Introduction to Randomized Continuous Optimization

Anne Auger \& Nikolaus Hansen Inria, Research Centre Saclay, France

anne.auger@inria.fr nikolaus.hansen@lri.fr
http://www.sigevo.org/gecco-2017/


``` profit or commercial a dvantage and that copies bear this notice and the full ilitation on the
Trist page. Copyights for thirdd party components of this work must be honored. For all other
```



```
ECCO '17 C Con
© 2017 Copyright is held by the ownerfauthor (1)
http://dx.aloi.org/10.1145/3067695.3067721
```


Overview

Problem StatementContinuous Black-Box Optimization
Typical Difficulties
(2) Stochastic Black-Box Algorithms

General Template
Invariance
Comparisons of a few DFOs
(3) Zoom on Evolution Strategies

Step-size Adaptation
Covariance Matrix Adaptation

Motivations and Objectives

Algorithms in continuous domains have common grounds have to face the same difficulties use similar means to overcome them
explicit or implicit variance control,

Teach you basics about randomized optimization
typical difficulties
important algorithm design concepts

-

 Problem Statemen Black Box Optimization and Its Difficulties
Problem Statement

Continuous Domain Search/Optimization

- Task: minimize an objective function (fitness function, loss function) in continuous domain

$$
f: \mathcal{X} \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad \boldsymbol{x} \mapsto f(\boldsymbol{x})
$$

- Black Box scenario (direct search scenario)

- gradients are not available or not useful
- problem domain specific knowledge is used only within the black box, e.g. within an appropriate encoding
- Search costs: number of function evaluations

Problem Statement

Continuous Domain Search/Optimization

- Goal

- fast convergence to the global optimum
- solution \boldsymbol{x} with small function value $f(\boldsymbol{x})$ with l. ear to a robust search cost there are two conflicting objectives
- Typical Examples
- shape optimization (e.g. using CFD)
curve fitting, airfoils
- model calibration biological, physical
- parameter calibration
controller, plants, images
- Problems
- exhaustive search is infeasible
- naive random search takes too long
- deterministic search is not successful / takes too long

Approach: stochastic search, Evolutionary Algorithms . $\overline{\text { E }}$ 引 صac 5

Problem Statement Black Box Optimization and Its Difficulties

Problem Statement

Continuous Domain Search/Optimization

- Goal

- fast convergence to the global optimum
- solution \boldsymbol{x} with small function value $f(\boldsymbol{x})$ with $\dddot{\text { least }}$. or to arch cost there are two conflicting objectives
- Typical Examples
- shape optimization (e.g. using CFD)
- model calibration
- parameter calibration
curve fitting, airfoils biological, physical controller, plants, images
- Problems
- exhaustive search is infeasible
- naive random search takes too long
- deterministic search is not successful / takes too long

Approach: stochastic search, Evolutionary Algorithms
7

Problem Statement

Continuous Domain Search/Optimization

- Goal
- fast convergence to the global optimum
- solution \boldsymbol{x} with small function value $f(\boldsymbol{x})$ with l. or to a robust search cost
there are two conflicting objectives

- Typical Examples

- shape optimization (e.g. using CFD)
- model calibration
curve fitting, airfoils
- parameter calibration biological, physical

- Problems

- exhaustive search is infeasible
- naive random search takes too long
- deterministic search is not successful / takes too long
 6

Problem Statement
Black Box Optimization and lts Difficulties

Objective Function Properties

We assume $f: \mathcal{X} \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ to be non-linear, non-separable and to have at least moderate dimensionality, say $n \nless 10$.
Additionally, f can be

```
- non-convex
```

- multimodal

```
- non-smooth
```

```
- discontinuous, plateaus
```

- ill-conditioned
- noisy
-

Goal : cope with any of these function properties

Objective Function Properties

We assume $f: \mathcal{X} \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ to be non-linear, non-separable and to have at least moderate dimensionality, say $n \nless<10$.
Additionally, f can be

- non-convex
- multimodal
there are possibly many local optima
- non-smooth
- discontinuous, plateaus
- ill-conditioned
- noisy
- ..

Goal: cope with any of these function properties
they are related to real-world problems

Problem Statement
Black Box Optimization and Its Difficulties

Ruggedness

non-smooth, discontinuous, multimodal, and/or noisy

cut from a 5-D example, (easily) solvable with evolution strategies

What Makes a Function Difficult to Solve?

Why stochastic search?

- non-linear, non-quadratic, non-convex
on linear and quadratic functions much better search policies are available
- ruggedness
non-smooth, discontinuous, multimodal, and/or noisy function
- dimensionality (size of search space)
(considerably) larger than three
- non-separability
dependencies between the objective variables
- ill-conditioning

๑๐ ○○
○○○○
©○○○○
○○○○
○○○

Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval $[0,1]$. Now consider the 10 -dimensional space $[0,1]^{10}$. To get similar coverage in terms of distance between adjacent points requires $20^{10} \approx 10^{13}$ points. 20 points appear now as isolated points in a vast empty space

Remark: distance measures break down in higher dimensionalities (the central limit theorem kicks in)

Consequence: a search policy that is valuable in small dimensions might be useless in moderate or large dimensional search spaces. Example: exhaustive search.

Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval $[0,1]$. Now consider the 10 -dimensional space $[0,1]^{10}$. To get similar coverage in terms of distance between adjacent points requires $20^{10} \approx 10^{13}$ points. 20 points appear now as isolated points in a vast empty space.

Remark: distance measures break down in higher dimensionalities (the central limit theorem kicks in)

Consequence: a search policy that is valuable in small dimensions might be useless in moderate or large dimensional search spaces. Example: exhaustive search.

Problem Statement Black Box Optimization and Its Difficulties

Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval $[0,1]$. Now consider the 10 -dimensional space $[0,1]^{10}$. To get similar coverage in terms of distance between adjacent points requires $20^{10} \approx 10^{13}$ points. 20 points appear now as isolated points in a vast empty space.

Remark: distance measures break down in higher dimensionalities (the central limit theorem kicks in)

Consequence: a search policy that is valuable in small dimensions might be useless in moderate or large dimensional search spaces. Example: exhaustive search.

Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval $[0,1]$. Now consider the 10 -dimensional space $[0,1]^{10}$. To get similar coverage in terms of distance between adjacent points requires $20^{10} \approx 10^{13}$ points. 20 points appear now as isolated points in a vast empty space.

Remark: distance measures break down in higher dimensionalities (the central limit theorem kicks in)

$$
\begin{aligned}
& \text { Consequence: a search policy that is valuable in small dimensions } \\
& \text { might be useless in moderate or large dimensional search spaces. } \\
& \text { Example: exhaustive search. }
\end{aligned}
$$

Separable Problems

Definition (Separable Problem)

A function f is separable if

$$
\arg \min _{\left(x_{1}, \ldots, x_{n}\right)} f\left(x_{1}, \ldots, x_{n}\right)=\left(\arg \min _{x_{1}} f\left(x_{1}, \ldots\right), \ldots, \arg \min _{x_{n}} f\left(\ldots, x_{n}\right)\right)
$$

\Rightarrow it follows that f can be optimized in a sequence of n independent 1-D optimization processes
Example: Additively decomposable functions

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} f_{i}\left(x_{i}\right)
$$

Rastrigin function

Non-Separable Problems

Building a non-separable problem from a separable one ${ }^{(1,2)}$

Rotating the coordinate system

- f : $\boldsymbol{x} \mapsto f(x)$ separable
- $f: \boldsymbol{x} \mapsto f(\mathbf{R} \boldsymbol{x})$ non-separable

[^0]
Problem Statement
 III-Conditioned Problems

What Makes a Function Difficult to Solve?

... and what can be done
The Problem
Possible Approaches

Dimensionality	exploiting the problem structure
separability, locality/neighborhood, encoding	

Ruggedness non-local policy, large sampling width (step-size) as large as possible while preserving a reasonable convergence speed
population-based method, stochastic, non-elitistic recombination operator
serves as repair mechanism restarts

III-Conditioned Problems

Curvature of level sets

Consider the convex-quadratic function

$$
f(\boldsymbol{x})=\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)^{T} \boldsymbol{H}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)=\frac{1}{2} \sum_{i} h_{i, i}\left(x_{i}-x_{i}^{*}\right)^{2}+\frac{1}{2} \sum_{i \neq j} h_{i, j}\left(x_{i}-x_{i}^{*}\right)\left(x_{j}-x_{j}^{*}\right)
$$

\boldsymbol{H} is Hessian matrix of f and symmetric positive definite

gradient direction $-f^{\prime}(\boldsymbol{x})^{\mathrm{T}}$
Newton direction $-\boldsymbol{H}^{-1} f^{\prime}(\boldsymbol{x})^{\mathrm{T}}$

III-conditioning means squeezed level sets (high curvature). Condition number equals nine here. Condition numbers up to 10^{10} are not unusual in real world problems.

If $\boldsymbol{H} \approx \mathbf{I}$ (small condition number of \boldsymbol{H}) first order information (e.g. the gradient) is sufficient. Otherwise second order information (estimation of \boldsymbol{H}^{-1}) is necessary.

Problem Statement
 III-Conditioned Problems

Metaphors

Evolutionary Computation Optimization/Nonlinear Programmin

individual, offspring, parent	\longleftrightarrow	candidate solution decision variables design variables object variables
population		
fitness function	\longleftrightarrow	set of candidate solutions objective function loss function cost function error function iteration

Landscape of Continuous Black-Box Optimization

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder \& Mead 1965]
Pattern search [Hooke and Jeeves 1961]
Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]
Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain)
Differential Evolution [Storn \& Price 1997]
Particle Swarm Optimization [Kennedy \& Eberhart 1995]
Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen \& Ostermeier 2001] Estimation of Distribution Algorithms (EDAs) [Larrañaga, Lozano, 2002] Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]
Genetic Algorithms [Holland 1975, Goldberg 1989]
Simulated annealing [Kirkpatrick et al. 1983]
Simultaneous perturbation stochastic approximation (SPSA) [Spall 2000]

Stochastic / Randomized Algorithm

Iterative method

Optimization method
optimize $f: \mathcal{X} \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$
θ_{t} typically encodes estimate(s) of the optimum of f

Stochastic Black-Box Algorithms

For $t=0,1, \ldots$
deterministic transition

Overview

(1) Problem Statement

Continuous Black-Box Optimization
Typical Difficulties
(2) Stochastic Black-Box Algorithms

General Template
Invariance
Comparisons of a few DFOs
(3) Zoom on Evolution Strategies

Step-size Adaptation
Covariance Matrix Adaptation

Example: Differential Evolution
[Storn, Price, 97]
$\theta_{t}=\left(X_{t}^{1}, \ldots, X_{t}^{N}\right) \in\left(\mathbb{R}^{n}\right)^{N}$ population
Input $\mathrm{CR} \in[0,1], \mathrm{F} \in[0,2], N$ pop size
For each $X_{t} \in\left\{X_{t}^{1}, \ldots, X_{t}^{N}\right\}$
pick at random $X_{t}^{\alpha_{1}}, X_{t}^{\alpha_{2}}, X_{t}^{\alpha_{3}}$ (distinct from X_{t})
sample $J=\operatorname{Int}(1, \ldots, n)$
for each coordinate $j=1, \ldots, n$

$$
\text { if } \mathcal{U}_{j}(0,1)<\mathrm{CR} \text { or } j=J
$$

$$
[Y]_{j}=\left[X_{t}^{\alpha_{1}}\right]_{j}+\mathrm{F}\left(\left[X_{t}^{\alpha_{2}}\right]_{j}-\left[X_{t}^{\alpha_{3}}\right]_{j}\right)
$$

else

$$
[Y]_{j}=\left[X_{t}\right]_{j}
$$

if $f(Y)<f\left(X_{t}\right)$
$X_{t} \leftarrow Y$

Example 2: Particle Swarm Optimization

$$
\theta_{t+1}=\mathcal{F}^{f}\left(\theta_{t}, \theta_{t-1}, U_{t+1}\right)
$$

Stochastic Search

A black box search template to minimize $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

Initialize distribution parameters θ, set population size $\lambda \in \mathbb{N}$
While not terminate
(1) Sample distribution $P(\boldsymbol{x} \mid \theta) \rightarrow \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\lambda} \in \mathbb{R}^{n}$
(2) Evaluate $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\lambda}$ on f
(3) Update parameters $\theta \leftarrow F_{\theta}\left(\theta, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\lambda}, f\left(\boldsymbol{x}_{1}\right), \ldots, f\left(\boldsymbol{x}_{\lambda}\right)\right)$

Everything depends on the definition of P and F_{θ}
deterministic algorithms are covered as well
In many Evolutionary Algorithms the distribution P is implicitly defined via operators on a population, in particular, selection, recombination and mutation
Natural temolate for (incremental) Estimation of Distribution Alaorithms

Example 2: Particle Swarm Optimization (cont)

Input w inertia weight, N swarm size
For each particle X_{t}^{k}, for each coordinate j

$$
\begin{aligned}
{\left[X_{t+\frac{1}{2}}^{k}\right]_{j} } & =\left[X_{t}^{k}\right]_{j}+\left[U_{t+1}^{k}\right]_{j}\left(\left[P_{t}^{k}\right]_{j}-\left[X_{t}^{k}\right]_{j}\right)+\left[\tilde{U}_{t+1}^{k}\right]_{j}\left(\left[G_{t}^{k}\right]_{j}-\left[X_{t}^{k}\right]_{j}\right) \\
{\left[X_{t+1}^{k}\right]_{j} } & =\left[X_{t+\frac{1}{2}}^{k}\right]_{j}+w\left(\left[X_{t}^{k}\right]_{j}-\left[X_{t-1}^{k}\right]_{j}\right)
\end{aligned}
$$

$\left[U_{t+1}^{k}\right]_{j},\left[\tilde{U}_{t+1}^{k}\right]_{j}$ random variables
i.i.d. $\sim \mathcal{U}(0, \varphi)$

Evolution Strategies

New search points are sampled normally distributed

$$
\boldsymbol{x}_{i} \sim m+\sigma \mathcal{N}_{i}(\mathbf{0}, \mathbf{C}) \quad \text { for } i=1, \ldots, \lambda
$$

as perturbations of m,
where $\boldsymbol{x}_{i}, m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \mathbf{C} \in \mathbb{R}^{n \times n}$
where

- the mean vector $m \in \mathbb{R}^{n}$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_{+}$controls the step length
- the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid
here, all new points are sampled with the same parameters
The question remains how to update m, \mathbf{C}, and σ.

Normal Distribution

2-D Normal Distribution

probability density of the 1-D standard normal distribution
probability density of a 2-D normal distribution

The $(\mu / \mu, \lambda)$-ES

Non-elitist selection and intermediate (weighted) recombination
Given the i-th solution point $\boldsymbol{x}_{i}=m+\sigma \underbrace{\mathcal{N}_{i}(\mathbf{0}, \mathbf{C})}_{=: \boldsymbol{y}_{i}}=m+\sigma \boldsymbol{y}_{i}$
Let $\boldsymbol{x}_{i: \lambda}$ the i-th ranked solution point, such that $f\left(\boldsymbol{x}_{1: \lambda}\right) \leq \cdots \leq f\left(\boldsymbol{x}_{\lambda: \lambda}\right)$. The new mean reads

$$
m \leftarrow \sum_{i=1}^{\mu} w_{i} \boldsymbol{x}_{i: \lambda}=\boldsymbol{m}+\sigma \underbrace{\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda}}_{=: \boldsymbol{y}_{w}}
$$

where

$$
w_{1} \geq \cdots \geq w_{\mu}>0, \quad \sum_{i=1}^{\mu} w_{i}=1, \quad \frac{1}{\sum_{i=1}^{\mu} w_{i}^{2}}=: \mu_{w} \approx \frac{\lambda}{4}
$$

The best μ points are selected from the new solutions (non-elitistic) and weighted intermediate recombination is applied.

Invariance Under Monotonically Increasing Functions

Rank-based algorithms

Update of all parameters uses only the ranks

$$
f\left(x_{1: \lambda}\right) \leq f\left(x_{2: \lambda}\right) \leq \ldots \leq f\left(x_{\lambda: \lambda}\right)
$$

$g\left(f\left(x_{1: \lambda}\right)\right) \leq g\left(f\left(x_{2: \lambda}\right)\right) \leq \ldots \leq g\left(f\left(x_{\lambda: \lambda}\right)\right) \quad \forall g$ g is strictly monotonically increasing
3
g preserves ranks
${ }^{3}$ Whitley 1989. The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best, ICGA

Invariance Under Rigid Search Space Transformations

for example, invariance under search space rotation (separable \Leftrightarrow non-separable)

Basic Invariance in Search Space

- translation invariance
is true for most optimization algorithms

Identical behavior on f and f_{a}

$$
\begin{aligned}
f: & \boldsymbol{x} \mapsto f(\boldsymbol{x}), & \boldsymbol{x}^{(t=0)}=\boldsymbol{x}_{0} \\
f_{\boldsymbol{a}}: & \boldsymbol{x} \mapsto f(\boldsymbol{x}-\boldsymbol{a}), & \boldsymbol{x}^{(t=0)}=\boldsymbol{x}_{0}+\boldsymbol{a}
\end{aligned}
$$

No difference can be observed w.r.t. the argument of f

Invariance Under Rigid Search Space Transformations

for example, invariance under search space rotation (separable \Leftrightarrow non-separable)

Invariance

The grand aim of all science is to cover the greatest number of empirical facts by logical deduction from the smallest number of hypotheses or axioms. - Albert Einstein

- Empirical performance results

- from benchmark functions
- from solved real world problems
are only useful if they do generalize to other problems
- Invariance is a strong non-empirical statement about generalization
generalizing (identical) performance from a single function to a whole class of functions
consequently, invariance is important for the evaluation of search algorithms

Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, non-separable (rotated) with varying condition number α

$$
\text { Rotated Ellipsoid dimension } 20,21 \text { trials, tolerance } 1 e-09 \text {, eval max } 1+07
$$

BFGS (Broyden et al 1970) NEWUAO (Powell 2004) DE (Storn \& Price 1996) PSO (Kennedy \& Eberhart 1995) CMA-ES (Hansen \& Ostermeier 2001)
$f(\boldsymbol{x})=g\left(\boldsymbol{x}^{\mathrm{T}} \mathbf{H} \boldsymbol{x}\right)$ with H full g identity (for BFGS and NEWUOA) g any order-preserving = strictly increasing function (for all other)

SP1 = average number of objective function evaluations ${ }^{15}$ to reach the target function value of $g^{-1}\left(10^{-9}\right)$

[^1]
Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, separable with varying condition number α

Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)
DE (Storn \& Price 1996)
PSO (Kennedy \& Eberhart 1995) CMA-ES (Hansen \& Ostermeier 2001)
$f(\boldsymbol{x})=g\left(\boldsymbol{x}^{\mathrm{T}} \mathbf{H} \boldsymbol{x}\right)$ with
H diagonal
g identity (for BFGS and NEWUOA)
g any order-preserving = strictly increasing function (for all other)

SP1 = average number of objective function evaluations ${ }^{14}$ to reach the target function value of $g^{-1}\left(10^{-9}\right)$
${ }^{14}$ Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA

Comparison to BFGS, NEWUOA, PSO and DE

f non-convex, non-separable (rotated) with varying condition number α
Sqrt of sqrt of rotated ellipsoid dimension 20,21 trials, tolerance 1e-09, eval max 1e +07

BFGS (Broyden et al 1970) NEWUAO (Powell 2004)
DE (Storn \& Price 1996)
PSO (Kennedy \& Eberhart 1995)
CMA-ES (Hansen \& Ostermeier 2001)
$f(\boldsymbol{x})=g\left(\boldsymbol{x}^{\mathrm{T}} \mathbf{H} \boldsymbol{x}\right)$ with H full
$g: x \mapsto x^{1 / 4}$ (for BFGS and NEWUOA)
g any order-preserving = strictly increasing function (for all other)

SP1 = average number of objective function evaluations ${ }^{16}$ to reach the target function value of $g^{-1}\left(10^{-9}\right)$

[^2]
Overview

(1) Problem Statement

Continuous Black-Box Optimization
Typical Difficulties
(2) Stochastic Black-Box Algorithms

General Template
Invariance
Comparisons of a few DFOs
(3) Zoom on Evolution Strategies

Step-size Adaptation
Covariance Matrix Adaptation

41

Step-Size Control Why Step-Size Control
Why Step-Size Control?

Zoom on ESs: Objectives

Illustrate why and how sampling distribution is controlled

step-size control (overall standard deviation)
allows to achieve linear convergence

covariance matrix control

allows to solve ill-conditioned problems

42

Methods for Step-Size Control

- $1 / 5$-th success rule ${ }^{a b}$, often applied with " + "-selection increase step-size if more than 20% of the new solutions are successful, decrease otherwise
- σ-self-adaptation ${ }^{c}$, applied with ","-selection
mutation is applied to the step-size and the better, according to the objective function value, is selected
simplified "global" self-adaptation
- path length control ${ }^{d}$ (Cumulative Step-size Adaptation, CSA) ${ }^{e}$ self-adaptation derandomized and non-localized

[^3]
Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation

loosely speaking steps are

- perpendicular under random selection (in expectation)
- perpendicular in the desired situation (to be most efficient)

Step-Size Control Path Length Control (CSA)

Path Length Control (CSA)

The Equations

Initialize $m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}$, evolution path $p_{\sigma}=\mathbf{0}$,
set $c_{\sigma} \approx 4 / n, d_{\sigma} \approx 1$.

$$
\begin{aligned}
m & \leftarrow m+\sigma \boldsymbol{y}_{w} \quad \text { where } \boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda} \quad \text { update mean } \\
p_{\sigma} & \leftarrow\left(1-c_{\sigma}\right) p_{\sigma}+\underbrace{\sqrt{1-\left(1-c_{\sigma}\right)^{2}}}_{\text {accounts for } 1-c_{\sigma}} \underbrace{\sqrt{\mu_{w}}}_{\text {accounts for } w_{i}} \boldsymbol{y}_{w} \\
\sigma & \leftarrow \sigma \times \underbrace{\exp \left(\frac{c_{\sigma}}{d_{\sigma}}\left(\frac{\left\|p_{\sigma}\right\|}{\mathrm{E}\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|}-1\right)\right)}_{>1 \Longleftrightarrow\left\|p_{\sigma}\right\| \text { is areater than its expectation }} \text { update step-size }
\end{aligned}
$$

Path Length Control (CSA)

The Equations
Initialize $m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}$, evolution path $p_{\sigma}=\mathbf{0}$,
set $c_{\sigma} \approx 4 / n, d_{\sigma} \approx 1$.

$$
1 \Longleftrightarrow\left\|p_{\sigma}\right\| \text { is greater than its expectation }
$$

$$
46
$$

$$
f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}^{2}
$$

$$
\text { in }[-0.2,0.8]^{n}
$$

$$
\text { for } n=30
$$

Overview

(1) Problem Statement

Continuous Black-Box Optimization
Typical Difficulties
(2) Stochastic Black-Box Algorithms

General Template
Invariance
Comparisons of a few DFOs
(3) Zoom on Evolution Strategies

Step-size Adaptation
Covariance Matrix Adaptation

Covariance Matrix Adaptation (CMA)
 Covariance Matrix Rank-One Update

Covariance Matrix Adaptation

Rank-One Update

initial distribution, $\mathbf{C}=\mathbf{I}$

Evolution Strategies

Recalling
New search points are sampled normally distributed

$$
\boldsymbol{x}_{i} \sim m+\sigma \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}) \quad \text { for } i=1, \ldots, \lambda
$$

as perturbations of m,
where $\boldsymbol{x}_{i}, m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \mathrm{C} \in \mathbb{R}^{n \times n}$
where

- the mean vector $m \in \mathbb{R}^{n}$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_{+}$controls the step length
- the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

The remaining question is how to update C.

Covariance Matrix Adaptation

Rank-One Update

Covariance Matrix Adaptation

Rank-One Update

\boldsymbol{y}_{w}, movement of the population mean m (disregarding σ)

Covariance Matrix Adaptation

Rank-One Update

new distribution (disregarding σ)

Covariance Matrix Adaptation

Rank-One Update

mixture of distribution C and step \boldsymbol{y}_{w},
$\mathbf{C} \leftarrow 0.8 \times \mathbf{C}+0.2 \times \boldsymbol{y}_{w} \boldsymbol{y}_{w}^{\mathrm{T}}$

Covariance Matrix Adaptation (CMA)
 Covariance Matrix Rank-One Update

Covariance Matrix Adaptation

Rank-One Update

$$
\boldsymbol{m} \leftarrow \boldsymbol{m}+\sigma \boldsymbol{y}_{w}, \quad \boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda}, \quad \boldsymbol{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathbf{C})
$$

new distribution (disregarding σ)

Covariance Matrix Adaptation

Rank－One Update
$\boldsymbol{m} \leftarrow \boldsymbol{m}+\sigma \boldsymbol{y}_{w}, \quad \boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda}, \quad \boldsymbol{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathrm{C})$

movement of the population mean m

57

Covariance Matrix Adaptation（CMA）Covariance Matrix Rank－One Update

Covariance Matrix Adaptation

Rank－One Update

new distribution，
$\mathrm{C} \leftarrow 0.8 \times \mathrm{C}+0.2 \times \boldsymbol{y}_{w} \boldsymbol{y}_{w}^{\mathrm{T}}$
the ruling principle：the adaptation increases the likelihood of successful steps， \boldsymbol{y}_{w} ，to appear again
another viewpoint：the adaptation follows a natural gradient approximation of the expected fitness

Covariance Matrix Adaptation

Rank－One Update

mixture of distribution C and step \boldsymbol{y}_{w} ，
$\mathrm{C} \leftarrow 0.8 \times \mathrm{C}+0.2 \times \boldsymbol{y}_{w} \boldsymbol{y}_{w}^{\mathrm{T}}$

Covariance Matrix Adaptation（CMA）
Covariance Matrix Rank－One Update

Covariance Matrix Adaptation

Rank－One Update
Initialize $m \in \mathbb{R}^{n}$ ，and $\mathbf{C}=\mathbf{I}$ ，set $\sigma=1$ ，learning rate $c_{\text {cov }} \approx 2 / n^{2}$
While not terminate

$$
\begin{aligned}
& \boldsymbol{x}_{i}=m+\sigma \boldsymbol{y}_{i}, \quad \boldsymbol{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}) \\
& \boldsymbol{m} \leftarrow \boldsymbol{m}+\sigma \boldsymbol{y}_{w} \quad \text { where } \boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda} \\
& \mathrm{C} \leftarrow\left(1-c_{\mathrm{cov}}\right) \mathrm{C}+c_{\mathrm{cov}} \mu_{w} \underbrace{\boldsymbol{y}_{w} \boldsymbol{y}_{w}^{\mathrm{T}}}_{\text {rank-one }} \quad \text { where } \mu_{w}=\frac{1}{\sum_{i=1}^{\mu} w_{i}^{2}} \geq 1
\end{aligned}
$$

The rank－one update has been found independently in several domains ${ }^{6} 789$

[^4]
The CMA-ES

Input: $m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \lambda$
Initialize: $\mathbf{C}=\mathbf{I}$, and $p_{\mathrm{c}}=\mathbf{0}, p_{\sigma}=\mathbf{0}$,
Set: $c_{\mathbf{c}} \approx 4 / n, c_{\sigma} \approx 4 / n, c_{1} \approx 2 / n^{2}, c_{\mu} \approx \mu_{w} / n^{2}, c_{1}+c_{\mu} \leq 1, d_{\sigma} \approx 1+\sqrt{\frac{\mu_{w}}{n}}$, and $w_{i=1 \ldots \lambda}$ such that $\mu_{w}=\frac{1}{\sum_{i=1}^{\mu} w_{i}^{2}} \approx 0.3 \lambda$
While not terminate

$$
\begin{array}{rlr}
\boldsymbol{x}_{i} & =m+\sigma \boldsymbol{y}_{i}, \quad \boldsymbol{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathbf{C}), \quad \text { for } i=1, \ldots, \lambda & \text { sampling } \\
m & \leftarrow \sum_{i=1}^{\mu} w_{i} \boldsymbol{x}_{i: \lambda}=m+\sigma \boldsymbol{y}_{w} \quad \text { where } \boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda} & \text { update mean } \\
p_{\mathrm{c}} & \leftarrow\left(1-c_{\mathbf{c}}\right) p_{\mathrm{c}}+\mathbb{1}_{\left\{\left\|p_{\sigma}\right\|<1.5 \sqrt{n}\right\}} \sqrt{1-\left(1-c_{\mathbf{c}}\right)^{2}} \sqrt{\mu_{w}} \boldsymbol{y}_{w} & \text { cumulation for } \mathrm{C} \\
p_{\sigma} & \leftarrow\left(1-c_{\sigma}\right) p_{\sigma}+\sqrt{1-\left(1-c_{\sigma}\right)^{2}} \sqrt{\mu_{w}} \mathbf{C}^{-\frac{1}{2}} \boldsymbol{y}_{w} & \text { cumulation for } \sigma \\
\mathbf{C} & \leftarrow\left(1-c_{1}-c_{\mu}\right) \mathbf{C}+c_{1} p_{\mathrm{c}} p_{\mathrm{c}}^{\mathrm{T}}+c_{\mu} \sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda} \boldsymbol{y}_{i: \lambda}^{\mathrm{T}} & \text { update } \mathrm{C} \\
\sigma & \leftarrow \sigma \times \exp \left(\frac{c_{\sigma}}{d_{\sigma}}\left(\frac{\left\|p_{\sigma}\right\|}{\mathrm{E}\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|}-1\right)\right) & \text { update of } \sigma
\end{array}
$$

Not covered on this slide: termination, restarts, useful output, boundaries and encoding

61

CMA-ES Summary The Experimentum Crucis

Experimentum Crucis (1)

f convex quadratic, separable

$f(x)=\sum_{i=1}^{n} 10^{\alpha \frac{i-1}{n-1}} x_{i}^{2}, \alpha=6$

Experimentum Crucis (0)

What did we want to achieve?

- reduce any convex-quadratic function

$$
f(\boldsymbol{x})=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{H} \boldsymbol{x}
$$

to the sphere model

$$
\text { e.g. } f(\boldsymbol{x})=\sum_{i=1}^{n} 10^{\frac{i i-1}{n-1}} x_{i}^{2}
$$

$$
f(x)=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}
$$

without use of derivatives

- lines of equal density align with lines of equal fitness

$$
\mathrm{C} \propto \boldsymbol{H}^{-1}
$$

in a stochastic sense

62

CMA-ES Summary
The Experimentum Crucis

Experimentum Crucis (2)

f convex quadratic, as before but non-separable (rotated)

$f(\boldsymbol{x})=g\left(\boldsymbol{x}^{\mathrm{T}} \mathbf{H} \boldsymbol{x}\right), g: \mathbb{R} \rightarrow \mathbb{R}$ stricly increasing
$\mathbf{C} \propto \boldsymbol{H}^{-1}$ for all g, \mathbf{H}

[^0]: ${ }^{1}$ Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies:
 The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann
 ${ }^{2}$ Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survev of some theoretical and practical aspects of genetic algorithms." BioSvstems, 39(3):263-278

[^1]: ${ }^{15}$ Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA

[^2]: ${ }^{16}$ Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA

[^3]: ${ }^{a}$ Rechenberg 1973, Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der biologischen Evolution, Frommann-Holzboog
 ${ }^{{ }^{\text {S }} \text { Schumer and Steiglitz 1968. Adaptive step size random search. IEEE TAC }}$
 ${ }^{c}$ Schwefel 1981, Numerical Optimization of Computer Models, Wiley
 ${ }^{d}$ Hansen \& Ostermeier 2001, Completely Derandomized Self-Adaptation in Evolution Strategies, Evol. Comput.
 ${ }^{e}$ Ostermeier et al 1994, Step-size adaptation based on non-local use of selection information, PPSNIV 三, $\overline{\underline{\underline{~}} \text {, }}$,

[^4]: ${ }_{7}^{6}$ Kjellström\＆Taxén 1981．Stochastic Optimization in System Design，IEEE TCS
 ${ }^{7}$ Hansen\＆Ostermeier 1996．Adapting arbitrary normal mutation distributions in evolution strategies：The covariance matrix adaptation，ICEC
 ${ }^{8}$ Ljung 1999．System Identification：Theory for the User
 ${ }^{9}$ Haario et al 2001．An adaptive Metropolis alqorithm，JSTOR

