evaluate: ninit best individuals based on f̂ , add to S
5 for i := 1 to (λ − ninit)/nb do

6 approximate: build f̂(xk), k = 1, . . . , λ based on S

7 rank : based on f̂ generate rankingµ
i of the µ best individuals

8 if (rankingµ
i−1 == rankingµ

i ) then (ranking of µ best remains unchanged)
10 break (exit for loop)
11 else (ranking of µ best individuals changed)

12 evaluate: nb next best unevaluated points based on f̂ , add to S
13 fi

14 od

15 if (i > 2) then ninit = min(ninit + nb, λ − nb)
16 elseif (i < 2) then ninit = max(nb, ninit − nb)

Fig. 1. Approximate ranking procedure that is executed in every generation to de-
termine the fraction of points evaluated on the fitness function. The procedure is not
called until sufficiently many evaluations are stored in the training set S to build the
model; initialization of ninit = λ.

evaluated and added to the training set of the fitness function model until the
(deterministic) model based selection of the parents remains unchanged in two
consecutive iteration cycles. This results in an adaptive control mechanism de-
termining the number of evaluated individuals in every generation. The CMA-ES
uses the ranked µ = λ/2 best offspring to update its Gaussian mutation distri-
bution [9]. We adapt the approximate ranking procedure to the requirements of
CMA-ES: the predicted ranking in the µ first positions should not change for
the meta-model iteration to stop. For large population sizes λ, often required to
solve multimodal functions [9], the amount of information added in one itera-
tion may result in insignificant changes even of a meta-model with bad ranking
predictions. To overcome this deficiency we suggest to evaluate a batch of indi-
viduals in every meta-model iteration. We use a batch size nb proportional to λ
and choose nb = max(1, ⌊λ/10⌋). The total cost of the meta model loop can be
further reduced by introducing an adaptive parameter to specify the number of
initial evaluations, ninit, performed before the model iteration loop is entered.
The resulting meta-model assisted ranking procedure is outlined in Fig. 1.

3 Locally weighted regression

Locally weighted regression (LWR) [12] attempts to fit the training data (here:
past evaluations of the fitness function stored in a database) only in a region
around the location of the query. The local models are built consecutively as
queries need to be answered and therefore are intrinsically designed for growing
training data sets as they occur in the course of an optimization. In the following
we give a brief introduction to LWR following the notation in [12].
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For every offspring to be predicted an individual model is built. Given a set
of points (xj , yj), j = 1, . . . , m, the training criterion C is minimized w.r.t. the

parameters β of the local mode f̂ at query point q and can be written as

C(q) =

m
∑

j=1

[

(f̂(xj , β) − yj)
2K

(

d(xj, q)

h

)]

, (2)

where K(.) is the kernel weighting function, d(xj , q) the distance between data

point xj and q, and h is the (local) bandwidth. We consider f̂ linear in β, i.e.

f̂(x, β) = x̃T β (cf. Table 1), and thus we can directly weight the training points
and minimize (2) by solving the normal equations

(

(WX̃)T WX̃
)

β = (WX̃)T Wy, (3)

where X̃ = (x̃1, . . . , x̃m)T , y = (y1, . . . , ym)T , and W = diag(
√

K(d(xi, q)/h)).
For a given model structure, K, d, and h remain to be chosen determining the
locality and smoothness of the model.

For the calculation of d(xj , q) we propose to utilize the metric of the search
distribution of the EA. Evolution strategies as the CMA-ES adapt a multivari-
ate Gaussian mutation distribution N (m, C) to the (local) topography of the
function, and the covariance matrix C naturally defines a metric that can be
exploited in the calculation of d as fully weighted Euclidean distance

d(xj , q) =
√

(xj − q)T C−1(xj − q). (4)

Experiments using different kernel functions K showed insignificant variation
in prediction performance. We use a bi-quadratic kernel function defined as

K(ζ) =

{

(1 − ζ2)2 if ζ < 1
0 otherwise

(5)

for the remainder of this paper. Because the density of the data points collected
in the course of an optimization run changes considerably, an adaptive choice
of the bandwidth h is essential. We use a nearest neighbor bandwidth selection,
where h is set to the distance of the kth nearest neighbor data point to q and
thus the volume increases and decreases in size according to the density of nearby
data. In this way changes in scale of the distance function d are canceled by the
choice of h, giving a scale invariant distribution of the weights to the data. The
optimal choice of k is addressed in Sect. 5.

4 Choice of Model Complexity

A meta model can speed up the convergence of an EA if it is capable to provide
information about the fitness function not yet incorporated in the search dis-
tribution. The choice of a suitable complexity for the local model involves two
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Table 1. Locally polynomial models tested in the LWR framework.

f̂x = βT
x x̃x, x̃x, βx dim

f̂wmean x̃w = 1 βw =
Pm

j=1 wjfj , 1

f̂linear x̃l = (x1, . . . , xn, 1)T βl: minimize (2), n + 1

f̂dquad x̃d = (x2
1, . . . , x

2
n, x1, . . . , xn, 1)T βd: minimize (2), 2n + 1

f̂quad x̃q = (x2
1, . . . , x

2
n, βq : minimize (2), n(n+3)

2
+ 1

x1x2, . . . , xn−1xn, x1, . . . , xn, 1)T

Table 2. Test-functions and coordinate-wise initialization intervals.

Name Function Init

Sphere fSphere(x) =
Pn

i=1 x2
i [−3, 7]n

Noisy Sphere fNoisySphere(x) = fSphere(x) (1 + ǫN (0, 1)) [−3, 7]n

Schwefel fSchwefel(x) =
Pn

i=1

“

Pi

j=1 xj

”2

[−10, 10]n

Ellipsoid fEllipse(x) =
Pn

i=1

“

100
i−1
n−1 yi

”2

[−3, 7]n

Rosenbrock fRosenbrock(x) =
Pn−1

i=1

`

100 · (x2
i − xi+1)

2 + (xi − 1)2
´

[−5, 5]n

Ackley fAckley(x) = 20 − 20 · exp
“

−0.2
q

1
n

Pn

i=1 x2
i

”

[1, 30]n

+e − exp
`

1
n

Pn

i=1 cos(2πxi)
´

Rastrigin fRastrigin(x) = 10n +
Pn

i=1

`

y2
i − 10 cos(2πyi)

´

[1, 5]n

questions: (i) How good is the ranking prediction of a model, and (ii) how is the
performance of the baseline optimization algorithm influenced by perturbations
of the ranking introduced by erroneous models?

We investigate the performance loss for the CMA-ES caused by erroneous
offspring rankings by running the strategy with artificially introduced ranking
perturbations of given pair inversion count ρinv (1). The performance loss is
computed as ratio between the number of function evaluations needed to reach
the function value of fstop = 10−10 with the erroneous and the correct ranking.
A rank perturbation of fixed ρinv can be produced by uniformly sampling swaps
of neighbors in the ranking and only conducting a swap if it increases ρinv.
This procedure is repeated until the target ρinv is reached. Figure 2a shows the
expected performance loss of the CMA-ES on fSphere, fEllipse, and fRosenbrock

(see Table 2) for dimension n = 5 and 10 versus the pair inversion count ρinv.
The data was obtained by averaging 20 runs with a uniformly random starting
point from the interval given in Table 2. The performance loss shows only minor
dependency on the function and the dimensionality.

We measured the quality of ranking predictions of constant, linear, and
quadratic (with and without cross terms) local models as given in Table 1. The
training data was obtained from independent runs of the CMA-ES. All four
models where tested on 20 data sets for each of the three test-functions using
fractions of 1, 1/2, 1/4 and 1/8 of the evaluated points, randomly chosen in ev-
ery generation. The bandwidth parameter k was varied as 1, 2, and 4 times the
number of free parameters of the model. Figure 2b gives the result for f̂quad on
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Fig. 2. (a) Mean performance loss of the CMA-ES with perturbed offspring ranking
on fSphere (�), fEllipse (×), and fRosenbrock (©) for n = 5 (solid lines), and n =
10 (dashed lines). (b) Normalized pairwise inversion count of the predicted ranking
versus evaluation fraction for f̂quad on fRosenbrock in 10D and bandwidth parameter

k = [1, 2, 4] × n(n+3)+2
2

(bottom to top).

fRosenbrock in 10D, showing the loss in rank prediction quality as less function
evaluations are used.

Combining the data of Fig. 2a & b, the speedup potential of a meta-model
can be estimated1 for a given evaluation fraction. Figure 3 depicts the speedup
potential of the four investigated local models on fSphere, fEllipse, and fRosenbrock

with the optimal bandwidth parameter k. For none of the three functions f̂wmean

or f̂linear a speedup factor of more than 1.5 is predicted; in 10D the results
even predict a negative speedup for all three test-functions. f̂dquad shows perfect
speedup on fSphere, however already for randomly oriented misscaled convex
quadratic functions the expected speedup does not exceed a factor of 2 in 10D.
Only the full quadratic model f̂quad is capable to predict reliable rankings to
enhance convergence of CMA-ES on the non-quadratic fRosenbrock. The speedup
potential is between 2 and 3 at an evaluation rate of about 1/3 to 1/4.

5 The lmm-CMA

The investigations in the previous section revealed that only full quadratic lo-
cal models have the potential to significantly improve the convergence speed
of the CMA-ES. We therefore enhance CMA-ES with a local quadratic meta-
model using the adapted approximate ranking procedure presented in Fig. 1. The
algorithm is referred to as lmm-CMA.

To complete lmm-CMA the optimal bandwidth for the locally weighted
quadratic regression remains to be chosen. We investigate the influence of k for
the k-th nearest neighbor bandwidth selection on the number of function evalu-
ations of lmm-CMA to reach fstop = 10−10 on the non-quadratic fRosenbrock for
dimension n = 2, 4, 8, and 16. The parameter k is varied according to k = α kmin

1 making the (optimistic) assumption that the use of the surrogate does not change
the optimization path
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Fig. 3. Speedup potential of f̂wmean (+), f̂linear (∆), f̂dquad (�), and f̂quad(©) on (a)
fSphere, (b) fEllipse, and (c) fRosenbrock in dimension (I) n = 5, and (II) n = 10.
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Fig. 4. Average number of function evaluations to reach fstop of the lmm-CMA
on fRosenbrock for varying bandwidth parameter k = α · (n(n + 3)/2 + 1) and n =
2 (×), 4 (+), 8 (©), and 16 (�). The points on the y-axis show the performance of the
original CMA-ES. The optimal performance of lmm-CMA is observed for α = 2.

with α = 2i/2, i = 0, . . . , 6, where kmin = n(n+3)
2 +1 is the number of free param-

eters of the local quadratic model. Every data point is obtained by averaging 20
independent runs of lmm-CMA. The results in Fig. 4 show a unique minimum
for α = 2 independent of dimension. Therefore, we set k = n(n + 3) + 2 for all
experiments conducted in the following.

6 Performance of the lmm-CMA

The proposed lmm-CMA is investigated on a set of uni- and multimodal test-
functions summarized in Table 2. The performance is assessed by averaging the
number of function evaluations needed to reach fstop = 10−10 from 20 inde-
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Table 3. Average number of function evaluations and standard deviations to reach fstop

of lmm-CMA versus CMA-ES, GPOP [2], and fminunc. For the multimodal functions,
the numbers are divided by the probability to find the global optimum given in brackets.
fminunc diverges on fNoisySphere (†) and has a vanishing probability to converge to the
global optimum on fAckley and fRastrigin for the given initialization region.

Function n λ ǫ lmm-CMA CMA-ES GPOP fminunc

fSchwefel(x) 2 6 81 ±5 391 ±42 40 24 ±5

4 8 145 ±7 861 ±53 110 96 ±7

8 10 282 ±11 2035 ±93 440 428 ±22

16 12 626 ±17 5263 ±115 6000 1684 ±37

fRosenbrock(x) 2 6 263 ±87 (1.0) 799 ±119 (1.0) 180 119 ±38 (1.0)

4 8 674 ±103 (1.0) 1973 ±291 (.95) 700 344 ±52 (.85)

8 10 2494 ±511 (.90) 6329 ±747 (.85) 2500 1057 ±119 (.95)

16 12 7299 ±1154 (1.0) 16388 ±1414 (.95) 14000 3628 ±226 (.90)

fNoisySphere(x) 2 6 0.35 184 ±24 372 ±39 - †
4 8 0.25 503 ±56 855 ±93 - †
8 10 0.18 1179 ±103 1645 ±84 - †

16 12 0.13 2700 ±112 3073 ±94 - †

fAckley(x) 2 5 308 ±33 (.95) 728 ±51 (.95) - ∞ (0.0)

5 7 1095 ±81 (1.0) 1767 ±74 (1.0) - ∞ (0.0)

10 10 3029 ±106 (1.0) 3637 ±110 (1.0) - ∞ (0.0)

20 10 8150 ±196 (1.0) 6155 ±409 (1.0) - ∞ (0.0)

fRastrigin(x) 2 50 1360 ±264 (.85) 1982 ±325 (.85) - ∞ (0.0)

5 140 7320 ±1205 (.85) 8486 ±1160 (.85) - ∞ (0.0)

10 500 29250 ±2769 (1.0) 40152 ±5409 (.95) - ∞ (0.0)

pendent runs, randomly initialized in the given intervals. For the underlying
CMA-ES we use the standard parameter settings given in [9] except for the pop-
ulation size λ: for the multimodal functions we choose the optimal λ from [9,
Fig. 2]. In Table 3 the results are compared to the standard CMA-ES without
meta-model support, the Gaussian Process Optimization Procedure (GPOP)2

[2], and MATLAB’s fminunc
3. fminunc implements the BFGS Quasi-Newton

method with a mixed quadratic and cubic line search procedure. In the present
context of black-box optimization, gradients are estimated via finite difference
approximation.

On the convex quadratic fSchwefel, lmm-CMA improves CMA-ES by a factor
of 5-8, and on fRosenbrock the speedup is 2-3. Compared to fminunc, lmm-CMA
is at most a factor of two slower (on fRosenbrock), but on fSchwefel it performs
even better for n ≥ 8. The results of GPOP on fSchwefel and fRosenbrock are
competitive for n ≤ 4. However, for larger n the Gaussian Process Regression
model gets less reliable and the performance deteriorates. Note that for small n

2 In GPOP the optimal size of the training data set depends on the problem and the
problem dimension. For the comparison we take the best data presented in [2].

3 We set ’LargeScale’=’off’, ’TolFun’=1e-10, ’TolX’=1e-15, and ’MaxFunEvals’=1e6.
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Fig. 5. Evolution of the evaluation fraction and the iteration loop count in the course of
typical runs of lmm-CMA plotted aside the convergence of the fitness f on fRosenbrock,
n = 10, (a), and fRastrigin, n = 5, (b).

the performance gain of lmm-CMA is limited by the nb evaluations performed
in every generation (nb = 1 for λ ≤ 10) and it generally scales well in n.

On fNoisySphere with fitness proportional Gaussian noise fminunc fails to
converge due to the finite difference gradient estimation. In contrast, lmm-CMA
and CMA-ES are able to cope with the noise levels as given in Table 3. The
lmm-CMA shows a small advantage that vanishes with increasing dimension.

On the multimodal functions fAckley and fRastrigin lmm-CMA is advantageous
in small dimensions (n ≤ 10), but the improvement compared to pure CMA-
ES decays with increasing n. This might be an effect of suboptimal bandwidth
selection of the local model for multimodal problems. Nevertheless, the results
on fRastrigin indicate that the adapted approximate ranking procedure works
robustly with large populations.

Figure 5 exemplifies the evolution of the evaluation fraction and the iteration
loop count in the course of typical runs of lmm-CMA. On fRosenbrock the evalua-
tion fraction varies throughout the whole search in the process of building local
approximations of the non-quadratic function. The average evaluation fraction
of ∼ 1

3 matches the predictions of Sect. 4 well. An interesting behavior can be
observed on fRastrigin: In the initial (global) search phase, the local meta-models
are not able to predict reliable rankings and thus are not used. However, as soon
as the strategy finds the attraction region of the global optimum, the meta-model
predictions get reliable and the local convergence is considerably accelerated.

7 Summary and Conclusion

The objective of this work was to enhance the performance of CMA-ES in the
optimization of expensive fitness functions by incorporating local meta-models.
We investigated the necessary model complexity using training data obtained
from the CMA-ES. As a result, only full quadratic local models seem to have
the potential to achieve a significant speed up. We demonstrate that locally
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weighted polynomial regression can preserve the ranking of the objective function
enhancing significantly the performance of an already highly competitive ES on
a number of benchmark problems.

The resulting lmm-CMA outperforms the standard CMA-ES on unimodal
test functions by a factor between 2 and 8 scaling well with increasing dimen-
sion n. On noisy and multimodal functions, the speedup does not exceed a factor
of 3 and vanishes with increasing dimension. Nevertheless, the meta-model does
not jeopardize the performance even when the function cannot be modeled ef-
fectively. Therefore its main drawback remains the computational complexity of
n6 for building the meta-model and we hope to reduce the computational cost
to n4 in future implementations. Finally, we expect to be able to improve the
performance in particular on multimodal and noisy functions by implementing
a more sophisticated choice of the model bandwidth.
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