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_ Problem Statement Black Box Optimization and lts Difficulties

Overview Problem Statement
Continuous Domain Search/Optimization
@ Task: minimize an objective function (fitness function, loss
O Problem Statement function) in continuous domain
Continuous Black-Box Optimization f:XCR' >R, x = f(x)

Typical Difficulties
@ Black Box scenario (direct search scenario)

@ Stochastic Black-Box Algorithms X f(x)
General Template
Invariance . .
Comparisons of a few DFOs » gradients are not available or not useful
P » problem domain specific knowledge is used only within the black
_ ] box, e.g. within an appropriate encoding
© Zoom on Evolution Strategies @ Search costs: number of function evaluations

Step-size Adaptation
Covariance Matrix Adaptation
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Problem Statement Black Box Optimization and lts Difficulties

Problem Statement

Continuous Domain Search/Optimization

o Goal

» fast convergence to the global optimum

) ) ) . ...or to a robust solution x
» solution x with small function value f(x) with least search cost

there are two conflicting objectives

Problem Statement Black Box Optimization and lts Difficulties

Problem Statement

Continuous Domain Search/Optimization

o Goal

» fast convergence to the global optimum

) ) ) . ...orto a robust solution x
» solution x with small function value f(x) with least search cost

there are two conflicting objectives

@ Typical Examples

» shape optimization (e.g. using CFD)
» model calibration
» parameter calibration

curve fitting, airfoils
biological, physical
controller, plants, images

@ Problems

» exhaustive search is infeasible
» naive random search takes too long
» deterministic search is not successful / takes too long

Approach: stochastic search, Evolutionary Algorithms
7
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Problem Statement Black Box Optimization and lts Difficulties

Problem Statement

Continuous Domain Search/Optimization

o Goal

» fast convergence to the global optimum

i ) ) . ...or to a robust solution x
» solution x with small function value f(x) with least search cost

there are two conflicting objectives

@ Typical Examples

» shape optimization (e.g. using CFD)
» model calibration
» parameter calibration

curve fitting, airfoils
biological, physical
controller, plants, images

@ Problems

» exhaustive search is infeasible
» naive random search takes too long
» deterministic search is not successful / takes too long

Problem Statement Black Box Optimization and lts Difficulties

Objective Function Properties
We assume f : X C R" — R to be non-linear, non-separable and to
have at least moderate dimensionality, say n <« 10.



Problem Statement Black Box Optimization and lts Difficulties

Objective Function Properties

We assume f : X C R" — R to be non-linear, non-separable and to
have at least moderate dimensionality, say n <« 10.

Additionally, f can be

@ non-convex

@ multimodal

there are possibly many local optima
@ non-smooth

derivatives do not exist

@ discontinuous, plateaus
@ ill-conditioned
@ noisy
o .

Goal: cope with any of these function properties
they are related to real-world problems

Ruggedness

non-smooth, discontinuous, multimodal, and/or noisy

Fithess

-4 -3 -2 -1 0 1 2 3 4

cut from a 5-D example, (easily) solvable with evolution strategies

Problem Statement Black Box Optimization and lts Difficulties

What Makes a Function Difficult to Solve?

Why stochastic search?

@ non-linear, non-quadratic, non-convex
on linear and quadratic functions much better
search policies are available

@ ruggedness
non-smooth, discontinuous, multimodal, and/or
noisy function
@ dimensionality (size of search space)
(considerably) larger than three
@ non-separability
dependencies between the objective variables
@ ill-conditioning
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Problem Statement Black Box Optimization and lts Difficulties

Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to problems
caused by the rapid increase in volume associated with adding extra

dimensions to a (mathematical) space.

321



Black Box Optimization and lts Difficulties
Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to problems
caused by the rapid increase in volume associated with adding extra
dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval
[0, 1]. Now consider the 10-dimensional space [0, 1]'°. To get similar
coverage in terms of distance between adjacent points requires

209 ~ 10'3 points. 20 points appear now as isolated points in a vast
empty space.

Black Box Optimization and lts Difficulties
Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to problems
caused by the rapid increase in volume associated with adding extra
dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval
[0, 1]. Now consider the 10-dimensional space [0, 1]'°. To get similar
coverage in terms of distance between adjacent points requires

209 ~ 10'3 points. 20 points appear now as isolated points in a vast
empty space.

Remark: distance measures break down in higher dimensionalities
(the central limit theorem kicks in)

Consequence: a search policy that is valuable in small dimensions
might be useless in moderate or large dimensional search spaces.
Example: exhaustive search.
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Black Box Optimization and lts Difficulties
Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to problems
caused by the rapid increase in volume associated with adding extra
dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval
[0, 1]. Now consider the 10-dimensional space [0, 1]'°. To get similar
coverage in terms of distance between adjacent points requires

209 ~ 10" points. 20 points appear now as isolated points in a vast
empty space.

Remark: distance measures break down in higher dimensionalities
(the central limit theorem kicks in)

Problem Statement Non-Separable Problems

Separable Problems
Definition (Separable Problem)
A function f is separable if

arg min

y Xn )
(%1 500052

)f(xl,... (argminf(xl,...),...,argn)lcinf(...,x,,))

= it follows that f can be optimized in a sequence of n independent
1-D optimization processes

Example: Additively

© 0 0 6 06 ©
decomposable functions 2.0 © OO0 ©
FOonx) = Y filx)
i=1 » 0 ©0O o
Rastrigin function -2 @@b‘@é“o‘ O©




Non-Separable Problems

Building a non-separable problem from a separable one (*+2)
Rotating the coordinate system

@ f:x — f(x) separable

@ f :x — f(Rx) non-separable

R rotation matrix
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Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies:
The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann

2Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A
survey of some theoretical and practical aspects of genetic algorithms.” BioSystems, 39(3):263-278
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What Makes a Function Difficult to Solve?
...and what can be done

The Problem Possible Approaches

Dimensionality exploiting the problem structure

separability, locality/neighborhood, encoding

[ll-conditioning second order approach

changes the neighborhood metric
Ruggedness non-local policy, large sampling width (step-size)

as large as possible while preserving a

reasonable convergence speed

population-based method, stochastic, non-elitistic

recombination operator . .
serves as repair mechanism

restarts
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Problem Statement lll-Conditioned Problems

llI-Conditioned Problems

Curvature of level sets
Consider the convex-quadratic function

fx) = 3e—x")TH(x—x*) = 5 37 hii (xi—xf)2 43 30, i (xi—x7) (=)
H is Hessian matrix of f and symmetric positive definite

gradient direction —f’(x)*

Newton direction —H~'f'(x)T

lll-conditioning means squeezed level sets (high curvature).
Condition number equals nine here. Condition numbers up to 10"

are not unusual in real world problems.

If H ~ I (small condition number of H) first order information (e.g. the

gradient) is sufficient. Otherwise second order information (estimation
of H™') is necessary.

Problem Statement lll-Conditioned Problems

Metaphors

Evolutionary Computation Optimization/Nonlinear Programmin

individual, offspring, parent <«+— candidate solution

decision variables
design variables
object variables
set of candidate solutions
objective function
loss function
cost function
error function
iteration

population
fitness function

11

generation
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Landscape of Continuous Black-Box Optimization

Deterministic algorithms

Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder & Mead 1965]

Pattern search [Hooke and Jeeves 1961]

Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain)
Differential Evolution [Storn & Price 1997]
Particle Swarm Optimization [Kennedy & Eberhart 1995]

Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen & Ostermeier 2001]

Estimation of Distribution Algorithms (EDASs) [Larrafiaga, Lozano, 2002]
Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]
Genefic Algorithms [Holland 1975, Goldberg 1989]

Simulated annealing [Kirkpatrick et al. 1983]

Simultaneous perturbation stochastic approximation (SPSA) [Spall 2000]
21

Stochastic / Randomized Algorithm

lterative method
deterministic transition

Fort=0,1,... / function
01 fo(Qt, Uit1)

state of the algorithm ~ random vectors
(U); 1i.d.

Optimization method
optimize f: X CR" =+ R

0 typically encodes estimate(s) of the optimum of f

23
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Overview

© Problem Statement

Continuous Black-Box Optimization
Typical Difficulties

@ Stochastic Black-Box Algorithms

General Template
Invariance
Comparisons of a few DFOs

© Zoom on Evolution Strategies
Step-size Adaptation
Covariance Matrix Adaptation

22

iz 2 2o
Example: Differential Evolution

0= (X},.... X{) € (R")Y population

Input CR € [0,1], F € [0,2], N pop size

For each X; € {X},..., XN}
pick at random XM, X2, X[ (distinct from X;)
sample J = Int(1,..., n)
for each coordinate j =1,...,n
if 4;(0.1) < CRoryj=J
[Y]; = [X§]; + F([X7]; = [X5°)5)

else
[Y]; = [Xil;
if f(Y) < f(Xy)
Xt Y

24

A

[Storn, Price, 97]
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Stochastic Black-Box Algorithms Particle Swarm Optimization

Example 2: Particle Swarm Optimization

0= (X} PLGY, ..., (XN, PN.GN)) e ®MN

N

particule best position of particle
since t=0

global best position of
particle
and “informants”

Ori1 = FF (01,0:—1,U11)

25

Stochastic Search

A black box search template to minimize f : R” — R
Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x]6) — x1, ..

@ Evaluate xy,...,xyonf

© Update parameters 0 < Fy(0,x1, ..

.,x) €ER?

o2 e o o < 0 s G2

Everything depends on the definition of P and Fy
deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution P is implicitly defined
via operators on a population, in particular, selection, recombination
and mutation

Natural template for (incremental) Estimation of Distribution Alaorithms
27
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Example 2: Particle Swarm Optimization (cont)

Input w inertia weight, N swarm size

For each particle Xf, for each coordinate j A
X7y 1l = X705 + (U2 L (PF] — 1XED) + 05 (G = [X7))
XEay = ]+ e - (X)) —

By

: -

Uf];, (U] random variables @)

iid. ~U(0,¢) <
\

26

Evolution Strategies

x; ~m~+ o N;(0,C) fori=1,...,\

as perturbations of m,
where

where x;,m € R, 0 € R;, C € R™" |!

@ the mean vector m € R" represents the favorite solution
@ the so-called step-size o € R4 controls the step length

@ the covariance matrix C € R**" determines the shape of
the distribution ellipsoid

here, all new points are sampled with the same parameters

The question remains how to update m, C, and o.

28



Evolution Strategies (ES) The Normal Distribution Evolution Strategies (ES) The Normal Distribution

Normal Distribution The Multi-Variate (n-Dimensional) Normal Distribution

Standard Normal Distribution
0.4

Any multi-variate normal distribution N (m, C) is uniquely determined by its mean
value m € R" and its symmetric positive definite n x n covariance matrix C.

o
W

probability density of the 1-D standard

normal distribution The mean value

probability density
o
N

o

2-D Normal Distribution

@ determines the displacement (translation)

o = 5 N ) @ value with the largest density (modal value)
2-D Normal Distribution @ the distribution is symmetric about the distribution
mean

probability density of

/73":‘00“&\\ 5D | :: The covariance matrix C
AN - ;
J’//l","o‘.‘:g\\\\\ Z_Str_bnt(_)gr:a - @ determines the shape
Istrioutl N
- @ geometrical interpretation: any covariance matrix can be uniquely identified with
- the iso-density ellipsoid {x € R"| (x —m)"C™'(x —m) = 1}
29 30
...any covariance matrix can be uniquely identified with the iso-density ellipsoid
y auely yelip The (41/1, \)-ES

{xeR"|(x—m)"C"'(x —m) =1}

Lines of Equal Density Non-elitist selection and intermediate (weighted) recombination

Given the i-th solution pointx; = m + o N;(0,C) =m + o y;
N——

=i
Let x;.) the i-th ranked solution point, such that f(x;.,) < -+ < f(xx.)).
The new mean reads

4 4
m < Zwixi:)\ =m+ Uzwiyi:/\
i=1 i=1

N——

=y
N (m, o) ~ m + oN(0,1) N (m,D?) ~m+DN(0,I) /\/'(m,C)Nm—l—C%/\/'(O,I)
one degree of freedom o n degrees of freedom ;2 4 1) /2 degrees of freedom where
components are components are components are i . N
independent standard independent, scaled correlated wp > 2w, >0, Y wi=1, SE o T e R g
normally distributed =
where T is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable . . L
for separable problems) and A x A (0,I) ~ A (0, AA™) holds for all A. The best 1 points are selected from the new solutions (non-elitistic)
and weighted intermediate recombination is applied.

31 32
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Evolution Strategies (ES) Invariance

Invariance Under Monotonically Increasing Functions

Rank-based algorithms
Update of all parameters uses only the ranks

f(xh)\) Sf(x2:)\) <.. Sf(X)\:A)

S TS S S R—] o 1 3 R R R —

g(f(x:n)) < g(f(x2:n)) < .o < g(f(xair)) Vg
g is strictly monotonically increasing
3 g preserves ranks

algorithm and selection pressure: ly rank-based allocation of reproquctive trials Is best,

33

Evolution Strategies (ES) Invariance

Invariance Under Rigid Search Space Transformations
f = hRast

f=h

[f-level sets in dimension 2
,

2k

-2 -1 0 1 2 3

for example, invariance under search space rotation
(separable < non-separable)

Anne Auger & Nikolaus Hansen CMA-ES

July, 2014 27/81

327

Evolution Strategies (ES) Invariance

Basic Invariance in Search Space

@ translation invariance
is true for most optimization algorithms

(X

’ N N
PN
\ v S
o =
IREEN

fx) & flx—a)

Identical behavior on f and f,

f:
Ja:

x — f(x), x(=0) = x,
x—fx—a), x=0 =x;+a

No difference can be observed w.r.t. the argument of f

34

Evolution Strategies (ES) Invariance

Invariance Under Rigid Search Space Transformations
f = hRast oR

f-level sets in dimension 2

f=hoR
2/ '

o

for example, invariance under search space rotation
(separable < non-separable)

Anne Auger & Nikolaus Hansen CMA-ES

July, 2014 27/81




Invariance

The grand aim of all science is to cover the greatest number of empirical facts by
logical deduction from the smallest number of hypotheses or axioms.
— Albert Einstein

@ Empirical performance results

» from benchmark functions
» from solved real world problems

are only useful if they do generalize to other problems

@ Invariance is a strong non-empirical statement about

generalization
generalizing (identical) performance from a single function to a whole
class of functions

consequently, invariance is important for the evaluation of search
algorithms

37

Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, non-separable (rotated) with varying condition number «

Rotated Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)

DE (Storn & Price 1996)

PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)

f(x) = g(x"Hx) with

H full
[-A- NEWUOA g identity (for BFGS and
NEWUOA)
g any order-preserving = strictly
10 T T I, increasing function (for all other)
10 10 10 10 10 10

Condition number
SP1 = average number of objective function evaluations'® to reach the target function
value of g~'(107?)

5Au«:xer et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
39

Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, separable with varying condition number «a

Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)

DE (Storn & Price 1996)

PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)

f(x) = g(x"Hx) with

H diagonal
[~2- NEWUOA g identity (for BFGS and
NEWUOA)
g any order-preserving = strictly
10 T T I, increasing function (for all other)
10 10 10 10 10 10

Condition number
SP1 = average number of objective function evaluations' to reach the target function
value of g7'(107?)

14 . . — P .
Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
38

Comparison to BFGS, NEWUOA, PSO and DE

f non-convex, non-separable (rotated) with varying condition number «

Sqrt of sqrt of rotated ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)

DE (Storn & Price 1996)

PSO (Kennedy & Eberhart 1995)
10 { CMA-ES (Hansen & Ostermeier
2001)

f(x) = g(x"Hx) with

s H full

j | A~ NEWUOA g X x/4 (for BFGS and

= NEWUOA)

g any order-preserving = strictly

10' T ‘ increasing function (for all other)
10 10 10 10 10 10

Condition number
SP1 = average number of objective function evaluations'® to reach the target function
value of g7'(107?)

6Au«:xer et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
40
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Overview Zoom on ESs: Objectives

lllustrate why and how sampling distribution is

© Problem Statement
controlled

Continuous Black-Box Optimization

Typical Difficulties _ o
step-size control (overall standard deviation)

@ Stochastic Black-Box Algorithms allows to achieve linear convergence
General Template
Invariance
Comparisons of a few DFOs

covariance matrix control
allows to solve ill-conditioned problems

© Zoom on Evolution Strategies
Step-size Adaptation
Covariance Matrix Adaptation

41
42

Step-Size Control Why Step-Size Control Step-Size Control Why Step-Size Control

Why Step-Size Control? Methods for Step-Size Control

@ 1/5-th success rule?, often applied with “+”-selection

0 |—
10" | random search | increase step-size if more than 20% of the new solutions are successful,
decrease otherwise

step-size too small -

@ o-self-adaptation®, applied with “,’-selection

1 0-3 (red & green) mgtatlpn is applled to thg step-size and the better, according to the
objective function value, is selected

constaht step-size (1 +1 )_ES

n H HA “ ” H
77777777 stop—size 100 large- — - — — - - | Flx) = Z Xiz simplified “global” self-adaptation
i=1 @ path length control? (Cumulative Step-size Adaptation, CSA)®

. n self-adaptation derandomized and non-localized
in[—2.2,0.8]
optimal step-size fOI’ n=10 a ) . . . . L

lei iant Rechenberg 1973, Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der biologischen
-9 (scale invariant) Evolution, Frommann-Holzboog
: ; : bSchumer and Steiglitz 1968. Adaptive step size random search. IEEE TAC
0 05 i 1 i 1 5 2 Cschwefel 1981, Numerical Optimization of Computer Models, Wiley
fu nCtIOI’l eva|uatI0nS X 1 04 dHansen & Ostermeier 2001, Completely Derandomized Self-Adaptation in Evolution Strategies, Evol. Comput.
9(2)

€0stermeier et al 1994, Step-size adaptation based on non-local use of selection information, PPSN 1V
44

function value

43
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Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation

Xi = m+oy;
m <4 m-+oyy

Measure the length of the evolution path
the pathway of the mean vector m in the generation sequence

% | A

decrease o increase o

loosely speaking steps are
@ perpendicular under random selection (in expectation)
@ perpendicular in the desired situation (to be most efficient)
45

Step-Size Control Path Length Control (CSA)

Path Length Control (CSA)

The Equations

Initialize m € R", o € R, evolution path p, = 0,
setc, = 4/n, d, ~ 1.
Ps (I_CU)p(T+ 1—(1—CU)2 \/lTW Yw
—_—
accounts for 1—c, accounts forw;

Co lp- || )) ,
o +— ox exp|—|=—r———1 update step-size
P (do <E||N<o,1> || P P

>1 <= ||p-|| is greater than its expectation

update mean

47

Path Length Control (CSA)

The Equations

Initialize m € R", o € R, evolution path p, = 0,
setc, ~4/n,d, = 1.

46

Step-Size Control Path Length Control (CSA)

(5/5,10)-CSA-ES, default parameters

— with optimal step-size
— with step-size control 4
— respective step-size

100 L

10*

[ — x|

; ; ; ; ; ; N
0 500 1000 1500 2000 2500 3000 3500 4000
function evaluations

48
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Overview

© Problem Statement
Continuous Black-Box Optimization
Typical Difficulties

@ Stochastic Black-Box Algorithms

General Template
Invariance
Comparisons of a few DFOs

© Zoom on Evolution Strategies
Step-size Adaptation
Covariance Matrix Adaptation
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

Mmoo mA Oy, Yw = widin,  Yi~ Ni(0,C)

initial distribution, C =1

51

Covariance Matrix Adaptation (CMA)

Evolution Strategies

Recalling

New search points are sampled normally distributed

fori=1,...,\

where x;,m € R", o € R, C € R™" ||

x,-wm—l—aj\/i(O,C)

as perturbations of m,
where
@ the mean vector m € R" represents the favorite solution
@ the so-called siep-size o € R4 controls the step length

@ the covariance matrix C € R**" determines the shape of
the distribution ellipsoid

The remaining question is how to update C.

50

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

Mmoo MmOy, Yw = widin,  Yi ~ Ni(0,C)

initial distribution, C =1

52
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation Covariance Matrix Adaptation
Rank-One Update Rank-One Update
m o mA oy, Yw =2 wiyin, Yi~ Ni(0,C) m o= mA+ oy, Yw =24 wiyin, Yi~ Ni(0,C)
l | i i
@
yw, movement of the population mean m (disregarding o) mixture of distribution C and step y,,,

C+08xC+0.2xy,y!

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation Covariance Matrix Adaptation
Rank-One Update Rank-One Update
Mmoo mA Oy, Yw = widin,  Yi~ Ni(0,C) Mmoo MmOy, Yw = widin,  Yi ~ Ni(0,C)
@ ' |
new distribution (disregarding o) new distribution (disregarding o)
55 56
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation Covariance Matrix Adaptation
Rank-One Update Rank-One Update

m <= m+ oYy, Yw= ey Wi¥ir, Yi~N;i(0,C) m 4= m+ oYy, Yw= ey WiVir, Yi~N;i(0,C)

movement of the population mean m mixture of distribution C and step y,,,
C<+08xC+02xy,yr

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation Covariance Matrix Adaptation
Rank-One Update Rank-One Update
g . n _ _ . ~ 2
mo— mA oy, Yo =S wiyin, yi~Ni(0,C) |nItI?.|IZG m e R ,and C =1, set o = 1, learning rate ccoy = 2/n
While not terminate
X; = m+oyi, yi ~ M(O,C),
w
m + m+oy, Wherey, = Zwiym
i=1
1
C « (1 - Ccov)c + Ccovlw ywvaV where p,, = uiz >1
N—— 1 Wi
rank-one

new distribution,
C+08xC+0.2xy,y!
the ruling principle: the adaptation increases the likelihood of

The rank-one update has been found independently in several domains® 7 & °

6Kjellstrfim&Talxén 1981. Stochastic Optimization in System Design, IEEE TCS

SUCCGSSfUI Steps, yw, tO appear again 7Hansen&Oslermeier 1996. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix
. . . . adaptation, ICEC
anothe_r weyvpomt. the adaptathn follows a natural gradient 8 ung 1699, System Identfication: Theory for the User
approximation of the eXpeC’[ed fitness ®Haario et al 2001. An adaptive Metropolis algorithm, JSTOR
59 60
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The CMA-ES Experimentum Crucis (0)

Input: m e R", 0 e Ry, A What did we want to achieve?

Initialize: C=T1,andp. =0, p, =0,

Set: cc @ 4/n, co = 4/n, c; =2/n* ¢~ py/n? e +ey <1, dy =1+ (/B @ reduce any convex-quadratic function

and w;—;._ such that j,, = Z+ ~ 0.3\
i=1

W,‘2
. . f(x) =x"Hx
While not terminate
xi=m+oy, yi ~ Ni(0,C), fori=1,...,) sampling eg.f(x)=>1, 106%)«,-2
to the sphere model

m Y I wixiy =m+ oy, wherey, =3t wiyia update mean -
. flx)=xx
De — (1 — Cc)pc + 1I{‘|p“”<1.5\/ﬁ}\/ 1-— (1 — Cc)zw//.l/wyw cumulation for C
. ithout f derivati
o (1= co)po + /T= (1= €02/l C 2y cumulation for o without use of derivatives
Ce (1—c1—cu)C + crpep’ + cu S widiy!y update C @ lines of equal density align with lines of equal fitness
cFc i= 1Y N,
co o1l _
0 4= 0 X exp (da (E” al 1)) update of o C o H!
Not covered on this slide: termination, restarts, useful output, boundaries and in a stochastic sense
encoding
61 62

CMA-ES Summary The Experimentum Crucis CMA-ES Summary The Experimentum Crucis

f convex quadratic, separable f convex quadratic, as before but non-separable (rotated)
blye:abs(f), cyan:f-min(f), green:sigma, red:axis ratio Object Variables (9-D) blue:abs(f), cyan:f-min(f), green:sigma, red:axis ratio Obiject Variables (9-D)
10 15 (1)=3.0931e 10" 4 (1)=2.0052¢
(2)=2.2083¢ (5)=1.2552¢
10 (6)=5.6127¢ (6)=1.2468¢
(7)=2.7147¢ (9)=-7.3812
Ji (8)=4.5138¢ (4)=-2.9981
| (9)=2.741e- Y (7)=-8.3583
0 P ——x(5)=-1.0864 Wgg-g (3)=—2.0364
A > k(4)=-3.8371 Y (2)=—2.1131
10 [£2.661788837537726-10 4 " 3)-_6.9108 1710 =7.910557281880420-10 #)=2.6301
0 2000 4000 6000 0 2000 4000 a0t 0 2000 4000 6000 () 2000 4000 s00b) >
—1
‘ - e _ Cx H ' forall g,H
. Principle Axes Lengths ‘S(t)gndard Deviations in Coordinates divided by slgma 5 Principle Axes Lengths Standard Deviations in Coordinates divided by sngma
10 10
2 1
10° 10° N 10° s
ity e S 2
N . S :
107 : 107 6 107° : 5
7 6
8 9
107 107 9 10 4
o 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000
function evaluations function evaluations function evaluations function evaluations
i—1 T . . .
n a— = :
Flx) =3, 10% 12 a =6 f(x) = g (x"Hx), g : R — R stricly increasing
63 64
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