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Why Do We Need to Measure Performance?

● putting algorithms to a standardized test
– simplify judgement
– simplify comparison
– regression test/quality check under 

algorithm changes
 

● algorithm selection

● understanding of algorithms
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How do we measure performance? 
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Birds View
We can measure performance on 

● real world problems
● expensive
● comparison is typically limited to certain domains
● experts have limited interest to publish

● "artificial" benchmark functions
● cheap
● data acquisition is comparatively easy
● problem of representativity

● caveat: parameter of algorithms
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Measuring Performance

...empirically...

● convergence graphs is all we have to start 
with

● the right presentation cannot be 
overestimated

the details are important



Performance Evaluation of Anytime Black Box OptimizersNikolaus Hansen

Displaying Three Runs (three trials)

not like this (it's unfortunately a common picture)
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Displaying Three Runs (three trials)

better like this (shown are the same data), 
caveat: fails with negative f-values
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Displaying Three Runs (three trials)

even better like this: subtract minimum value over 
all runs
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Displaying 51 Runs
don't hesitate to display all data (the appendix is your friend)

: final value

observation: three different "modes", which would be difficult to 
represent or recover in single statistics
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Which Statistic?
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Which Statistic?

mean/average function value

● tends to emphasize large values
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Which Statistic?

geometric average function value
● reflects "visual" average
● depends on offset
● artefact due to adding 1e-11
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Which Statistic?

average iterations
● reflects "visual" average
● here: incomplete
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Which Statistic?

the median is invariant 
● unique for uneven number of data
● independent of log-scale, offset...

median(log(data))=log(median(data))
● same when taken over x- or y-direction
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Implication

● use the median as summary datum
● more general: use quantiles as summary data

for example out of 15 data: 2nd, 8th, and 14th value 
 represent the 10%, 50%, and 90%-tile

unless there are good reasons for a different 
statistic
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Examples

Comparison of 4 algorithms using the "median run" 
and the 90% central range of the final value on two 
different functions (Ellipsoid and Rastrigin)

caveat: this range display with simple error bars
 fails, if, e.g., 30% of all runs "converge"
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Examples: Plotting All Data

Experiments from two algorithms, A1 and A2
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Statistical Assessment
● Don't be scared!

1)  Assess the meaning/relevance of a difference first (the only 
difficult part)

2)  Apply rank-sum test (Wilcoxon, Mann-Whitney U)

● only assumption: no equal data values

● hypothesis:

● compares sum of ranks in a combined ranking

● two-sided 1%-significance p-value needs only 2x5 data values

● For the same p-value, fewer significant data are better

using enough data, any difference
 can be made significant

Generally: non-parametric tests, Kolmogorov-Smirnov test for ECDFs, no 
need to use the t-test  
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Performance Measure(s)

Runtime
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Three Convergence Graphs

recall: convergence graphs is all we have
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 (recall) Black-Box Optimization

Two objectives: 

● Find solution with small(est possible) function 
value

● With the least possible search costs (number of 
function evaluations)

● For measuring performance: fix one and 
measure the other
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Two objectives

convergence graph is a plot in objective space



Measuring Performance from Convergence 
Graphs 
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Measuring Performance from Convergence 
Graphs 
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Evaluation of Search Algorithms
Behind the scene

a performance should be

● quantitative on the ratio scale (highest possible)
● “algorithm A is two times better than algorithm B”

 is a meaningful statement

● can assume a wide range of values 

● meaningful (interpretable) with regard to the real world

 possible to transfer from benchmarking to real world

runtime or first hitting time is the prime candidate (we don't 
have many choices anyway)
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The performance measure we use

Run length or runtime or first hitting time to a 
given target function value measured in number of 
fitness function evaluations

equivalent to first hitting time of a
 sublevel set in search space

How can we deal with "missing values"? 
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Fixed-target: Measuring Runtime
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Fixed-target: Measuring Runtime
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Fixed-target: Measuring Runtime
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Break
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Summary
● plot carefully

● display all data

● use the median as summary datum

unless for runtimes or you know exactly what you do

● more general: use quantiles as summary data

● assess a performance difference before to worry about 
statistical significance

● vertical vs. horizontal view-point

● run"time" RT and 
● ERT (expected RT)
● runtime ECDF (empirical cumulative distribution fct)
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ECDF:

Empirical Cumulative Distribution 
Function of the Runtime
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 A Convergence Graph
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 First hitting time is monotonous
● first hitting time: a 

monotonous 
graph
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● another 
convergence 
graph
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● another 
convergence 
graph with hitting 
time
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target

● a target value 
delivers two data 
points
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target

another target

● a target value 
delivers two data 
points
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ECDF with four data points
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● reconstructing a 
single run
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50 equally spaced targets
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the ECDF recovers 
the monotonous 
graph
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the ECDF recovers 
the monotonous 
graph, discretised 
and flipped 
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the ECDF recovers 
the monotonous 
graph, discretised 
and flipped
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the ECDF recovers 
the monotonous 
graph, discretised 
and flipped

the area over the 
ECDF curve is the 
average log runtime 
(or geometric 
average runtime)
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15 runs
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target

15 runs
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the ECDF of run 
lengths (runtimes)

80% of the runs 
reached the target
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15 runs
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15 runs

50 targets
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15 runs

50 targets
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15 runs

50 targets

ECDF with 750 
steps
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15 runs integrated 
in a single graph
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Target budgets/run-lengths

1) define reference 
target budgets
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Target budgets on the reference algorithm

1) define reference 
target budgets

2) compute best 
function value 
achieved by a 
reference 
algorithm
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Target budgets on the reference algorithm

1) define reference 
target budgets

2) compute best 
function value 
achieved by a 
reference 
algorithm
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Run-length based target f-values

1) define reference 
target budgets

2) compute best 
function value 
achieved by a 
reference 
algorithm

=> set of target 
function values
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Run-length based target f-values

1) define reference 
target budgets

2) compute best 
function value 
achieved by a 
reference 
algorithm

=> set of target 
function values
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Example for ECDFs

 Empirical cumulative distribution functions (ECDFs) of running lengths (left) 
and function values (right)
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Overview results 2012

●  
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Results of 2012 (20-D) 
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Results of 2010 (20-D) 
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Results of 2009 (20-D) 
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ECDF: Summary

Empirical Cumulative Distribution Functions

● recover a single convergence graph (and generalize)

● can aggregate over any set of functions and target 
values 

they display a set of run lengths or runtimes (RT)

● for RT on a single problem (function & target value) 
allow to estimate any statistics of interest from them, 
like median, expectation (ERT),… in a meaningful way

● AKA data profile [Moré&Wild 2009]

● Performance profile [Dolan&Moré 2002]: ECDFs of run 
lengths divided by the smallest observed run length
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Different Displays of Runtimes
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Scaling Behaviour with Dimension

● slanted grid lines: 
quadratic scaling

● horizontal lines:
linear scaling

● light brown: artificial 
best 2009
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Example: Scaling Behaviour

Experiments in 
>40-D are more 
often than not 
virtually superfluous

dimension

● slanted grid lines: 
quadratic scaling

● horizontal lines:
linear scaling

● light brown: artificial 
best 2009
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ERT scatter plots, all dimensions&targets
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ERT scatter plots, all dimensions&targets
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Single Function Table
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Questions?
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Python
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Python
● a general-purpose, well-designed, modern high-level 

programming language

● dynamically-typed, highly object-oriented (not enforced), 
highly modularized

● for scripting, for programming, for interactive usage

● comes with thousands of packages

● the Python programming language is much better 
designed than Matlab/Octave

● IPython can replace Matlab/Octave for interactive usage

● (I)Python is free and available on almost every computer
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Popularity of Programming Languages (TIOBE)
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BBOB with COCO in practice (for dummies)

COCO (COmparing Continuous Optimizers): a tool for black-box 
optimization benchmarking
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BBOB in practice
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BBOB in practice
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BBOB in practice
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BBOB in practice

Matlab script (exampleexperiment.m): 
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BBOB in practice
Running the experiment at an OS shell:
 
$ nohup nice octave < exampleexperiment.m > output.txt & 
$ less output.txt

GNU Octave, version 3.6.3
Copyright (C) 2012 John W. Eaton and others.
This is free software; see the source code for copying conditions.
[...]
Read http://www.octave.org/bugs.html to learn how to submit bug reports.

For information about changes from previous versions, type `news'.

  f1 in 2-D, instance 1: FEs=242, fbest-ftarget=-8.1485e-10, elapsed time [h]: 0.00
  f1 in 2-D, instance 2: FEs=278, fbest-ftarget=-6.0931e-09, elapsed time [h]: 0.00
  f1 in 2-D, instance 3: FEs=242, fbest-ftarget=-9.2281e-09, elapsed time [h]: 0.00
  f1 in 2-D, instance 4: FEs=302, fbest-ftarget=-4.5997e-09, elapsed time [h]: 0.00
  f1 in 2-D, instance 5: FEs=230, fbest-ftarget=-9.8350e-09, elapsed time [h]: 0.00
  f1 in 2-D, instance 6: FEs=284, fbest-ftarget=-7.0829e-09, elapsed time [h]: 0.00
  f1 in 2-D, instance 7: FEs=278, fbest-ftarget=-6.5999e-09, elapsed time [h]: 0.00
  f1 in 2-D, instance 8: FEs=272, fbest-ftarget=-8.7044e-09, elapsed time [h]: 0.00
  f1 in 2-D, instance 9: FEs=248, fbest-ftarget=-2.6316e-09, elapsed time [h]: 0.00
  f1 in 2-D, instance 10: FEs=302, fbest-ftarget=-4.6779e-09, elapsed time [h]: 0.00
  f1 in 2-D, instance 11: FEs=272, fbest-ftarget=-5.1499e-09, elapsed time [h]: 0.00
  f1 in 2-D, instance 12: FEs=260, fbest-ftarget=-8.8635e-09, elapsed time [h]: 0.00
  f1 in 2-D, instance 13: FEs=266, fbest-ftarget=-2.5484e-09, elapsed time [h]: 0.00
  f1 in 2-D, instance 14: FEs=218, fbest-ftarget=-9.9961e-09, elapsed time [h]: 0.00
  f1 in 2-D, instance 15: FEs=248, fbest-ftarget=-7.5842e-09, elapsed time [h]: 0.00
      date and time: 2013 3 29 19 59 26
  f2 in 2-D, instance 1: FEs=824, fbest-ftarget=-7.0206e-09, elapsed time [h]: 0.00
  f2 in 2-D, instance 2: FEs=572, fbest-ftarget=-9.2822e-09, elapsed time [h]: 0.00
[...]
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BBOB in practice
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BBOB in practice

Post-processing at the OS shell: 
$ python codepath/bbob_pproc/rungeneric.py datapath

[...]

$ pdflatex templateACMarticle.tex

[...]
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BBOB in practice

Post-processing at the OS shell: 
$ python codepath/bbob_pproc/rungeneric.py datapath

[...]

$ pdflatex templateACMarticle.tex

[...]
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Test Functions
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Test Functions

Test functions
● define the "scientific question" 

the relevance can hardly be overestimated

● should represent "reality"
● are often too simple? 

remind separability

● a number of testbeds are around
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GECCO-BBOB

 

 Test Functions



Performance Evaluation of Anytime Black Box OptimizersNikolaus Hansen

Questions?


