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Einstein once spoke of the
“unreasonable effectiveness of
mathematics” in describing how the
natural world works. Whether one is
talking about basic physics, about the
increasingly important environmental
sciences, or the transmission of
disease, mathematics is never any
more, or any less, than a way of
thinking clearly. As such, it always has
been and always will be a valuable
tool, but only valuable when it is part
of a larger arsenal embracing analytic
experiments and, above all,
wide-ranging imagination.

Lord Kay
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Problem Statement Black Box Optimization and Its Difficulties

Problem Statement
Continuous Domain Search/Optimization

Task: minimize a objective function (fitness function, loss function)
in continuous domain

f : X ⊆ Rn → R, x 7→ f (x)

Black Box scenario (direct search scenario)

f(x)x

gradients are not available or not useful
problem domain specific knowledge is used only within the black
box, e.g. within an appropriate encoding

Search costs: number of function evaluations
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Problem Statement Black Box Optimization and Its Difficulties

Problem Statement
Continuous Domain Search/Optimization

Task: minimize a objective function f : X ⊆ Rn → R, x 7→ f (x)

Goal
fast convergence to the global optimum

. . . or to a robust solution x
solution x with small function value with least search cost

there are two conflicting objectives

Typical Examples
shape optimization (e.g. using CFD) curve fitting, airfoils
model calibration biological, physical
parameter calibration controller, plants, images

Problem
exhaustive search is infeasible
deterministic search is often not successful
naive random search takes too long

Approach: stochastic search, Evolutionary Algorithms
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Problem Statement Black Box Optimization and Its Difficulties

Analogies

Evolutionary Computation Optimization

individual, offspring, parent ←→ candidate solution
decision variables
design variables
object variables

population ←→ set of candidate solutions
fitness function ←→ objective function

loss function
cost function

generation ←→ iteration

. . . function properties
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Problem Statement Black Box Optimization and Its Difficulties

Objective Function Properties

We assume f : X ⊂ Rn → R to have at least moderate dimensionality,
say n 6� 10, and to be non-linear, non-convex, and non-separable.
Additionally, f can be

multimodal
there are eventually many local optima

non-smooth
derivatives do not exist

discontinuous
ill-conditioned
noisy
. . .

Goal : cope with any of these function properties
they are related to real-world problems
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Problem Statement Black Box Optimization and Its Difficulties

What Makes a Function Difficult to Solve?
Why stochastic search?

ruggedness
non-smooth, discontinuous, multimodal, and/or

noisy function

dimensionality
(considerably) larger than three

non-separability
dependencies between the objective variables

ill-conditioning
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cut from 3-D example, solvable
with CMA-ES

a narrow ridge
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Problem Statement Black Box Optimization and Its Difficulties

Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to problems
caused by the rapid increase in volume associated with adding extra
dimensions to a (mathematical) space.

Consider placing 100 points onto a real interval, say [−1, 1]. To get
similar coverage, in terms of distance between adjacent points, of the
10-dimensional space [−1, 1]10 would require 10010 = 1020 points. A
100 points appear now as isolated points in a vast empty space.

Consequently, a search policy (e.g. exhaustive search) that is valuable
in small dimensions might be useless in moderate or large dimensional
search spaces.
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Problem Statement Non-Separable Problems

Separable Problems

Definition (Separable Problem)
A function f is separable if

arg min
(x1,...,xn)

f (x1, . . . , xn) =
(

arg min
x1

f (x1, . . .), . . . , arg min
xn

f (. . . , xn)
)

⇒ it follows that f can be optimized in a sequence of n independent
1-D optimization processes

Example: Additively
decomposable functions

f (x1, . . . , xn) =
n∑

i=1

fi(xi)

Rastrigin function

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1
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Problem Statement Non-Separable Problems

Non-Separable Problems
Building a non-separable problem from a separable one

Rotating the coordinate system
f : x 7→ f (x) separable
f : x 7→ f (Rx) non-separable

R rotation matrix
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12
1

Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies:
The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann

2
Salomon (1996). ”Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A

survey of some theoretical and practical aspects of genetic algorithms.” BioSystems, 39(3):263-278
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Problem Statement Ill-Conditioned Problems

Ill-Conditioned Problems

If f is quadratic, f : x 7→ xTHx, ill-conditioned means a high condition number of
Hessian Matrix H

ill-conditioned means “squeezed” lines of equal function value
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consider the curvature of iso-fitness lines
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Problem Statement Ill-Conditioned Problems

The Benefit of Second Order Information

Consider the convex quadratic function f (x) = 1
2(x− x∗)TH(x− x∗)

gradient direction −f ′(x)T

Newton direction −H−1f ′(x)T

Condition number equals nine here. Condition numbers between 100
and even 106 can be observed in real world problems.

If H ≈ I (small condition number of H) first order information (e.g. the
gradient) is sufficient. Otherwise second order information (estimation
of H−1) is required.
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Problem Statement Ill-Conditioned Problems

Ill-Conditioned Problems
Example: A Narrow Ridge

Volume oriented search ends up in the pink area.
To approach the optimum an ill-conditioned problem needs to be
solved (e.g. by following the narrow bent ridge).3

3
Whitley, Lunacek, Knight 2004. Ruffled by Ridges: How Evolutionary Algorithms Can Fail, GECCO
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Problem Statement Ill-Conditioned Problems

Second Order Approaches
Examples

quasi-Newton method
conjugate gradients
trust region methods
surrogate model methods
linkage learning
correlated mutations (self-adaptation)
estimation of distribution algorithms

The mutual idea
capture dependencies between variables, a second-order model

. . . summary
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Problem Statement Summary

What Makes a Function Difficult to Solve?
. . . and what can be done

The Problem What can be done

Ruggedness non-local search, large sampling width (step-size)
as large as possible while preserving a

reasonable convergence speed

stochastic, non-elitistic, population-based method
recombination operator

serves as repair mechanism

Dimensionality,
Non-Separability

exploiting the problem structure
locality, neighborhood, encoding

Ill-conditioning second order approach
changes the neighborhood metric

. . . interface to real world problems
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Stochastic Search A Search Template

Stochastic Search

A black box search template to minimize f : Rn → R
Initialize distribution parameters θ, set population size λ ∈ N
While not terminate

1 Sample distribution P (x|θ)→ x1, . . . , xλ ∈ Rn

2 Evaluate x1, . . . , xλ on f
3 Update parameters θ ← Fθ(θ, x1, . . . , xλ, f (x1), . . . , f (xλ))

Everything depends on the definition of P and Fθ

deterministic algorithms are covered as well

In Evolutionary Algorithms the distribution P is often implicitly defined
via operators on a population, in particular, selection, recombination
and mutation

Remark: a population of solutions is used
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Stochastic Search A Search Template

Stochastic Search

A black box search template to minimize f : Rn → R
Initialize distribution parameters θ, set population size λ ∈ N
While not terminate

1 Sample distribution P (x|θ)→ x1, . . . , xλ ∈ Rn

2 Evaluate x1, . . . , xλ on f
3 Update parameters θ ← Fθ(θ, x1, . . . , xλ, f (x1), . . . , f (xλ))

In the following

P is a multi-variate normal distribution N
(
m, σ2C

)
∼ m + σN (0, C)

θ = {m, C, σ} ∈ Rn × Rn×n × R+

Fθ = Fθ(θ, x1:λ, . . . , xµ:λ), where µ ≤ λ and xi:λ is the i-th best of
the λ points
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Stochastic Search The Normal Distribution

Why Normal Distributions?

1 most convenient way to generate isotropic search points
the isotropic distribution does not (unfoundedly) favor any direction,

supports rotational invariance
2 maximum entropy distribution with finite variance

there are the least possible assumptions on f in the distribution
shape

3 only stable distribution with finite variance
stable means the sum of normal variates is again normal,

helpful in design and analysis of algorithms

4 widely observed in nature, for example with phenotypic traits
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Stochastic Search The Normal Distribution

Normal Distribution
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Stochastic Search The Normal Distribution

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution N (m, C) is uniquely determined by its mean
value m ∈ Rn and its symmetric positive definite n× n covariance matrix C.

The mean value m

determines the displacement (translation)

is the value with the largest density (modal value)

the distribution is symmetric about the distribution
mean −4 −2 0 2 40
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Stochastic Search The Normal Distribution

The covariance matrix C determines the shape. It has a valuable geometrical
interpretation: any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x ∈ Rn | xTC−1x = 1}

Lines of Equal Density

N
`
m, σ2I

´
∼ m + σN (0, I)

one free parameter σ
components of N (0, I)
are independent standard
normally distributed

N
`
m, D2´

∼ m + DN (0, I)
n free parameters

components are
independent, scaled

N (m, C)∼ m + C
1
2N (0, I)

(n2 + n)/2 free parameters
components are
correlated

where I is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable
for separable problems) and A×N (0, I) ∼ N

`
0, AAT´

holds for all A.
. . . CMA
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The CMA Evolution Strategy

1 Problem Statement

2 Stochastic Search
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Covariance Matrix Rank-One Update
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The CMA Evolution Strategy Sampling New Search Points

Sampling New Search Points
The Mutation Operator

New search points are sampled normally distributed

xi ∼ Ni
(
m, σ2C

)
= m + σNi(0, C) for i = 1, . . . , λ

where xi, m ∈ Rn, σ ∈ R+, and C ∈ Rn×n

where

the mean vector m ∈ Rn represents the favorite solution
the so-called step-size σ ∈ R+ controls the step length
the covariance matrix C ∈ Rn×n determines the shape of
the distribution ellipsoid

The question remains how to update m, C, and σ.
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The CMA Evolution Strategy Sampling New Search Points

Update of the Distribution Mean m
Selection and Recombination

Given the i-th solution point xi = m + σ Ni(0, C)︸ ︷︷ ︸
=: zi

= m + σ zi

Let xi:λ the i-th ranked solution point, such that f (x1:λ) ≤ · · · ≤ f (xλ:λ).
The new mean reads

m←
µ∑

i=1

wi xi:λ

= m + σ

µ∑
i=1

wi zi:λ︸ ︷︷ ︸
=: 〈z〉sel

where
w1 ≥ · · · ≥ wµ > 0,

∑µ
i=1 wi = 1

The best µ points are selected from the new solutions (non-elitistic)
and weighted intermediate recombination is applied.
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The CMA Evolution Strategy Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m ← m + σ〈z〉sel, 〈z〉sel =
∑µ

i=1 wi zi:λ, zi ∼ Ni(0, C)

initial distribution, C = I
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The CMA Evolution Strategy Covariance Matrix Rank-One Update

The covariance matrix adaptation

learns all pairwise dependencies between variables
off-diagonal entries in the covariance matrix reflect the dependencies

learns a rotated problem representation (according to the
principle axes of the mutation ellipsoid)

components are independent (only) in the new representation

learns a new metric according to the scaling of the independent components
in the new representation

conducts a principle component analysis (PCA) of steps 〈z〉sel, sequentially in time and
space

eigenvectors of the covariance matrix C are the principle components / the
principle axes of the mutation ellipsoid

approximates the inverse Hessian on quadratic functions

is equivalent with an adaptive (general) linear encoding4

. . . equations

4
Hansen 2000, Invariance, Self-Adaptation and Correlated Mutations in Evolution Strategies, PPSN VI
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The CMA Evolution Strategy Covariance Matrix Rank-One Update

1 Problem Statement
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The CMA Evolution Strategy Cumulation—the Evolution Path

Cumulation
The Evolution Path

Evolution Path
Conceptually, the evolution path is the path the strategy takes over a number of
generation steps. It can be expressed as a sum of consecutive steps of the mean m.

An exponentially weighted sum of
steps 〈z〉sel is used

pc ∝
gX

i=0

(1− cc)
g−i| {z }

exponentially

fading weights

〈z〉(i)
sel

The recursive construction of the evolution path (cumulation):

pc ← (1− cc)| {z }
decay factor

pc +
p

1− (1− cc)2√µeff| {z }
normalization factor

〈z〉sel|{z}
input

where µeff = 1P
wi2 , cc � 1. History information is accumulated in the evolution path.
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The CMA Evolution Strategy Cumulation—the Evolution Path

“Cumulation” is a widely used technique and also know as

exponential smoothing in time series, forecasting
exponentially weighted mooving average
iterate averaging in stochastic approximation
momentum term in the back-propagation algorithm for ANNs
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The CMA Evolution Strategy Cumulation—the Evolution Path

Cumulation
Utilizing the Evolution Path

We used 〈z〉sel〈z〉Tsel for updating C. Because 〈z〉sel〈z〉Tsel = −〈z〉sel(−〈z〉sel)
T the sign of

〈z〉sel is neglected. The sign information is (re-)introduced by using the evolution path.

pc ← (1− cc)| {z }
decay factor

pc +
p

1− (1− cc)2√µeff| {z }
normalization factor

〈z〉sel

where µeff = 1P
wi2 , cc � 1.
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The CMA Evolution Strategy Cumulation—the Evolution Path

Using an evolution path for the rank-one update of the covariance
matrix reduces the number of function evaluations to adapt to a
straight ridge from O(n2) to O(n).a

a
Hansen, Müller and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with

Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18

The overall model complexity is n2 but important parts of the model
can be learned in time of order n

. . . rank µ update
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The CMA Evolution Strategy Covariance Matrix Rank-µ Update

Rank-µ Update

xi = m + σ zi, zi ∼ Ni(0, C) ,
m ← m + σ〈z〉sel 〈z〉sel =

Pµ
i=1 wi zi:λ

The rank-µ update extends the update rule for large population sizes λ
using µ > 1 vectors to update C at each generation step.
The matrix

Z =
µ∑

i=1

wi zi:λzT
i:λ

computes a weighted mean of the outer products of the best µ steps
and has rank min(µ, n) with probability one.
The rank-µ update then reads

C← (1− ccov) C + ccov Z

where ccov ≈ µeff /n2 ≤ 1.
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The CMA Evolution Strategy Covariance Matrix Rank-µ Update

xi = m + σ zi, zi ∼ N (0, C)

sampling of λ = 150
solutions where
C = I and σ = 1

Z = 1
µ

P
zi:λzT

i:λ
C ← (1− 1)× C + 1× Z

calculating C where
µ = 50,

w1 = · · · = wµ = 1
µ ,

and ccov = 1

mnew ← m + 1
µ

P
zi:λ

new distribution
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The CMA Evolution Strategy Covariance Matrix Rank-µ Update

rank-µ CMA versus EMNAglobal
5

xi = mold + zi, zi ∼ N (0, C)

xi = mold + zi, zi ∼ N (0, C)

sampling of λ = 150
solutions (dots)

C← 1
µ

P
(xi:λ−mold)(xi:λ−mold)

T

C← 1
µ

P
(xi:λ−mnew)(xi:λ−mnew)

T

calculating C from µ = 50
solutions

mnew = mold + 1
µ

P
zi:λ

mnew = mold + 1
µ

P
zi:λ

new distribution

rank-µ CMA
conducts a
PCA of
steps

EMNAglobal

conducts a
PCA of
points

The CMA-update yields a larger variance in particular in gradient direction, because mnew is the
minimizer for the variances when calculating C

5
Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larranga, I. Inza and E.

Bengoetxea (Eds.). Towards a new evolutionary computation. Advances in estimation of distribution algorithms. pp. 75-102

Nikolaus Hansen () Stochastic Optimization in Continuous Domain July 2007 35 / 76



The CMA Evolution Strategy Covariance Matrix Rank-µ Update

The rank-µ update

increases the possible learning rate in large populations
roughly from 2/n2 to µeff /n2

can reduce the number of necessary generations roughly from
O(n2) to O(n)6

given µeff ∝ λ ∝ n

Therefore the rank-µ update is the primary mechanism whenever a
large population size is used

say λ ≥ 3 n + 10

The rank-one update
uses the evolution path and reduces the number of necessary
function evaluations to learn straight ridges from O(n2) to O(n) .

6
Hansen, Müller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with

Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18
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The CMA Evolution Strategy Covariance Matrix Rank-µ Update

1 Problem Statement

2 Stochastic Search

3 The CMA Evolution Strategy
Covariance Matrix Rank-One Update
Cumulation—the Evolution Path
Covariance Matrix Rank-µ Update
Step-Size Control
Summary

4 Discussion

5 Empirical Validation
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The CMA Evolution Strategy Step-Size Control

Why Step-Size Control?

1 the covariance matrix update can hardly increase the variance in all
directions simultaneously

2 There is a relatively small evolution window for the step-size 10−3 10−2 10−1 100

0

0.05

0.1

0.15

0.2

no
rm

al
ize

d 
pr

og
re

ss

normalized step size .
Given µ 6� n the optimal step length remarkably depends on parent
number µ. The C-update cannot achieve close to optimal step lengths
for a wide range of µ.

3 The learning rate ccov ≈ µeff /n2 does not comply with the requirements of
convergence speed on the sphere model, f (x) =

∑
x2

i .

Each single reason would be sufficient to ask for additional step-size control

. . . methods for step-size control
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Why Step-Size Control?

10−3 10−2 10−1 100
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normalized step size

evolution window for the
step-size on the sphere
function

evolution window refers to the
step-size interval where
reasonable performance is
observed
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The CMA Evolution Strategy Step-Size Control

Methods for Step-Size Control

1/5-th success ruleab, often applied with “+”-selection

σ-self-adaptationc, applied with “,”-selection

two-point adaptation, used in Evolutionary Gradient Searchd

path length controle (Cumulative Step-size Adaptation, CSA)f, applied with
“,”-selection

a
Rechenberg 1973, Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der biologischen Evolution,

Frommann-Holzboog
b

Schumer and Steiglitz 1968. Adaptive step size random search. IEEE TAC
c

Schwefel 1981, Numerical Optimization of Computer Models, Wiley
d

Salomon 1998, Evolutionary algorithms and gradient search: Similarities and differences, IEEE Trans. Evol. Comput., 2(2)
e

Hansen & Ostermeier 2001, Completely Derandomized Self-Adaptation in Evolution Strategies, Evol. Comput. 9(2)
f
Ostermeier et al 1994, Step-size adaptation based on non-local use of selection information, PPSN IV
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Methods for Step-Size Control

1/5-th success rule, often applied with “+”-selection

increase step-size if more than 20% of the new solutions are successful,
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σ-self-adaptation, applied with “,”-selection
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Methods for Step-Size Control

1/5-th success rule, often applied with “+”-selection

σ-self-adaptation, applied with “,”-selection

mutation is applied to the step-size and the better one, according to the
objective function value, is selected

two-point adaptation, used in Evolutionary Gradient Search

path length control (Cumulative Step-size Adaptation, CSA), applied with
“,”-selection
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The CMA Evolution Strategy Step-Size Control

Methods for Step-Size Control

1/5-th success rule, often applied with “+”-selection

σ-self-adaptation, applied with “,”-selection

two-point adaptation, used in Evolutionary Gradient Search

simplified “global” self-adaptation

path length control (Cumulative Step-size Adaptation, CSA), applied with
“,”-selection
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The CMA Evolution Strategy Step-Size Control

Path Length Control
The Concept

xi = m + σ zi

m ← m + σ〈z〉sel

Measure the length of the evolution path
the pathway of the mean vector m in the generation sequence

↓
decrease σ

↓
increase σ

loosely speaking steps are

perpendicular under random selection (in expectation)
perpendicular in the desired situation (to be most efficient)
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The CMA Evolution Strategy Summary

Summary
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in a Nutshell

1 Multivariate normal distribution to generate new search points
follows the maximum entropy principle

2 Selection only based on the ranking of the f -values, weighted
recombination

using only the ranking of f -values preserves invariance

3 Covariance matrix adaptation (CMA) increases the probability to
repeat successful steps

conducts a sequential PCA
=⇒ rotated problem representation

=⇒ learning all pairwise dependencies

4 An evolution path enhances the covariance matrix adaptation
5 Path length control to control the step-size

uses the evolution path,
aims at conjugate perpendicularity

Nikolaus Hansen () Stochastic Optimization in Continuous Domain July 2007 42 / 76



The CMA Evolution Strategy Summary

Summary
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in a Nutshell

1 Multivariate normal distribution to generate new search points
follows the maximum entropy principle

2 Selection only based on the ranking of the f -values, weighted
recombination

using only the ranking of f -values preserves invariance

3 Covariance matrix adaptation (CMA) increases the probability to
repeat successful steps

conducts a sequential PCA
=⇒ rotated problem representation

=⇒ learning all pairwise dependencies

4 An evolution path enhances the covariance matrix adaptation
5 Path length control to control the step-size

uses the evolution path,
aims at conjugate perpendicularity

Nikolaus Hansen () Stochastic Optimization in Continuous Domain July 2007 42 / 76



The CMA Evolution Strategy Summary

Summary
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in a Nutshell

1 Multivariate normal distribution to generate new search points
follows the maximum entropy principle

2 Selection only based on the ranking of the f -values, weighted
recombination

using only the ranking of f -values preserves invariance

3 Covariance matrix adaptation (CMA) increases the probability to
repeat successful steps

conducts a sequential PCA
=⇒ rotated problem representation

=⇒ learning all pairwise dependencies

4 An evolution path enhances the covariance matrix adaptation
5 Path length control to control the step-size

uses the evolution path,
aims at conjugate perpendicularity

Nikolaus Hansen () Stochastic Optimization in Continuous Domain July 2007 42 / 76



The CMA Evolution Strategy Summary

Summary
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in a Nutshell

1 Multivariate normal distribution to generate new search points
follows the maximum entropy principle

2 Selection only based on the ranking of the f -values, weighted
recombination

using only the ranking of f -values preserves invariance

3 Covariance matrix adaptation (CMA) increases the probability to
repeat successful steps

conducts a sequential PCA
=⇒ rotated problem representation

=⇒ learning all pairwise dependencies

4 An evolution path enhances the covariance matrix adaptation
5 Path length control to control the step-size

uses the evolution path,
aims at conjugate perpendicularity

Nikolaus Hansen () Stochastic Optimization in Continuous Domain July 2007 42 / 76



The CMA Evolution Strategy Summary

Summary
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in a Nutshell

1 Multivariate normal distribution to generate new search points
follows the maximum entropy principle

2 Selection only based on the ranking of the f -values, weighted
recombination

using only the ranking of f -values preserves invariance

3 Covariance matrix adaptation (CMA) increases the probability to
repeat successful steps

conducts a sequential PCA
=⇒ rotated problem representation

=⇒ learning all pairwise dependencies

4 An evolution path enhances the covariance matrix adaptation
5 Path length control to control the step-size

uses the evolution path,
aims at conjugate perpendicularity

Nikolaus Hansen () Stochastic Optimization in Continuous Domain July 2007 42 / 76



The CMA Evolution Strategy Summary

Summary of Equations
The Covariance Matrix Adaptation Evolution Strategy

Initialize m ∈ Rn, σ ∈ R+, C = I, and pc = 0, pσ = 0,
set cc ≈ 4/n, cσ ≈ 4/n, ccov ≈ µeff /n2, µcov = µeff , dσ ≈ 1 +

√
µeff

n ,
set λ and wi, i = 1, . . . , µ such that µeff ≈ 0.3 λ

While not terminate

xi = m + σ zi, zi ∼ Ni(0, C) , sampling

m ← m + σ〈z〉sel where 〈z〉sel =
∑µ

i=1 wi zi:λ update mean

pc ← (1− cc) pc + 1I{‖pσ‖<1.5
√

n}
√

1− (1− cc)2√µeff 〈z〉sel cumulation for C

C ← (1− ccov) C + ccov
1

µcov
pc pc

T update C

+ ccov

(
1− 1

µcov

)
Z where Z =

∑µ
i=1 wi zi:λzT

i:λ

pσ ← (1− cσ) pσ +
√

1− (1− cσ)2√µeff C− 1
2 〈z〉sel cumulation for σ

σ ← σ × exp
(

cσ

dσ

(
‖pσ‖

E‖N(0,I)‖ − 1
))

update of σ

. . . CMA in a nutshell
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Discussion

1 Problem Statement

2 Stochastic Search

3 The CMA Evolution Strategy

4 Discussion
Experimentum Crucis
Invariance
Population Size

5 Empirical Validation
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Discussion Experimentum Crucis

Experimentum Crucis
What did we specifically want to achieve?

reduce any convex quadratic function

f (x) = xTHx

to the sphere model
f (x) = xTx

without use of derivatives

lines of equal density align with lines of equal fitness

C ∝ H−1

even true for any g(f (x)) = g
(
xTHx

)
g : R→ R stricly monotonic (order preserving)
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Discussion Experimentum Crucis

Experimentum Crucis (1)
f convex quadratic, separable
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Discussion Experimentum Crucis

Experimentum Crucis (2)
f convex quadratic, non-separable (rotated)
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. . . internal parameters
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Discussion Experimentum Crucis
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Discussion Experimentum Crucis

Comparison to BFGS
f convex quadratic, non-separable (rotated)

f (x) = xTHx

shown are function evaluations CMA-ES
function evaluations BFGS until to reach f = 10−6

versus condition number
. . . population size, invariance
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Discussion Invariance

Invariance
Motivation

The grand aim of all science is to cover the greatest number of
empirical facts by logical deduction from the smallest number of

hypotheses or axioms.
— Albert Einstein

empirical performance results, for example

from benchmark functions,
from solved real world problems,

are only useful if they do generalize to other problems

Invariance is a statement about the feasibility of generalization
generalizes performance from a single function to a class of

functions
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Discussion Invariance

Basic Invariance in Search Space

translation invariance, for example applies to most optimization
algorithms

��
��
��

��
��
��

f (x)↔ f (x− a)

��
��
��

��
��
��

Identical behavior on f and fa

f : x 7→ f (x), x(t=0) = x0

fa : x 7→ f (x− a), x(t=0) = x0 + a

No difference can be observed w.r.t. the argument of f

Only useful if the initial point is not decisive
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Discussion Invariance

Invariance in Function Space

invariance to order preserving transformations
preserved by ranking based selection
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Identical behavior on f and g ◦ f for all order preserving
g : R→ R (strictly monotonically increasing g)

f : x 7→ f (x), x(t=0) = x0

g ◦ f : x 7→ g(f (x)), x(t=0) = x0

No difference can be observed w.r.t. the argument of f
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Discussion Invariance

Rotational Invariance in Search Space

invariance to an orthogonal transformation R, where RRT = I
e.g. true for simple evolution strategies

recombination operators might jeopardize rotational invariance

��
��
��

��
��
��

f (x)↔ f (Rx)

�
�

�
�

�
�

�
�

�
�

�
�

Identical behavior on f and fR

f : x 7→ f (x), x(t=0) = x0

fR : x 7→ f (Rx), x(t=0) = R−1(x0)

No difference can be observed w.r.t. the argument of f
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Discussion Invariance

Invariances in Search Space

invariance to any rigid (scalar product preserving) transformation
in search space x 7→ Rx− a, where RRT = I

e.g. true for simple evolution strategies

scale invariance (scalar multiplication)
exploited by step-size control

invariance to a general linear transformation G
exploited by CMA

Identical behavior on f and fR

f : x 7→ f (x), x(t=0) = x0

fR : x 7→ f (Rx), x(t=0) = R−1(x0)

No difference can be observed w.r.t. the argument of f
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invariance to any rigid (scalar product preserving) transformation
in search space x 7→ Rx− a, where RRT = I

e.g. true for simple evolution strategies

scale invariance (scalar multiplication)
exploited by step-size control

invariance to a general linear transformation G
exploited by CMA

Identical behavior on f and fα

f : x 7→ f (x), x(t=0) = x0, σ(t=0) = σ0

fα : x 7→ f (αx), x(t=0) = x0/α, σ(t=0) = σ0/α

No difference can be observed w.r.t. the argument of f

Only useful with an effective step-size control
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Discussion Invariance

Invariances in Search Space

invariance to any rigid (scalar product preserving) transformation
in search space x 7→ Rx− a, where RRT = I

e.g. true for simple evolution strategies

scale invariance (scalar multiplication)
exploited by step-size control

invariance to a general linear transformation G
exploited by CMA

Identical behavior on f and fG

f : x 7→ f (x), x(t=0) = x0, C(t=0) = I
fG : x 7→ f (G(x− b)), x(t=0) = G−1x0 + b, C(t=0) = G−1G−1T

No difference can be observed w.r.t. the argument of f

Only useful with an effective adaptation of C
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Discussion Invariance

Invariance of the CMA Evolution Strategy

The CMA Evolution Strategy inherits all invariances from simple
evolution strategies

to rigid transformations of the search space and
to order preserving transformations of the function value

The Covariance Matrix Adaptation adds invariance to general
linear transformations

useful only together with an effective adaptation of the covariance
matrix

. . . strategy internal parameters
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Discussion Strategy Internal Parameters

Strategy Internal Parameters

related to selection and recombination

λ, offspring number, new solutions sampled, population size
µ, parent number, solutions involved in updates of m, C, and σ
wi=1,...,µ, recombination weights

related to C-update

ccov, learning rate for C-update
cc, learning rate for the evolution path
µcov, weight for rank-µ update versus rank-one update

related to σ-update

cσ , learning rate of the evolution path
dσ , damping for σ-change

Parameters were identified in carefully chosen experimental set ups. Parameters do not in the first
place depend on the objective function and are not meant to be in the users choice.
Only(?) the population size λ might be reasonably varied in a wide range, depending on the
objective function

. . . population size
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Discussion Population Size

Population Size on Multi-Modal Functions
Success Probability to Find the Global Optimum
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Shown: success rate versus offspring population size on the highly multi-modal
Rastrigins function7

On multi-modal functions increasing the population size can sharply
increase the success probability to find the global optimum

7
Hansen & Kern 2004. Evaluating the CMA Evolution Strategy on Multimodal Test Functions. PPSN VIII, Springer-Verlag,

pp. 282-291.
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Discussion Population Size

Multi-Start With Increasing Population Size
Increase by a Factor of Two Each Restart

1 no performance loss, where small population size is sufficient (e.g.
on unimodal functions)

2 moderate performance loss, if large population size is neces-
sary loss has, in principle, an upper bound
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ss

for a factor between
successive runs of ≥ 1.5 we
have a performance loss
smaller than∑∞

k=0 1/1.5k = 3

This results in a quasi parameter free search algorithm.8

. . . empirical evaluation
8

Auger & Hansen 2005. A Restart CMA Evolution Strategy With Increasing Population Size. IEEE Congress on Evolutionary
Computation.
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Empirical Validation

1 Problem Statement

2 Stochastic Search

3 The CMA Evolution Strategy

4 Discussion

5 Empirical Validation
Performance Evaluation
A Comparison Study
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Empirical Validation Performance Evaluation

Performance Evaluation

Evaluation of the performance of a search algorithm needs

meaningful quantitative measure on benchmark functions or real
world problems

acknowlegde invariance properties

account for meta-parameter tuning

account for algorithm internal cost
often negligible, depending on the objective function cost
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Empirical Validation A Comparison Study

Comparison of 11 Evolutionary Algorithms
A Performance Meta-Study

Task: black-box optimization of 25 benchmark functions and
submission of results to the Congress of Evolutionary
Computation

Performance measure: cost (number of function evaluations) to
reach the target function value, where the maximum number of

function evaluations was FEmax =
{

105 for n = 10
3× 105 for n = 30

Remark: the setting of FEmax has a remarkable influence on the results, if the target function value can be reached
only for a (slightly) larger number of function evaluations with a high probability.

Where FEs ≥ FEmax the result must be taken with great care.

The competitors included Differential Evolution (DE), Particle
Swarm Optimization (PSO), real-coded GAs, Estimation of
Distribution Algorithm (EDA), and hybrid methods combined e.g.
with quasi-Newton BFGS.
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Empirical Validation A Comparison Study

References to Algorithms

BLX-GL50 Garcı́a-Martı́nez and Lozano (Hybrid Real-Coded. . . )
BLX-MA Molina et al. (Adaptive Local Search. . . )
CoEVO Pošı́k (Real-Parameter Optimization. . . )
DE Rönkkönen et al. (Real-Parameter Optimization. . . )
DMS-L-PSO Liang and Suganthan (Dynamic Multi-Swarm. . . )
EDA Yuan and Gallagher (Experimental Results. . . )
G-CMA-ES Auger and Hansen (A Restart CMA. . . )
K-PCX Sinha et al. (A Population-Based,. . . )
L-CMA-ES Auger and Hansen (Performance Evaluation. . . )
L-SaDE Qin and Suganthan (Self-Adaptive Differential. . . )
SPC-PNX Ballester et al. (Real-Parameter Optimization. . . )

In: CEC 2005 IEEE Congress on Evolutionary Computation, Proceedings
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Empirical Validation A Comparison Study

Summarized Results
Empirical Distribution of Normalized Success Performance
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FEs = mean(#fevals)× #all runs (25)
#successful runs , where #fevals includes only successful runs.

Shown: empirical distribution function of the Success Performance FEs divided by FEs of the
best algorithm on the respective function.

Results of all functions are used where at least one algorithm was successful at least once, i.e. where the target
function value was reached in at least one experiment (out of 11× 25 experiments).

Small values for FEs and therefore large (cumulative frequency) values in the graphs are
preferable.
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Empirical Validation A Comparison Study

Function Sets

We split the function set into three subsets
unimodal functions
solved multimodal functions

at least one algorithm conducted at least one successful run

unsolved multimodal functions
no single run was successful for any algorithm
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Empirical Validation A Comparison Study

Unimodal Functions
Empirical Distribution of Normalized Success Performance
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Empirical distribution function of the Success Performance FEs divided by FEs of the best
algorithm (table entries of last slides).
FEs = mean(#fevals)× #all runs (25)

#successful runs , where #fevals includes only successful runs.

Small values of FEs and therefore large values in the empirical distribution graphs are preferable.
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Empirical Validation A Comparison Study

Multimodal Functions
Empirical Distribution of Normalized Success Performance
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Empirical distribution function of the Success Performance FEs divided by FEs of the best
algorithm (table entries of last slides).
FEs = mean(#fevals)× #all runs (25)

#successful runs , where #fevals includes only successful runs.

Small values of FEs and therefore large values in the empirical distribution graphs are preferable.
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Empirical Validation A Comparison Study

Comparison Study
Conclusion

The CMA-ES with multi-start and increasing population size

performs best over all functions

performs best on the function subsets
unimodal functions
solved multimodal functions
unsolved multimodal functions

no parameter tuning were conducted

G-CMA-ES, L-CMA-ES, and EDA have the most invariance
properties

on two separable problems G-CMA-ES is considerably
outperformed
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Conclusion

Conclusion
The Take Home Message

Difficulties of a non-linear optimization problem are

ruggedness
demands a non-local (stochastic?) approach

dimensionality and non-separabitity
demands to exploit problem structure, e.g. neighborhood

ill-conditioning
demands to acquire a second order model

The CMA-ES addresses these difficulties and is
a robust local search algorithm

BFGS is roughly ten times faster on convex quadratic f

a robust global search algorithm
empirically outperformes plain or hybrid EAs on most functions

successfully applied to many real-world applications
easily applicable as quasi parameter free
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Conclusion

Thank You

http://www.bionik.tu-berlin.de/user/niko/cmaesintro.html
or google NIKOLAUS HANSEN
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Miscellaneous

Strategy Internal CPU Consumption

On a 2.5GHz processor our CMA-ES implementation needs

roughly 3× 10−8(n + 4)2 seconds per function evaluation

for one million function evaluations roughly
n time

10 5s
30 30s

100 300s
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Miscellaneous Normal Distribution Revisited

Normal Distribution Revisited

While the maximum likelihood of the
multi-variate normal distribution N (0, I) is at
zero, the distribution of its norm ‖N (0, I) ‖
reveals a different, surprising picture.

−5
0

5

−5

0

5
0

0.1

0.2

0.3

0.4

2−D Normal Distribution

0 1 2 3 4 5 6 70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Multi−Variate Normal Distribution

de
ns

ity
 o

f n
or

m
 in

 1
, 2

, 5
, 1

0,
 2

0−
D In 10-D (black) the usual

step length is about 3× σ
and step lengths smaller
than 1× σ virtually never
occur
Remind: this norm-density
shape maximizes the
distribution entropy

Nikolaus Hansen () Stochastic Optimization in Continuous Domain July 2007 70 / 76



Miscellaneous Determining Learing Rates

Determining Learning Rates
Learning rate for the covariance matrix
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C equals 104
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x-axis: learning rate for the covariance matrix
y-axis: square root of final condition number of C (red),
number of function evaluations to reach fstop (blue)

Nikolaus Hansen () Stochastic Optimization in Continuous Domain July 2007 71 / 76



Miscellaneous Determining Learing Rates

Determining Learning Rates
Learning rate for the covariance matrix

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

n=20

n=20

ccov

ax
is

 r
at

io
, f

un
ct

io
n 

ev
al

ua
tio

ns
 / 

10
 / 

n

f (x) = xTx = ‖x‖2 =∑n
i=1 x2

i ,
optimal condition number
for C is one,
initial condition number of
C equals 104

shown are single runs

x-axis: learning rate for the covariance matrix
y-axis: square root of final condition number of C (red),
number of function evaluations to reach fstop (blue)

Nikolaus Hansen () Stochastic Optimization in Continuous Domain July 2007 71 / 76
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Learning rate for the covariance matrix
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. . . step size control
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Miscellaneous EMNA versus CMA

EMNA versus CMA

Both algorithms use the same sample distribution

xi = m + σ zi, zi ∼ Ni(0, C)

In EMNAglobal σ ≡ 1 and

m← 1
µ

µ∑
i=1

xi:λ

C← 1
µ

µ∑
i=1

(xi:λ −m)(xi:λ −m)T

In CMA, for ccov = 1, with rank-µ
update only

m←
µ∑

i=1

wi xi:λ

C←
µ∑

i=1

wi zi:λzT
i:λ

where zi:λ = xi:λ−mold
σ
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Miscellaneous EMNA versus CMA

xi = mold + zi, zi ∼ N (0, C)

xi = mold + zi, zi ∼ N (0, C)

sampling of λ = 150
solutions (dots) where

C = I and σ = 1

C←
1
µ

P
(xi:λ − mold)(xi:λ − mold)

T

C←
1
µ

P
(xi:λ − mnew)(xi:λ − mnew)

T

calculating C where
µ = 50,

w1 = · · · = wµ = 1
µ

, and
ccov = 1

mnew = mold + 1
µ

P
zi:λ

mnew = mold + 1
µ

P
zi:λ

new distribution

rank-µ CMA
conducts a
PCA of
steps

EMNAglobal

conducts a
PCA of
points

the CMA-update yields a larger variance in particular in gradient direction
mnew is the minimizer for the variances when calculating CNikolaus Hansen () Stochastic Optimization in Continuous Domain July 2007 74 / 76
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Miscellaneous EMNA versus CMA

Population Size on Unimodal Functions

On unimodal functions the performance degrades at most linearly with
increasing population size.

most often a small population size, λ ≤ 10, is optimal
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Miscellaneous Problem Representation

Problem Formulation

A real world problem requires

a representation; the encoding of problem parameters into x ∈ X ⊂ Rn

the definition of a objective function f : x 7→ f (x) to be minimized

One might distinguish two approaches

Natural Encoding
Use a “natural” encoding and design the optimizer with respect to the problem e.g. use
of specific “genetic operators”

frequently done in discrete domain

Concerned Encoding (Pure Black Box)
Put problem specific knowledge into the encoding and use a “generic” optimizer

frequently done in continuous domain
Advantage: Sophisticated and well-validated optimizers can be used
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