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Abstract

We consider a nonlocal reaction-diffusion equation as a model for a population structured
by a space variable and a phenotypic trait. To sustain the possibility of invasion in the case
where an underlying principal eigenvalue is negative, we investigate the existence of travelling
wave solutions. We identify a minimal speed c∗ > 0, and prove the existence of waves when
c ≥ c∗ and the non existence when 0 ≤ c < c∗.

Key Words: structured population, travelling waves, nonlocal reaction-diffusion equation.

AMS Subject Classifications: 35Q92, 45K05, 35C07.

1 Introduction

1.1 Setting of the problem
In this paper we are interested in propagation phenomena for nonlocal reaction-diffusion equations
of the form

∂tn(t, x, y)−∆x,yn(t, x, y) =

(
r(y −Bx · e)−

∫
R
k(y −Bx · e, y′ −Bx · e)n(t, x, y′) dy′

)
n(t, x, y),

(1)
where (x, y) ∈ Rd × R, e ∈ Sd−1, B ≥ 0, r : R → R and k : R2 → R+.

Such equations have appeared in some population dynamic models, see [38], [41], [40], [35]. In
this context, n(t, x, y) denotes a density of population structured by a spatial variable x ∈ Rd and
by a phenotypic trait y ∈ R. The population is then submitted to four essential processes: spatial
dispersion, mutations, growth and competition. The spatial dispersion and the mutations are
modelled by diffusion operators. The growth rate of the population at a location x and trait y is
given — for all times t— by r(y−Bx ·e), where r is typically negative outside a bounded interval.
This corresponds to a population living in an environmental cline: to survive at the location x, an
individual must have a trait close to y = Bx · e. Therefore, to be able to invade the environment
in the direction of the environmental cline, the population needs to evolve. Finally, we consider a
logistic regulation of the population density that is local in the spatial variable and nonlocal in the
trait. In other words, we consider that there exists an intra-specific competition (for e.g. food)
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at each location, which may depend on the traits of the competitors. For a rigorous derivation of
this model from individual based models, we refer to [16]. In Section 2, we will discuss in more
details the biological aspects of our work.

The existence of global solutions for the Cauchy problem and of non trivial steady states for
(1) in a bounded domain have been investigated respectively in [41] and [2]. Also, numerical
simulations (see e.g. [38], [41], [40]) show that the population can either go extinct, or propagate
while adapting to local environments.

The aim of this work is to analyze this propagation phenomena through the study of travelling
front solutions. The travelling front solutions are particular solution of (1) describing the transition
at a constant speed c from one stationary solution to another one. Such solutions have proved in
numerous situations their utility in describing the dynamics of a population modelled by a reaction
diffusion equation. In the case of the classical Fisher-KPP equation

∂tn−∆n = (1− n)n, (2)

we refer among others to [23], [33], [3] [43]: there exists planar fronts ϕ(x · e − ct) connecting 0
to 1, for all speed c ≥ c∗ =

√
2. Moreover, the minimal speed of the front c∗ corresponds to the

so called spreading speed of propagation. Travelling front solutions in heterogeneous versions of
(2) with periodicity in space, in time, or more general media are studied in [12], [28], [44], [6], [8],
[36], [37]. Nonlocal versions of (2) where the Laplace operator is replaced by a nonlocal operator
are studied in [19], [17, 18], [42]. For very general reaction diffusion equations, we refer to [7] for
a definition of generalized transition waves and their properties.

It is worth noticing that when the competition term is replaced by a local (in x and y) density
regulation, equation (1) becomes the following heterogeneous reaction diffusion equation

∂tn(t, x, y)−∆x,yn(t, x, y) = (r(y −Bx · e)− h(y −Bx · e)n(t, x, y))n(t, x, y), (3)

which was recently investigated by Berestycki and Chapuisat [5]: they prove the existence of a
critical speed c∗, for which there exists a travelling front of (3) for any speed c ≥ c∗.

As far as nonlocal equations of the form (1) are concerned, far less seems to be known in
the literature. The travelling wave analysis has been done either using a formal Hamilton-Jacobi
approach [15] for a model close to (1), or for a population structured by one variable only, that is
n = n(t, x), submitted to a nonlocal competition [9]. To our knowledge, there is no result on the
existence of travelling waves for (1) and related models.

1.2 Assumptions and main results
As suggested by the numerical simulations mentioned above, we expect that during an invasion,
the population adapts locally to the environmental gradient. To observe travelling waves of (1),
we therefore perform the change of variable

ñ(t, x, z) = n(t, x, z +Bx · e). (4)

Then (1) is recast as

∂tñ(t, x, z)− Ẽ(ñ)(t, x, z) =
(
r(z)−

∫
R
k(z, z′)ñ(t, x, z′) dz′

)
ñ(t, x, z), (5)

where Ẽ(ñ) := ∆xñ+
(
B2 + 1

)
ñzz−2B∂z(∇xñ·e). Since (1) is invariant under any rotation in Rd,

without loss of generality we can assume that e = e1 so that Ẽ(ñ) = ∆xñ+
(
B2 + 1

)
ñzz−2B∂x1zñ.

This operator is elliptic, since the associated matrix has only positive eigenvalues. Looking after
travelling wave solutions, we search a speed c and a profile u(x, z) such that ñ(t, x, z) := u(x ·
e1 − ct, z) = u(x1 − ct, z) solves (5). For convenience, we drop the numerical subscript and write
x instead of x1. Hence, we are looking after (c, u(x, z)) such that

−E(u)(x, z)− cux(x, z) =

(
r(z)−

∫
R
k(z, z′)u(x, z′) dz′

)
u(x, z) in R2, (6)
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where
E(u) := uxx + (B2 + 1)uzz − 2Buxz.

Throughout the paper, we make the following assumption.

Assumption 1.1 (Structure of r and k) Function r is in the Hölder space C0,θ
loc (R) for some

0 < θ < 1, and there is δ > 0 such that

∀z ∈ R, r(z) ≤ 1

δ
− δz2. (7)

Function k is in the Hölder space C0,θ
loc (R2) and there are k− > 0, k+ > 0 such that

∀(z, z′) ∈ R2, k− ≤ k(z, z′) ≤ k+.

Let us next introduce a principal eigenvalue problem that is necessary to enunciate our main
result. For more details on principal eigenvalue problems in general domains we refer to [13], [14]
and the references therein.

Definition 1.2 (Principal eigenvalue problem) We denote by
(
λ0∞,Γ

0
∞
)
∈ R × C∞(R) the

solution of the principal eigenvalue problem{
−
(
B2 + 1

)
∆zΓ

0
∞(z)− r(z)Γ0

∞(z) = λ0∞Γ0
∞(z) for all z ∈ R

Γ0
∞(z) > 0 for all z ∈ R, Γ0

∞(0) = 1.
(8)

Observe that in the case where r(z) = 1 − Az2, A > 0, we have λ0∞ =
√
A (B2 + 1) − 1 and

Γ0
∞(z) = exp

(
−
√

A
B2+1

z2

2

)
is a Gaussian profile.

We first state that as soon as λ0∞ > 0, extinction of the population occurs.

Proposition 1.3 (Extinction) Assume λ0∞ > 0. For any nonnegative initial population n0 such
that ∥∥∥∥ n0(x, y)

Γ0
∞(y −Bx)

∥∥∥∥
L∞(R2)

<∞,

any nonnegative solution n(t, x, y) of (1) with initial condition n0 goes extinct exponentially fast
as t→ ∞: ∥∥∥∥ n(t, x, y)

Γ0
∞(y −Bx)

∥∥∥∥
L∞(R2)

= O(e−λ0
∞t).

Next, we state our main result: as soon as λ0∞ < 0, invasion waves exist. Precisely, the following
holds.

Theorem 1.4 (Travelling waves) Assume λ0∞ < 0 and define

c∗ := 2

√
−λ0∞
B2 + 1

. (9)

Then the following holds.

(i) For all c ≥ c∗, there exists a positive u ∈ C2(R2) solution of

−E(u)(x, z)− cux(x, z) =

(
r(z)−

∫
R
k(z, z′)u(x, z′) dz′

)
u(x, z) in R2, (10)

with
ν1{(x,z)∈(−∞,0]×[−ν,ν]}(x, z) ≤ u(x, z) ≤ Ce−Kz2

, ∀(x, z) ∈ R2, (11)
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for some ν > 0, C > 0, K > 0, and

∥u(x, ·)∥∞ →x→+∞ 0,

∫
R
u(x, z) dz →x→+∞ 0. (12)

Additionally, when c > c∗, there exists µ < 0 such that

u(x, z) ≤ e
µ

(√
B2+1 x+ B√

B2+1
z

)
Γ0
∞(z), ∀(x, z) ∈ R2. (13)

(ii) When 0 ≤ c < c∗, there is no positive solution of (10) such that lim infx→+∞ u(x, 0) = 0 and
u(x, z) ≤ ψ(z) for some ψ ∈ L1(R).

1.3 Comments
On the extinction case. The proof of Proposition 1.3 is elementary and we now give the proof.
Consider n(t, x, y) a nonnegative solution of (1) with initial condition n0. The result is then a
consequence of the parabolic comparison principle satisfied by the local equation

∂tϕ(t, x, y)−∆x,yϕ(t, x, y) = r(y −Bx · e)ϕ(t, x, y). (14)

Indeed, one can check that Me−λ0
∞tΓ0

∞(y − Bx · e) and n(t, x, y) are respectively a super- and a
sub-solution of (14) with ordered initial data (for M large enough).

On the construction of waves. Let us first comment on a major difficulty in the construction of
travelling fronts. When the competition term is replaced by a local (in x and y) density regulation,
many techniques based on the comparison principle — such as some monotone iterative schemes
or the sliding method [11]— can be used to get a priori bounds, existence and monotonicity
properties of the solution. Since integro-differential equations with a nonlocal competition term
do not satisfy the comparison principle, it is unlikely that such techniques apply here.

It turns out that the considered problem here has some similarities with the case of a population
structured by a spatial variable only, that is n = n(t, x), submitted to a nonlocal competition as
studied in [9] (see also [1]). In this work, the construction of a travelling front is based on a
sequence of approximating problems on intervals (−an, an), with an → ∞. Due to the lack of
comparison principle for the approximated problem, the construction of a solution is based on a
topological degree argument, a method introduced initially in [10].

To construct our fronts, we adopt a similar strategy and consider a sequence of problems in
growing boxes (−an, an) × (−bn, bn), with a normalization at the origin. In order to make this
strategy possible, a key point is to establish a priori estimates, independent on the size of the
boxes, on the profile u, the speed c and, in particular, the tails of u when z is large. Due to the
nature of the considered kernels here, an uniform estimate on u is obtained using a local pointwise
Lp estimate, whereas the uniform control on c is obtained by showing that our problem does not
have a solution if the speed c is too large or if c = 0. Notice that the latter analysis may also be
used to simplify the proof in [9].

Let us highlight that, in contrast with [10] and [9], it is far from obvious that the constructed
travelling fronts are monotone w.r.t. x for x > 0 large enough. Therefore, we shall need an extra
work to catch the behavior (12) as x→ +∞.

Notice also that the comprehension of the behavior of the wave as x→ −∞ is quite involved.
In the related case of the nonlocal Fisher-KPP equation, the positive steady state u ≡ 1 may
present, for some kernels, a Turing instability (see e.g. [24], [9], [1]). Such a situation may also
occur in our context.

Let us also mention that, although we construct fronts without relying on any monotonic
properties of the profiles, it is suspected, as in the case of the nonlocal Fisher-KPP equation [9],
that there exist monotone and non monotone travelling fronts. The understanding of such issues
is quite challenging.
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Organization of the paper. In Section 2 we briefly describe the biological context of (1) and
give an interpretation of our results. Then, we prove Theorem 1.4 in Sections 3–5. In Section 3,
we start by deriving some a priori bounds and then, using a Leray-Schauder topological degree
argument, we construct a solution in a bounded box. In Section 4, we let the box tend to R2 and
obtain a wave, which turns out to be the one with minimal speed c = c∗. We also show the non
existence of waves with speed 0 ≤ c < c∗. Lastly, we construct faster waves c > c∗ in Section 5.

2 Biological interpretation of the results
In this section we briefly precise the biological context of (1).

In the present paper, we are interested in biological invasions involving darwinian evolution.
Species invading new territories often face environmental gradients of e.g. temperature, luminosity,
antibiotic chemicals. Experimentally, it is well documented that invasive species then evolve during
their range expansion [22], [30], to adapt to local conditions. To understand the speed, or even
the success of an invasion, one should thus consider the dispersion, birth and death processes,
but should also take into account evolution [26], [31], [27]. Those questions become especially
important in the context of the global warming [20], [21]: the favorable environmental conditions
of many species move towards the north, implying important changes in species’ range. It is also
of great importance for the evolution of resistance of bacteria to antibiotics [27].

More generally, many evolutionary biology questions involve spatially structured populations,
while most existing models either neglect the spacial structure of the population, or largely sim-
plify it. New theoretical tools are then needed, and structured population models are natural
candidates: they enable the modelling of all the biological phenomena mentioned above, and nu-
merical simulations show that they are able to reproduce interesting features. Analyzing this type
of model is however challenging, even in a homogeneous setting, see e.g. [29], [34]. This work,
as well as the results of [15] are first steps in the mathematical understanding of the dynamics of
those models.

The main application of our result concerns asexual populations living in an environmental
cline. The simplest model then writes

∂tn(t, x, y) −σ
2
x

2
∆xn(t, x, y)−

σ2
m

2
∆yn(t, x, y) =(

rmax − 1

2Vs
(y − bx)2 − 1

K

∫
R
n(t, x, y′) dy′

)
n(t, x, y),

where σx, σm describe respectively the diffusion rate and the mutation rate of the population, 1
2Vs

is the strength of the selection, b is the steepness of the environment cline, and K the carrying
capacity of the environment. After the rescaling n(t, x, y) = ñ(rmaxt,

√
2rmax

σx
x,

√
2rmax

σm
y), we see

that ñ solves (1) with

r(y) = 1−Ay2, A =
σ2
m

4r2maxVs
, B =

σx
σm

b, k ≡ 1

Krmax
.

The population then gets extinct if A
(
B2 + 1

)
> 1, while if A

(
B2 + 1

)
< 1, invasion fronts exist,

with a minimal propagation speed (in the original variables)

√
2rmaxσx

1− σm

2rmax

√
Vs

√(
b
σx
σm

)2

+ 1

1/2((
b
σx
σm

)2

+ 1

)−1/2

.

Remark 2.1 There exists thus only two dynamics: either the population gets extinct, or it succeeds
to invade the whole territory. The situation of asexual populations is then very different from the
case of sexual populations (see [32], [35]), where populations surviving with a limited range only
are possible.

Notice also that during invasions, the dispersion of individuals can evolve (see e.g. [39]). Our
result does not apply to this problem, and we refer to [4], [15] for such a situation.
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3 The problem in a bounded box

3.1 On some principal eigenvalue problems
We first introduce some principal eigenvalue problems, whose eigenfunctions will serve as boundary
conditions when stating the travelling wave problem in a bounded box.

For ν ∈ [0, δ), where δ > 0 is as in Assumption 1.1, we denote by (λν∞,Γ
ν
∞) the solution of the

principal eigenvalue problem{
−
(
B2 + 1

)
∆zΓ

ν
∞(z)−

(
r(z) + νz2

)
Γν
∞(z) = λν∞Γν

∞(z) for all z ∈ R
Γν
∞(z) > 0 for all z ∈ R, Γν

∞(0) = 1.
(15)

Notice that this definition is coherent with (8), and for any ν ∈ [0, δ), we have λν∞ ≤ λ0∞ < 0.
Also, for ν ∈ [0, δ) and b > 0, we define (λνb ,Γ

ν
b ) as the solution of the principal eigenvalue problem

−
(
B2 + 1

)
∆zΓ

ν
b (z)−

(
r(z) + νz2

)
Γν
b (z) = λνbΓ

ν
b (z) for all z ∈ (−b, b)

Γν
b (±b) = 0

Γν
b (z) > 0 for all z ∈ (−b, b), Γν

b (0) = 1.

(16)

Let us observe that b < b′ implies λν∞ < λνb′ < λνb , and that λνb → λν∞ as b → ∞. To construct
the travelling waves, we will use the eigenfunctions Γδ/3

b , for b > 0 as a boundary value. To bound
from above those functions independently of b > 0, we will also use the functions Γ

2δ/3
∞ . Notice

that (7) implies λ2δ/3b ≥ −maxz∈R(
1
δ −

δ
3z

2) and therefore −maxz∈R(
1
δ −

δ
3z

2) ≤ λ
2δ/3
∞ < λ

δ/3
∞ < 0.

To show that Γ
2δ/3
∞ is integrable, we define C := max[−z̄,z̄] Γ

2δ/3
∞ , where z̄ :=

√
6
δ , and ψ(z) :=

Cexp
(
−
√

δ
B2+1

z2−z̄2

2
√
6

)
, so that ψ(±z̄) = C and

−
(
B2 + 1

)
∆zψ(z)−

(
r(z) +

2δ

3
z2
)
ψ(z) ≥

(
δ

6
z2 − 1

δ

)
ψ(z) ≥ 0,

for all z ∈ (−∞,−z̄)∪ (z̄,∞). Since in (−∞,−z̄)∪ (z̄,∞) we have r(z)+ 2δ
3 z

2 ≤ 1
δ −

δ
3z

2 ≤ 0, the
comparison principle then applies to (15) on (−∞,−z̄)∪ (z̄,∞), and yields Γ2δ/3

∞ (z) ≤ ψ(z) for all
z ∈ (−∞,−z̄) ∪ (z̄,∞). As a result, for some constant which we denote again by C, we have

Γ2δ/3
∞ (z) ≤ Cexp

(
−
√

δ

B2 + 1

z2

2
√
6

)
for all z ∈ R, (17)

which implies in turn that Γ
2δ/3
∞ ∈ L1(R).

For a given b0 > 0, we now use a similar argument to control the functions Γ
δ/3
b (z) uniformly

w.r.t. b ∈ [b0,∞]. When z lies in [−z̄, z̄], where z̄ := max

{√
3
(
λ
δ/3
b0

−λ
2δ/3
∞

)
δ ,

√
3
2δ

(
λ
δ/3
b0

+ 1
δ

)}
, the

coefficients of the equations in (15) and (16) are uniformly bounded w.r.t. b ∈ [b0,∞]. Therefore
the Harnack inequality implies that there is C > 0 such that Γ

δ/3
b (z) ≤ C, for all z ∈ [−z̄, z̄], all

b ∈ [b0,∞]. By the definition of z̄ we see that, on the one hand, Γ2δ/3
∞ is a super-solution for (15)

and (16) — with ν = δ
3— on (−∞,−z̄) ∪ (z̄,∞) and that, on the other hand, the comparison

principle applies. Therefore, there exists C̄ > 0 such that

Γ
δ/3
b (z) ≤ C̄Γ2δ/3

∞ (z) ≤ C̄∥Γ2δ/3
∞ ∥∞ for all z ∈ R, b ∈ [b0,∞]. (18)

In particular, we have∫
R
Γ
δ/3
b (z) dz ≤ mΓ := C̄

∫
R
Γ2δ/3
∞ (z) dz <∞ for all b ∈ [b0,∞]. (19)
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3.2 The problem in a box
For a > 0, b > 0 and ε ∈ (0, 1), we consider the problem of finding a speed c ∈ R and a real
function u(x, z), defined for (x, z) ∈ [−a, a]× [−b, b], such that

P (a, b, ε)



−E(u)(x, z)− cux(x, z)

= 1{u(x,z)≥0}

(
r(z)−

∫ b

−b

k(z, z′)u(x, z′) dz′

)
u(x, z) in Q

u(x, z) = 1{x=−a}(x)Γ
δ/3
b (z) on ∂Q

u(0, 0) = ε,

where Q := (−a, a)× (−b, b). The elliptic operator is given by

−E(u) = −uxx −
(
B2 + 1

)
uzz + 2Buxz. (20)

If (c, u) is a solution achieving a negative minimum at (xm, zm) then, from the boundary
conditions we deduce that (xm, zm) lies in the interior of the rectangle, and that −E(u)− cux = 0
on a neighborhood of (xm, zm). The maximum principle thus implies u ≡ u(xm, zm), which cannot
be. Therefore any solution of P (a, b, ε) satisfies u ≥ 0 and, by the strong maximum principle,

u > 0 and − E(u)(x, z)− cux(x, z) =

(
r(z)−

∫ b

−b

k(z, z′)u(x, z′) dz′

)
u(x, z) in Q . (21)

In the following of the section, we shall construct a solution to P (a, b, ε) via a Leray-Schauder
topological degree argument. To make this possible, we consider a family of problems as follows.
For a > 0, b > 0 and τ ∈ [0, 1], we consider the problem of finding a speed c ∈ R and a nonnegative
real function u(x, z) such that

Pτ (a, b)



−E(u)(x, z)− cux(x, z)

=

(
r(z)− τ

∫ b

−b

k(z, z′)u(x, z′) dz′ − γ(1− τ)u(x, z)

)
u(x, z) in Q

u(x, z) = 1{x=−a}(x)Γ
δ/3
b (z) on ∂Q,

where γ > 0 will be specified later (see Lemma 3.7). Note that P0(a, b) reduces to a local prob-
lem, and that solving P (a, b, ε) is equivalent to solving P1(a, b) with the additional normalization
condition u(0, 0) = ε.

Remark 3.1 A first natural idea to define a family of problems would be to consider −E(u)−cux =

τ
(
r(z)−

∫ b

−b
k(z, z′)u(x, z′) dz′

)
u. But then we cannot get a uniform w.r.t. 0 ≤ τ ≤ 1 control of

the tails of u (see Lemma 3.4), which is crucial to derive e.g. a lower bound on the standing waves
(see Lemma 3.6). This is the reason why we consider the family Pτ (a, b) as above. Therefore, the
topological degree argument (see subsection 3.6) is rather involved and requires to analyze a whole
family of local problems (see Lemma 3.8).

3.3 A priori estimates for u

We provide a priori bounds for the profile u of solutions to Pτ (a, b). When 0 ≤ τ ≤ 1/2, the local
part of the equation shall be enough to derive Lemma 3.3. On the other hand, when 1/2 ≤ τ ≤ 1,
the nonlocal part is quite relevant and we first need to control the vertical mass of u, namely

m(x) :=

∫ b

−b

u(x, z) dz.
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Lemma 3.2 (A priori bound for the mass) For all a > 0, b ≥ b0 > 0, 1/2 ≤ τ ≤ 1, any
solution (c, u) of Pτ (a, b) satisfies

0 ≤
∫ b

−b

u(x, z) dz ≤ max

(
2maxR r

k−
,mΓ

)
, ∀x ∈ [−a, a].

Proof. Integrating w.r.t. z the inequality −uxx− cux ≤
(
maxR r − 1

2k
−m(x)

)
u+

(
B2 + 1

)
uzz −

2Buxz, we get

−m′′(x)− cm′(x) ≤
(
max
R

r − 1

2
k−m(x)

)
m(x) +

(
B2 + 1

)
(uz(x, b)− uz(x,−b))

−2B (ux(x, b)− ux(x,−b)) .

Since uz(x, b) ≤ 0, uz(x,−b) ≥ 0 and ux(x, b) = ux(x,−b) = 0, the mass satisfies the Fisher-KPP
inequality −m′′ − cm′ ≤

(
maxR r − 1

2k
−m

)
m. Since m(−a) ≤ mΓ (see (19)) and m(a) = 0, the

maximum principle concludes the proof of the lemma. �
The above nonlocal control now provides the following a priori bound for u.

Lemma 3.3 (A priori bound for u) There exists M > 0 such that, for all a > 0, b ≥ b0 > 0,
0 ≤ τ ≤ 1, any solution (c, u) of Pτ (a, b) with 0 ≤ c ≤ c∗ + 1 satisfies

0 ≤ u(x, z) ≤M, ∀(x, z) ∈ [−a, a]× [−b, b].

Proof. For 0 ≤ τ ≤ 1/2, one keeps the local part and writes −E(u) − cux ≤
(
maxR r − γ

2u
)
u;

recalling (18), the maximum principle then gives a control of u by max
(

2max r
γ , C̄

∥∥∥Γ2δ/3
∞

∥∥∥
∞

)
.

Next, for 1/2 ≤ τ ≤ 1, let us denote by (xM , zM ) a point where u achieves its maximum M ,
and by Br the ball centered at (xM , zM ) with radius r > 0. Note that 0 ≤ u ≤ C̄

∥∥∥Γ2δ/3
∞

∥∥∥
∞

on

∂Q. The function w := u− C̄
∥∥∥Γ2δ/3

∞

∥∥∥
∞

therefore satisfies−E(w)− cwx − (maxR r)w ≤ C0 := (maxR r)C̄
∥∥∥Γ2δ/3

∞

∥∥∥
∞

in Q

w ≤ 0 on ∂Q.

From the local maximum principle [25, Theorem 9.20] and it extension up to balls intersecting the
boundary of the domain [25, Theorem 9.26], we infer that

sup
B1/2∩Q

w ≤ C1

(
1

|B1|

∫
B1∩Q

w+ + C2∥C0∥LN (B1∩Q)

)
,

where C1 = C1(B) and C2 = C2(B) are positive constants. Notice that C1 does not depend on
c, which is a coefficient of the operator L(w) := E(w) + cwx +w, because c belongs to a bounded
interval, namely [0, c∗ + 1]. Using successively u ≥ 0 and Lemma 3.2 we deduce that∫

B1∩Q

w+ ≤
∫
B1∩Q

u+

∫
B1∩Q

C̄
∥∥∥Γ2δ/3

∞

∥∥∥
∞

≤ 2max

(
2maxR r

k−
,mΓ

)
+ C̄

∥∥∥Γ2δ/3
∞

∥∥∥
∞

|B1|.

Recalling that M = maxu is achieved at the center of the ball B1/2, we deduce from the upper
estimates that

M ≤ C̄
∥∥∥Γ2δ/3

∞

∥∥∥
∞

+ C1

(
2

|B1|
max

(
2maxR r

k−
,mΓ

)
+ C̄

∥∥∥Γ2δ/3
∞

∥∥∥
∞

+ C2C0|B1|
)
.

This concludes the proof of the lemma. �
We now provide a control of the tails of the solutions as |z| → ∞ by appropriate Gaussian

functions (recall estimate (17)).
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Lemma 3.4 (Gaussian control of the tails of u) There exists M̄ > 0 such that, for all a > 0,
b ≥ b0 > 0, 0 ≤ τ ≤ 1, any solution (c, u) of Pτ (a, b) with 0 ≤ c ≤ c∗ + 1 satisfies

0 ≤ u(x, z) ≤ M̄Γ2δ/3
∞ (z), ∀(x, z) ∈ [−a, a]× [−b, b].

Proof. First observe that

−E(u)− cux − r(z)u ≤ 0 on Q, u ≤ C̄Γ2δ/3
∞ on ∂Q. (22)

Define ϕ̄(x, z) = ϕ̄(z) := M̄Γ
2δ/3
∞ (z), with M̄ > 0 to be specified later. Recall that Γ

2δ/3
∞ solves

(15) so that −E(ϕ̄)− cϕ̄x − r(z)ϕ̄ =
(

2δ
3 z

2 + λ
2δ/3
∞

)
ϕ̄. Therefore, if β := max

(
1
δ ,

√
−3λ

2δ/3
∞

2δ

)
, we

have
−E(ϕ̄)− cϕ̄x − r(z)ϕ̄ ≥ 0 on (−a, a)× (β, b). (23)

Let us now select

M̄ := max

(
C̄,

M

min[−β,β] Γ
2δ/3
∞

)
, (24)

where M is as in the previous lemma. The choice (24) enforces ϕ̄(x, z) ≥ C̄Γ
2δ/3
∞ (z) ≥ u(x, z) on

{∓a} × [β, b] ∪ [−a, a] × {b}, and ϕ̄(x, z) ≥ M ≥ u(x, z) on [−a, a] × {β}. Hence the comparison
principle — note that r(z) ≤ 0, when z ≥ β— yields u ≤ ϕ̄ on [−a, a] × [β, b] and, by the choice
(24), on [−a, a]× [0, b]. Similarly, u ≤ ϕ̄ on [−a, a]× [−b, 0]. The lemma is proved. �

3.4 A priori estimates for c

We provide a priori bounds for the speed c of solutions to Pτ (a, b). We first show that, roughly
speaking, too rapid waves solutions of Pτ (a, b) have too small value at (x, z) = (0, 0). We recall
that the speed c∗ was defined in (9).

Lemma 3.5 (A priori upper bound for c) Let b > 0 and ε ∈ (0, 1) be arbitrary. Then there
exists a0 = a0(ε, b) > 0 such that, for all a ≥ a0, all 0 ≤ τ ≤ 1, any solution (c, u) of Pτ (a, b) with
c > c∗ satisfies u(0, 0) < ε — and therefore cannot solve P (a, b, ε).

Proof. Let b > 0 be given. Assume c > c∗ and let us show that u(0, 0) → 0 as a→ ∞.
The function u satisfies −E(u) − cux − r(z)u ≤ 0 in Q. Therefore, changing variables, the

function
v(x, y) := u

(
x−By√
B2 + 1

,
√
B2 + 1 y

)
, (25)

satisfies
−vxx − vyy − c

√
B2 + 1vx − r

(√
B2 + 1 y

)
v ≤ 0, (26)

in Q1 :=
{
(x, y) : |y| < b√

B2+1
,
∣∣∣ x−By√

B2+1

∣∣∣ < a
}

.
We shall now construct a positive solution. Since c > c∗, one can select µ < 0 such that

µ2 + c
√
B2 + 1µ+ c∗2

4

(
B2 + 1

)
= 0 and define φ(s) := eµs which solves

−φ′′ − c
√
B2 + 1φ′ − c∗2

4

(
B2 + 1

)
φ = 0.

Now, let us define

w(x, y) := κaφ(x)Γ
0
∞

(√
B2 + 1y

)
, κa :=

∥∥∥Γδ/3
b

∥∥∥
∞

min[−b,b] Γ0
∞
e
µ

(
a
√
B2+1− Bb√

B2+1

)
,

9



with Γ0
∞ the eigenfunction appearing in Definition 1.2. Using direct computations and the defini-

tion of c∗ in (9) we see that

−wxx − wyy − c
√
B2 + 1wx − r

(√
B2 + 1 y

)
w = 0 in Q1. (27)

We now compare the values of v and w on the boundary. If (x, y) ∈ ∂Q1 is such that x−By√
B2+1

̸=
−a, then v(x, y) = 0 < w(x, y). If (x, y) ∈ ∂Q1 is such that x−By√

B2+1
= −a then

v(x, y) = Γ
δ/3
b

(√
B2 + 1 y

)
≤ κae

µ

(
−a

√
B2+1+ Bb√

B2+1

)
min
[−b,b]

Γ0
∞ ≤ w(x, y).

As a result, we have v ≤ w on ∂Q1.
Now a classical argument will imply v ≤ w on the whole of Q1. Indeed, since v is bounded and

w > 0 on Q1, we can define α0 := max
{
α > 0 : αv ≤ w in Q1

}
> 0. Then α0v ≤ w and there is

a point (x0, y0) such that α0v(x0, y0) = w(x0, y0). In view of (26), (27) and the strong maximum
principle the point (x0, y0) has to lie on ∂Q1, which enforces α0 ≥ 1. Thus v ≤ w in Q1, and

u(0, 0) = v(0, 0) ≤ w(0, 0) = κa → 0 as a→ ∞,

which concludes the proof of the lemma. �
Next, we show that standing waves (i.e. c = 0) have too large value at (x, z) = (0, 0).

Lemma 3.6 (Standing waves: a priori lower bound for u(0, 0)) There is ε∗ > 0 such that
if a, b are large enough, then, for all 0 ≤ τ ≤ 1, any standing solution (c = 0, u) of Pτ (a, b)
satisfies u(0, 0) > ε∗ — and therefore cannot solve P (a, b, ε) for any ε ∈ (0, ε∗).

Proof. For R > 0, let us introduce (µR,ΥR) as the solution of the principal eigenvalue problem
−E(ΥR)(x, z)− r(z)ΥR(x, z) = µRΥR(x, z) for all (x, z) ∈ (−R,R)2

ΥR = 0 on ∂
(
(−R,R)2

)
ΥR(x, z) > 0 for all (x, z) ∈ (−R,R)2, ΥR(0, 0) = 1.

(28)

If R = ∞, the above problem is equivalent to (8), and µR → λ0∞ as R → ∞. Let us therefore fix
R > 0 large enough so that

λ0∞ ≤ µR <
λ0∞
2

< 0, (29)

and

k+
∫
[−R,R]c

M̄Γ2δ/3
∞ (z) dz ≤ −λ0∞

4
. (30)

Next, let a ≥ R + 1, b ≥ R + 1, 0 ≤ τ ≤ 1 be given, and (c = 0, u) be a solution of
Pτ (a, b). Thanks to the Harnack inequality, there exists C > 0 (independent of a and b), such
that ∥u∥L∞([−R,R]2) ≤ Cu(0, 0), and then

max
(x,z)∈[−R,R]2

(
τ

∫ b

−b

k(z, z′)u(x, z′) dz′ + γ(1− τ)u

)
≤ C

(
2Rk+ + γ

)
u(0, 0) +

−λ0∞
4

,

where we have used Lemma 3.4 and (30). As a result, u satisfies

−E(u)− r(z)u ≥
(
−C

(
2Rk+ + γ

)
u(0, 0) +

λ0∞
4

)
u in (−R,R)2,

and u > 0 on ∂
(
(−R,R)2

)
. Hence, if

u(0, 0) ≤ −λ0∞/4
C (2Rk+ + γ)

=: ε∗,
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u becomes a super-solution for (28) — thanks to (29). We conclude as in the proof of Lemma 3.5:
defining α0 := max

{
α > 0 : αΥR ≤ u in [−R,R]2

}
> 0 and using the strong maximum principle

we see that α0ΥR ≡ u on [−R,R]2, which contradicts u > 0. It follows that u(0, 0) > ε∗. The
lemma is proved. �

3.5 On some related local problems
First, we show the well-posedness of the local problem P0(a, b).

Lemma 3.7 (Well-posedness for τ = 0) There exists γ > 0 such that, if a, b are large enough
and ε ∈ (0, ε∗), there exists a unique (c, u ≥ 0) ∈ R×W 2,∞(Q), solution of P0(a, b), namely

P0(a, b)

−E(u)(x, z)− cux(x, z) = (r(z)− γ u(x, z))u(x, z) in Q

u(x, z) = 1{x=−a}(x)Γ
δ/3
b (z) on ∂Q,

such that u(0, 0) = ε. Moreover, by the above a priori estimates, 0 < c ≤ c∗ and 0 ≤ u ≤M .

Proof. A standard argument proves that there is a unique positive solution to P0(a, b). For the
convenience of the reader let us prove this fact. Since 0 and a large enough positive constant are
respectively a sub- and a super-solution of P0(a, b), the existence of a positive solution to P0(a, b)
can be obtained using a classical monotone iterative scheme. Also, by the maximum principle,
any positive solution of P0(a, b) is bounded. Now let u and v be two bounded positive solutions
of P0(a, b). Thanks to the boundary condition and the Hopf lemma the following quantity is well
defined:

τ∗ := inf
{
τ > 0 : ∀(x, z) ∈ Q, u(x, z) ≤ τv(x, z)

}
.

Assume by contradiction that τ∗ > 1. From the definition of τ∗, the boundary condition and the
Hopf lemma, there exists (x0, z0) ∈ Q such that u(x0, z0) = τ∗v(x0, z0). At this point, we get the
contradiction

0 ≤ E(τ∗v − u)(x0, z0) + c(τ∗v − u)x(x0, z0) ≤ γτ∗(1− τ∗)v2(x0, z0) < 0.

Thus τ∗ ≤ 1 and we have u ≤ v. By interchanging the role of u and v, we get u ≡ v. Hence there
is a unique positive solution to P0(a, b).

In order to apply a sliding method, we slightly modify the Dirichlet boundary conditions and
consider, for small η > 0,

P η
0 (a, b)


−E(vη)(x, z)− cvηx(x, z) = (r(z)− γ vη(x, z)) vη(x, z) in Q

vη(x, z) =
x− a

−2a
Γ
δ/3 ,η
b (z) on ∂Q,

where Γ
δ/3 ,η
b (z) := Γ

δ/3
b (z) + ηΓ

δ/3
∞ (z). Note that for any nonnegative η, 0 and a large enough

positive constant are respectively a sub- and a super-solution of P η
0 (a, b). Thus the existence of

a positive and bounded solution of P η
0 (a, b) can be obtained using a classical monotone iterative

scheme. We shall now select γ > 0 so that (x, z) 7→ Γ
δ/3, η
b (z) become a super-solution for P η

0 (a, b).
Using (15), (16), λδ/3b ≥ λ

δ/3
∞ and Γ

δ/3, η
b ≥ Γ

δ/3
b we see that

−
(
B2 + 1

)
∆zΓ

δ/3, η
b −

(
r(z)− γΓ

δ/3, η
b

)
Γ
δ/3, η
b ≥

(
λδ/3∞ +

δ

3
z2 + γΓ

δ/3
b

)
Γ
δ/3, η
b , (31)

which is clearly nonnegative for |z| ≥ z̄ :=

√
−3λ

δ/3
∞

δ . Now, as soon as b ≥ z̄ + 1, it follows from

the Harnack inequality that there is C > 0 such that Γ
δ/3
b (z) ≥ 1

CΓ
δ/3
b (0) = 1

C for all |z| ≤ z̄.
Hence if we select γ := −Cλδ/3∞ > 0, the right-hand side member of (31) becomes nonnegative for
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|z| ≤ z̄, and (x, z) 7→ Γ
δ/3, η
b (z) is a super-solution for P η

0 (a, b). Next, we show that, any solution
of P η

0 (a, b) satisfies
0 < vη(x, z) < Γ

δ/3, η
b (z), ∀(x, z) ∈ Q. (32)

Indeed, for vη a non negative solution of P η
0 (a, b), the following quantity is well defined

α0 := sup{α ≥ 0 : ∀(x, z) ∈ Q̄, αvη(x, z) ≤ Γ
δ/3, η
b (z)} ∈ (0, 1],

since Γ
δ/3, η
b > 0 in Q̄. Let us assume by contradiction that α0 < 1. In view of the boundary

conditions for vη, this implies that a point (x0, z0) where α0v
η(x0, z0) = Γ

δ/3, η
b (z0) cannot be on

∂Q. Hence w := Γ
δ/3, η
b − α0v

η has a zero minimum at (x0, z0) ∈ Q and

0 ≥ (−E(w)− cwx)(x0, z0) ≥ γα0(v
η)2(x0, z0)(1− α0) > 0,

which is absurd. Hence α0 = 1, and 0 ≤ vη ≤ Γ
δ/3, η
b in Q̄. Then (32) follows by applying the

strong maximum principle.
By the classical sliding method [11], vη is strictly decreasing in the x variable. For the con-

venience of the reader, let us give a proof of this fact. For h > 0, define vηh(x, z) := vη(x + h, z).
Since vη2a ≡ 0 < vη thanks to (32), one can define

h∗ := inf {h > 0 : ∀τ ∈ [h, 2a], vητ ≤ vη} .

Assume h∗ > 0. Then there are sequences hn ↗ h∗, (xn, zn) with vηhn
(xn, zn) > vη(xn, zn).

After extraction and using that the infimum h∗ is achieved, we have a point (x∞, z∞) such that
vηh∗(x∞, z∞) = vη(x∞, z∞), i.e. a point of zero maximum for vηh∗ − vη. Because of the boundary
conditions the point (x∞, z∞) cannot lie on the upper or the lower boundary of (−a, a−h∗)×(−b, b).
In view of (32), it is neither allowed to lie on the left or right boundary of (−a, a−h∗)×(−b, b). Since
vη and vηh∗ are both solutions of −E(v)−cvx = (r(z)− γv) v in (−a, a−h∗)×(−b, b), the maximum
principle then yields vηh∗ ≡ vη, i.e. vη(x, z) = vη(x + h∗, z). Hence vη(a − h∗, z) = vη(a, z) = 0,
which contradicts (32). It follows that h∗ = 0 and vη is non increasing in the x variable.

Now, we construct a solution to P0(a, b) as a limit, as η → 0, of solutions to P η
0 (a, b). The

interior elliptic estimates imply that, for all 1 < p <∞, the sequence (vη) is bounded in W 2,p(Q).
From Sobolev embedding theorem, one can extract a subsequence (vη) converging to some u,
strongly in C1,β(Q) and weakly in W 2,p(Q). Moreover, u is a solution of P0(a, b). As a limit
of decreasing functions, u is decreasing in the x variable. By differentiating the equation and
applying the maximum principle, one then obtains the strict decreasing of u w.r.t. x.

It is then standard that, if (c1, u1) and (c2, u2) are two solutions of P0(a, b) with c1 > c2,
then u1 < u2. Indeed, u2 is a super-solution of the equation for (c1, u1). Hence there exists a
solution for this equation which is below u2. By uniqueness this solution is u1. Hence u1 ≤ u2
and, by the strong maximum principle, u1 < u2. As seen in Lemma 3.5, Lemma 3.6, the solution
of P0(a, b) with speed c = 0, c > c∗ satisfy u(0, 0) > ε∗ > ε, u(0, 0) < ε respectively, if a, b are
large enough. Then, there is a unique c, which belongs to (0, c∗], such that the solution (c, u) of
P0(a, b) is ε-normalized. The lemma is proved. �

In order to apply a Leray-Schauder degree argument in the next subsection, we also need to
consider the family 0 ≤ σ ≤ 1 of local problems

P̃σ(a, b)

−E(u)(x, z)− cux(x, z) = (r(z)− (1− σ)R− σγu(x, z))u(x, z) in Q

u(x, z) = 1{x=−a}(x)Γ
δ/3
b (z) on ∂Q,

(33)

where R := maxz∈R
(
r(z) + δ

3z
2
)
.

Lemma 3.8 (On local problems P̃σ(a, b)) (i) There exists M > 0 such that, for all a > 0,
b > 0, 0 ≤ σ ≤ 1, any solution (c, u ≥ 0) of P̃σ(a, b) satisfies 0 ≤ u ≤M .
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(ii) Let b > 0 and ε ∈ (0, 1) be arbitrary. Then there exists a0 = a0(ε, b) > 0 such that, for all
a ≥ a0, all 0 ≤ σ ≤ 1, any solution (c, u ≥ 0) of P̃σ(a, b) with c > c∗ satisfies u(0, 0) < ε.

(iii) There exists ε0 > 0, a0 > 0 such that, for any a ≥ a0, there exists a speed −c̄ = −c̄(a) < 0
such that for all b ≥ 1, all 0 ≤ σ ≤ 1, any solution (c, u ≥ 0) of P̃σ(a, b) with c ≤ −c̄ satisfies
u(0, 0) > ε0.

(iv) If a, b are large enough and ε ∈ (0, ε0), then there exists a unique (c, u ≥ 0) ∈ R×W 2,∞(Q)
solution of

P̃0(a, b)

−E(u)(x, z)− cux(x, z) = (r(z)−R)u(x, z) in Q

u(x, z) = 1{x=−a}(x)Γ
δ/3
b (z) on ∂Q,

(34)

with u(0, 0) = ε. Moreover, by the above a priori estimates, −c̄ < c ≤ c∗ and 0 ≤ u ≤M .

Proof. Item (i) follows from −E(u)− cux ≤ σ(R− γu)u, (18) and the maximum principle.
Define

v(x, y) := u

(
x−By√
B2 + 1

,
√
B2 + 1 y

)
, Q1 :=

{
(x, y) : |y| < b√

B2 + 1
,

∣∣∣∣ x−By√
B2 + 1

∣∣∣∣ < a

}
.

Then v is a subsolution of (26) and, to prove (ii), we can reproduce the proof of Lemma 3.5.
Let us prove (iii). Observe that v solves

−vxx − vyy − c
√
B2 + 1vx =

(
r(
√
B2 + 1 y)− (1− σ)R− σγv

)
v in Q1, (35)

that v(x, y) = 0 for (x, y) ∈ ∂Q1 such that x−By√
B2+1

̸= −a, and that v(x, y) = Γ
δ/3
b

(√
B2 + 1 y

)
for

(x, y) ∈ ∂Q1 such that x−By√
B2+1

= −a. It follows from (16) and the Harnack inequality that there
exists C > 0 such that

Γ
δ/3
b (z) > CΓ

δ/3
b (0) = C, for all b ≥ 1, all |z| ≤ 1. (36)

Define, for α > 0,

ψα(x, y) :=
C

max[−1,1] Γ
0
1

1−
x+ α+

(
a
√
B2 + 1 + B√

B2+1

)
2a

√
B2 + 1

Γ0
1

(√
B2 + 1y

)
,

in Q2 :=
{
(x, y) : |y| < 1√

B2+1
,
∣∣∣ x−By√

B2+1

∣∣∣ < a
}
= Q1∩

{
|y| < 1√

B2+1

}
. Since ψα=2a

√
B2+1 ≤ 0 < v

in Q2, we can define

α0 := min
{
α ∈

[
0, 2a

√
B2 + 1

]
: ∀(x, y) ∈ Q2 , ψα(x, y) ≤ v(x, y)

}
.

Assume by contradiction that α0 > 0. Observe that ψα0(x, y) < 0 = v(x, y) for (x, y) ∈ ∂Q2

such that x−By√
B2+1

= a and |y| < 1√
B2+1

, that ψα0(x, y) = 0 < v(x, y) for (x, y) ∈ ∂Q2 such that

|y| = 1√
B2+1

and −a ≤ x−By√
B2+1

< a, and that — by (36)— ψα0(x, y) < Γ
δ/3
b

(√
B2 + 1 y

)
= v(x, y)

for (x, y) ∈ ∂Q2 such that x−By√
B2+1

= −a. Therefore the only two points on ∂Q2 where v−ψα0 may

attain its zero minimum value are
(

a√
B2+1

± B√
B2+1

,± 1√
B2+1

)
. But since α0 > 0 we see that, for

ε > 0 small enough, ψα0−ε ≤ 0 ≤ v in a neighborhood of these two points of the boundary ∂Q2.
Hence, by the definition of α0, there must be a point (x0, y0) ∈ Q2 where v − ψα0 attains its zero
minimum value, so that 0 ≥ −∆x,y (v − ψα0) (x0, y0)− c

√
B2 + 1∂x (v − ψα0) (x0, y0). Using (35),

(15) and straightforward computations, we arrive at

0 ≥ v(x0, y0)
(
−(1− σ)R− λ01 − σγv(x0, y0)

)
− c

2a

C

maxΓ0
1

Γ0
1

(√
B2 + 1 y0

)
≥ v(x0, y0)

(
−R− λ01 − γM

)
− c

2a

C

maxΓ0
1

Γ0
1

(√
B2 + 1 y0

)
.
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Since v(x0, y0) = ψα0
(x0, y0) ≤ C

maxΓ0
1
Γ0
1

(√
B2 + 1 y0

)
and since −R−λ01 ≤ −max[−1,1] r−λ01 ≤ 0

we end up with

0 ≥ C

maxΓ0
1

Γ0
1

(√
B2 + 1 y0

)(
−R− λ01 − γM − c

2a

)
.

Hence, for large negative speed, namely

c ≤ −c̄ = −c̄(a) := 2a
(
−R− λ01 − γM

)
< 0,

we get a contradiction, so that α0 = 0. It follows that

u(0, 0) = v(0, 0) ≥ ψ0(0, 0) =
C

max[−1,1] Γ
0
1

(
1

2
− B

2a (B2 + 1)

)
>

C

3max[−1,1] Γ
0
1

=: ε0,

for a ≥ a0, with a0 > 0 sufficiently large and independent on b ≥ 1 and 0 ≤ σ ≤ 1. This concludes
the proof of (iii).

To prove (iv), observe that, since −R ≤ λ
δ/3
∞ , Γδ/3, η

b (z) := Γ
δ/3
b (z)+ηΓ

δ/3
∞ (z) is a supersolution

for (35). Hence we can reproduce the proof of Lemma 3.7. Notice in particular that if (c1, u1) and
(c2, u2) are two solutions of P̃0(a, b) with c1 > c2, then u1 < u2. �

3.6 Construction of a solution in the box
Equipped with a priori estimates of Subsections 3.4 and 3.3, we are now in the position to construct
a solution to P (a, b, ε), with ε ∈ (0,min(ε∗, ε0)). We shall use a Leray-Schauder topological degree
argument (see e.g. [10] or [9] for related arguments).

Proposition 3.9 (The solution in a box) Let ε ∈ (0,min(ε∗, ε0)) be arbitrary. There exist
K > 0 and b0 > 0 such that for any b ≥ b0 the following holds. There exists a0 = a0(b, ε) such
that, for all a ≥ a0, the problem P (a, b, ε) has a solution (c, u) such that

∥u∥C2(Q) ≤ K, 0 < c ≤ c∗. (37)

Proof. For a given nonnegative function v defined on Q and satisfying the Dirichlet boundary
conditions as requested in P (a, b, ε), consider the family 0 ≤ τ ≤ 1 of linear problems

(P τ
c )



−E(U)(x, z)− cUx(x, z)

=

(
r(z)− τ

∫ b

−b

k(z, z′)v(x, z′) dz′ − γ(1− τ)v(x, z)

)
v(x, z) in Q

U(x, z) = 1{x=−a}(x)Γ
δ/3
b (z) on ∂Q.

(38)

Let us define Kτ the solution operator of the above system. More precisely Kτ is the mapping of
the Banach space X := R×C1,α(Q) — equipped with the norm ∥(c, v)∥X := max (|c|, ∥v∥C1,α)—
onto itself defined by

Kτ : (c, v) 7→ (ε− v(0, 0) + c, Uτ
c := the solution of (P τ

c )) .

Constructing a solution of P (a, b, ε) is equivalent to showing that the kernel of Id−K1 is nontrivial.
The operator Kτ is compact and depends continuously on the parameter 0 ≤ τ ≤ 1. Thus the
Leray-Schauder topological argument can be applied. Define the open set

S := {(c, v) : 0 < c < c∗ + 1, v > 0, ∥v∥C1,α < M + 1} ⊂ X,

where M > 0 is as in Lemma 3.3. It follows from the a priori estimates Lemma 3.3, Lemma 3.5
and Lemma 3.6, that there exists a0 = a0(b, ε) > 0 such that, for any a ≥ a0, 0 ≤ τ ≤ 1 the
operator Id−Kτ cannot vanish on the boundary ∂S. By the homotopy invariance of the degree we
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thus have deg(Id−K1, S, 0) = deg(Id−K0, S, 0). Additionally, thanks to Lemma 3.7, any element
of the kernel of Id −K0 belongs to S, so that

deg(Id −K0, S, 0) = deg(Id −K0, S̃, 0),

where
S̃ := {(c, v) : −c̄ < c < c∗ + 1, v > 0, ∥v∥C1,α < M + 1} ⊂ X,

with c̄ = c̄(a) > 0 as in Lemma 3.8 (iii).
Let us now consider the family 0 ≤ σ ≤ 1 of local and linear problems associated with (33),

namely

(P̃σ
c )

−E(U)(x, z)− cUx(x, z) = (r(z)− (1− σ)R− σγv(x, z)) v(x, z) in Q

U(x, z) = 1{x=−a}(x)Γ
δ/3
b (z) on ∂Q,

and let K̃σ be the associated solution operator, that is

K̃σ : (c, v) 7→
(
ε− v(0, 0) + c, Ũσ

c := the solution of (P̃σ
c )
)
.

The operator K̃σ is compact and depends continuously on the parameter 0 ≤ σ ≤ 1. The analysis
of the local problems P̃σ(a, b) in Lemma 3.8 shows that Id − K̃σ cannot vanish on the boundary
of S̃. Since K0 = K̃1 we have

deg
(
Id −K0, S̃, 0

)
= deg

(
Id − K̃0, S̃, 0

)
.

To complete the proof, let us compute deg
(
Id − K̃0, S̃, 0

)
by using two additional homotopies.

First, consider, for 0 ≤ τ ≤ 1,

Gτ : (c, v) 7→
(
ε− (1− τ)v(0, 0)− τŨ0

c (0, 0) + c, Ũ0
c := the solution of (P̃ 0

c )
)
.

If Gτ (c, v) = (c, v) for some (c, v) ∈ ∂S̃, then (c, v) ∈ ∂S̃ solves the local problem P̃ 0(a, b) and
is such that v(0, 0) = ε. By the a priori estimates of Lemma 3.8, this cannot be. Therefore
Id − Gτ does not vanish on the boundary ∂S̃. Since K̃0 = G0 we have deg

(
Id − K̃0, S̃, 0

)
=

deg
(
Id − G1, S̃, 0

)
. Next, we know from Lemma 3.8 (iv) that there is a unique (c0, Ũc0) ∈ S̃ which

solves the local problem P̃ 0(a, b) and is such that Ũc0(0, 0) = ε. Then, consider, for 0 ≤ τ ≤ 1,

Hτ : (c, v) 7→
(
ε− Ũ0

c (0, 0) + c, τ Ũ0
c + (1− τ)Ũc0

)
.

If Hτ (c, v) = (c, v) for some (c, v) ∈ ∂S̃, then the uniqueness in Lemma 3.8 (iv) enforces c = c0,
Ũ0
c = Ũc0 = v so that (c, v) ∈ ∂S̃ solves the local problem P̃ 0(a, b) and is such that v(0, 0) = ε,

which cannot be. Therefore Id−Hτ does not vanish on the boundary ∂S̃. Since H1 = G1 we have
deg

(
Id − G1, S̃, 0

)
= deg

(
Id −H0, S̃, 0

)
, where

Id −H0 : (c, v) 7→
(
Ũ0
c (0, 0)− ε, v − Ũc0

)
.

As seen in the proof of Lemma 3.8 (iv), Ũ0
c (0, 0) is strictly decreasing in c so the degree of the

first component of the above operator is −1. Clearly the degree of the second one is 1. Hence
deg(Id − H0, S̃, 0) = −1 so that deg(Id − K1, S, 0) = −1 and there is a (c, u) ∈ S solution of
P (a, b, ε). This concludes the proof of the proposition. �
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4 The front with minimal speed c∗

Equipped with the solution (c, u) of P (a, b, ε), with ε ∈ (0,min(ε∗, ε0)), of Proposition 3.9, we now
let a→ +∞. Note that we have the bounds (37) on c and u, and also the Gaussian control of the
tails in Lemma 3.4. This enables to construct — passing to a subsequence an → +∞— a speed
0 ≤ cb ≤ c∗ and a function ub ∈ C2

b (R× [−b, b]) with the same bounds as those of u. Similarly,
we can then consider b→ +∞, to construct, via a subsequence bn → +∞, a speed 0 ≤ c ≤ c∗ and
a function u ∈ C2

b (R2), such that 0 < u ≤ K, and

−E(u)(x, z)− cux(x, z) =

(
r(z)−

∫
R
k(z, z′)u(x, z′) dz′

)
u(x, z) in R2 (39)

u(0, 0) = ε (40)

0 ≤ u(x, z) ≤ M̄ Γ2δ/3
∞ (z), ∀(x, z) ∈ R2. (41)

4.1 The constructed wave has the minimal speed c∗

Here, we show that, by reducing the normalization (40) if necessary, the above constructed solution
has speed c = c∗.

Lemma 4.1 (A priori estimate for the infimum) There exists ε > 0 such that any solution
(c, u) of (39), (41) with c ≥ 0 and infx∈R u(x, 0) > 0 actually satisfies infx∈R u(x, 0) > ε.

Proof. We choose R > 0 large enough, such that

λ0∞ ≤ λ0R <
λ0∞
2

< 0, k+
∫
[−R,R]c

M̄Γ2δ/3
∞ (z) dz ≤ −λ0∞

4
. (42)

Thanks to the Harnack inequality, there exists C > 0 such that

u(x, z′) ≤ Cu(x, z) for all x ∈ R, |z| ≤ R, |z′| ≤ R, (43)

which, combined with (41) and the second part of (42), implies
∫
k(z, z′)u(x, z′) dz′ ≤ −λ0

∞
4 +

2k+CRu(x, z) in the strip R× (−R,R). Hence, −E(u)− cux ≥
(
r(z)−

(
−λ0

∞
4 + 2k+CRu

))
u in

R× (−R,R). Changing variables, the function v(x, y) := u
(

x−By√
B2+1

,
√
B2 + 1 y

)
then satisfies

−vxx − vyy − c
√
B2 + 1vx ≥

(
r
(√

B2 + 1 y
)
−
(
−λ0∞
4

+ 2k+CRv

))
v, (44)

in S := R×
(
− R√

B2+1
, R√

B2+1

)
.

Now let η > 0 be arbitrarily given. Define, for α > 0,

ψα(x, y) := α(1− ηx2)Γ0
R

(√
B2 + 1y

)
.

Observe that the Harnack inequality (43) implies ψα ≤ v for α = C−1
∥∥Γ0

R

∥∥−1

∞ infx∈R u(x, 0), and
that (41) implies ψα(0, 0) = M̄ ≥ v(0, 0) for α = M̄ . We can therefore define

α0 := max
{
α > 0 : ∀(x, y) ∈ S̄, ψα(x, y) ≤ v(x, y)

}
∈ (0, M̄ ].

Hence v − ψα0 attains a zero minimum at a point (x0, y0) — depending on η— which must lie in(
− 1√

η ,
1√
η

)
×
(
− R√

B2+1
, R√

B2+1

)
so that

0 ≥ −∆x,y (v − ψα0) (x0, y0)− c
√
B2 + 1∂x (v − ψα0) (x0, y0).
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Using (44) and straightforward computations, we arrive at

0 ≥
(
λ0∞
4

− 2k+CRv(x0, y0)− λ0R

)
v(x0, y0)− 2α0

(
η + c

√
B2 + 1ηx0

)
Γ0
R

(√
B2 + 1y0

)
.

Using the first part of (42), α0 ≤ M̄ and |x0| ≤ 1√
η , this yields

0 ≥
(
−λ0∞
4

− 2k+CRv(x0, y0)

)
v(x0, y0)− 2M̄

∥∥Γ0
R

∥∥
∞

(
η + c

√
B2 + 1

√
η
)
.

It follows from the Harnack inequality (43) that v(x0, y0) ≥ 1
C infx∈R u(x, 0) > 0, so that

v(x0, y0) ≥
1

2k+CR

(
−λ0∞
4

−
2CM̄∥Γ0

R∥∞
(
η + c

√
B2 + 1

√
η
)

infx∈R u(x, 0)

)
.

Since η > 0 can be chosen arbitrarily small, we have v(x0, y0) ≥ −λ0
∞

8k+CR and then α0 ≥ ε :=
−λ0

∞
8k+CR∥Γ0

R∥∞

> 0. Hence, v(x, y) ≥ ε(1 − ηx2)Γ0
R

(√
B2 + 1y

)
for all (x, y) ∈ S̄. Since η > 0 can

be chosen arbitrarily small, we have v(x, y) ≥ εΓ0
R

(√
B2 + 1y

)
, and in particular infx∈R u(x, 0) =

infx∈R v(x, 0) ≥ ε. This proves the lemma. �
As a result, the constructed solution of (39), (40), (41) satisfies infx∈R u(x, 0) = 0. Without

loss of generality, we may assume lim infx→∞ u(x, 0) = 0. The following proposition then enforces
c = c∗ for the constructed wave. It is also of independent interest since it proves the non existence
of waves for 0 ≤ c < c∗ as stated in Theorem 1.4 (ii).

Proposition 4.2 (c = c∗ for the constructed wave) Any solution (c, u) of (39), (41) with c ≥
0 and lim infx→∞ u(x, 0) = 0 actually satisfies c ≥ c∗.

Proof. Assume by contradiction that 0 ≤ c < c∗. Choose c < c̃ < c∗. Since λ0R → λ0∞ =

−(B2 + 1) c
∗2

4 as R→ ∞, we can choose R > 0 such that

λ0R
B2 + 1

≤ − c̃
2

4
− 1

2

c∗2 − c̃2

4
, k+

∫
[−R,R]c

M̄Γ2δ/3
∞ ≤ B2 + 1

4

c∗2 − c̃2

4
. (45)

Let us define the open rectangle

Ω :=

{
(x, y) : |x| ≤ x̄ :=

π√
(B2 + 1) (c̃2 − c2)

, |y| ≤ ȳ :=
R√

B2 + 1

}
.

Thanks to the Harnack inequality, there exists C > 0 such that for any solution (c, u) of (39), (41)
with 0 ≤ c ≤ c∗, and for all x1 ∈ R

max
(x,y,z′)∈Ω̄×[−R,R]

u

(
x1 +

x−By√
B2 + 1

, z′
)

≤ Cu(x1, 0). (46)

Following the change of variables of Lemma 3.5, we see that v(x, y) := u
(

x−By√
B2+1

,
√
B2 + 1 y

)
satisfies

−vxx − vyy − c
√
B2 + 1vx =

[
r
(√

B2 + 1 y
)
−
∫
k
(√

B2 + 1 y, z′
)
u

(
x−By√
B2 + 1

, z′
)
dz′
]
v

≥
[
r
(√

B2 + 1 y
)
−
(
B2 + 1

4

c∗2 − c̃2

4
+ k+2CRu(0, 0)

)]
v,
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where we have used the second inequality in (45) and (46) with x1 = 0. Next, define the function

ψ(x, y) := Γ0
R

(√
B2 + 1 y

)
e−

c
√

B2+1x
2 sin

(√
(B2 + 1) (c̃2 − c2)

2
x+

π

2

)
.

We have ψ = 0 on ∂Ω and, using the first inequality in (45),

−ψxx − ψyy − c
√
B2 + 1ψx − r

(√
B2 + 1 y

)
ψ =

(
(B2 + 1)

c̃2

4
+ λ0R

)
ψ ≤ −B

2 + 1

2

c∗2 − c̃2

4
ψ,

in Ω.
Since 0 < v ≤ K, we can define α0 := max{α > 0 : αψ ≤ v in Ω̄} > 0 and there is a point

(x0, y0) ∈ Ω where w := α0ψ − v attains a zero maximum. In view of the above inequalities, we
have at point (x0, y0),

0 ≤ −wxx − wyy − c
√
B2 + 1wx − r

(√
B2 + 1 y

)
w

≤
[
−B

2 + 1

4

c∗2 − c̃2

4
+ k+2CRu(0, 0)

]
v(x0, y0), (47)

which in turn implies u(0, 0) ≥ (B2 + 1) c∗2−c̃2

32k+CR . In view of (46), the argument is invariant under
translation w.r.t. x variable, so that

inf
x∈R

u(x, 0) ≥ (B2 + 1)
c∗2 − c̃2

32k+CR
> 0,

which contradicts lim infx→∞ u(x, 0) = 0. The proposition is proved. �

4.2 Behaviors as x → ±∞
The following proposition will show that the constructed wave satisfies the lower bound in (11)
and (12) in Theorem 1.4.

Proposition 4.3 (Behaviors at infinity) Let (c, u) be a solution of (39), (40), (41) with c ≥ 0.
Then the following holds.

(i) There exist R > 0 and κ > 0 such that u(x, z) ≥ κΓ0
R(z) for all (x, z) ∈ (−∞, 0]× [−R,R].

(ii) If ε > 0 is as in Lemma 4.1, then both
∫
R
u(x, z) dz → 0 and maxz∈R u(x, z) → 0, as x→ ∞.

Proof. Let us prove (i). We start as in the proof of Lemma 4.1: choose R > 0 large enough so
that (42) holds, choose C > 0 such that both (43) and

min
− 1

2≤x≤0 , |y|≤ R√
B2+1

v(x, y) ≥ 1

C
u(0, 0) =

ε

C
(48)

hold, and observe that v(x, y) := u
(

x−By√
B2+1

,
√
B2 + 1 y

)
satisfies (44) in the strip S := R ×(

− R√
B2+1

, R√
B2+1

)
. Now for η > 0, we define

ψη(x, y) := α

(
1

2
+ ηx

)
Γ0
R

(√
B2 + 1 y

)
, α := min

(
ε

C ∥Γ0
R∥∞

,
−λ0∞

5k+CR ∥Γ0
R∥∞

)
.

The definition of α then enforces ψ1 ≤ v on S−, where S− := (−∞, 0)×
(
− R√

B2+1
, R√

B2+1

)
. We

can therefore define

η0 := min
{
η ≥ 0 : ∀(x, y) ∈ S− , ψη(x, y) ≤ v(x, y)

}
∈ [0, 1].
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Let us assume by contradiction that η0 > 0. Function v − ψη0
then attains a zero minimum at a

point (x0, y0); the definition of α and the Harnack inequality (48) prevents x0 = 0 so that (x0, y0)
has to lie in

(
− 1

2η0
, 0
)
×
(
− R√

B2+1
, R√

B2+1

)
. We therefore have 0 ≥ −∆x,y(v − ψη0)(x0, y0) −

c
√
B2 + 1∂x(v − ψη0

)(x0, y0). Using (44), ∂xψη0
≥ 0 and the first part of (42) we arrive at

0 ≥
(
−λ0∞
4

− 2k+CRv(x0, y0)

)
v(x0, y0),

which in turn implies −λ0
∞

8k+CR ≤ v(x0, y0) = ψη0(x0, y0) ≤ α
2

∥∥Γ0
R

∥∥
∞, which contradicts the

definition of α. Hence η0 = 0 and v(x, y) ≥ α
2Γ

0
R

(√
B2 + 1 y

)
for all (x, y) ∈ (−∞, 0] ×[

− R√
B2+1

, R√
B2+1

]
. This concludes the proof of (i).

Thanks to the Harnack inequality and the control of the tails u(x, z) ≤ M̄Γ
2δ/3
∞ (z), in order

to prove (ii) it is enough to prove u(x, 0) → 0, as x → ∞. Assume by contradiction that there
exists ν > 0 and xn → +∞ such that u(xn, 0) ≥ ν, for all n. Then, the proof of (i) shows
that u(x, 0) ≥ 1

2 min
(

ν
C∥Γ0

R∥∞
,

−λ0
∞

5k+CR∥Γ0
R∥∞

)
for all x ∈ (−∞, xn), and then for all x ∈ R.

Hence infx∈R u(x, 0) > 0 so that Lemma 4.1 implies infx∈R u(x, 0) > ε, which contradicts the
normalization (40). This proves (ii). �

5 Faster fronts (c > c∗)

In this section we fix c > c∗ = 2
√

−λ0
∞

B2+1 and construct a nonnegative function u ∈ C2(R2) solution
of

−E(u)(x, z)− cux(x, z) =

(
r(z)−

∫
R
k(z, z′)u(x, z′) dz′

)
u(x, z) in R2. (49)

Using the change of variables v(x, y) := u
(

x−By√
B2+1

,
√
B2 + 1 y

)
, we need to construct a nonnegative

v = v(x, y) solution of

Lv(x, y) := −vxx(x, y)− vyy(x, y)− c
√
B2 + 1vx(x, y)− r

(√
B2 + 1 y

)
v(x, y) =

− v(x, y)

∫
R
k
(√

B2 + 1 y, z′
)
v

(
x−By +

B√
B2 + 1

z′,
z′√

B2 + 1

)
dz′ in R2. (50)

Note also that solving the problem in the box

−E(u)(x, z)−cux(x, z) =

(
r(z)−

∫ b

−b

k(z, z′)u(x, z′) dz′

)
u(x, z) in Q = (−a, a)×(−b, b), (51)

is equivalent to solving

Lv(x, y) = −v(x, y)
∫ b

−b

k
(√

B2 + 1 y, z′
)
v

(
x−By +

B√
B2 + 1

z′,
z′√

B2 + 1

)
dz′ in Q1,

(52)
with Q1 =

{
(x, y) : |y| < b√

B2+1
,
∣∣∣ x−By√

B2+1

∣∣∣ < a
}

.

We first adapt the strategy of [9]: we construct a solution in the box by using sub and super-
solutions and the Schauder fixed point theorem. This will allow to let a→ ∞ but we shall need a
extra argument to let b→ ∞.

Construction of sub and supersolutions. We use again the supersolution of Lemma 3.5: since
c > c∗, one can select µ < 0 the largest root of µ2 + c

√
B2 + 1µ + c∗2

4

(
B2 + 1

)
= 0. Then the

function
w(x, y) := eµxΓ0

∞

(√
B2 + 1y

)
,
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with Γ0
∞ the eigenfunction appearing in Definition 1.2, satisfies Lw(x, y) = 0 in R2.

Next, we aim at constructing a kind of subsolution. Precisely we look after a function h such
that (note that the supersolution w appears in the integral term)

Lh(x, y) ≤ −h(x, y)
∫ b

−b

k
(√

B2 + 1 y, z′
)
w

(
x−By +

B√
B2 + 1

z′,
z′√

B2 + 1

)
dz′ in {h > 0}.

(53)

Since k ≤ k+ and
∫
R e

µ B√
B2+1

z′

Γ0
∞(z′) dz′ <∞, there is C > 0 such that∫

R
k
(√

B2 + 1 y, z′
)
w

(
x−By +

B√
B2 + 1

z′,
z′√

B2 + 1

)
dz′ ≤ Ceµ(x−By). (54)

Let us choose ε > 0 small enough so that −ρ := (µ − ε)2 + c
√
B2 + 1(µ − ε) + c∗2

4

(
B2 + 1

)
< 0

and µ+ ε < 0. For a constant A > 1 to be selected later, let us define

h(x, y) :=

(
1

A
eµx − e(µ−ε)x

)
Γ0
∞

(√
B2 + 1 y

)
=

1

A
w(x, y)− e(µ−ε)xΓ0

∞

(√
B2 + 1 y

)
,

which is nonnegative if and only if x ≥ ε−1 lnA. Thanks to the estimate (54), we have

Lh(x, y) + h(x, y)

∫ b

−b

k
(√

B2 + 1 y, z′
)
w

(
x−By +

B√
B2 + 1

z′,
z′√

B2 + 1

)
dz′

≤
(
−ρ+ Ceµ(x−By)

)
h(x, y)

≤ 0, (55)

in
{
(x, y) ∈ Q1 : x ≥ 1

µ ln
(
ρ
C

)
+ B√

B2+1
b
}

which contains {h > 0} =
{
(x, y) ∈ Q1 : x ≥ ε−1 lnA

}
provided that A is chosen sufficiently large. Notice that A does not depend on a but does depend
on b. We will thus need an extra argument below.

Construction of a propagating wave in the strip R×[−b, b]. Let b > 0 be arbitrary. Consider
the problem (52) in the box Q1 supplemented with the boundary conditions

v(x, y) = h0(x, y) := max (0, h(x, y)) for all (x, y) ∈ ∂Q1. (56)

Define the convex set of functions

Ra,b := {v ∈ C(Q1) : h0 ≤ v ≤ w} ,

and the compact application Φa,b that maps a given v⋆ ∈ C(Q1) to the solution v of

Lv(x, y) = −v(x, y)
∫ b

−b

k
(√

B2 + 1 y, z′
)
v⋆
(
x−By +

B√
B2 + 1

z′,
z′√

B2 + 1

)
dz′ in Q1,

supplemented with (56). Since Lv ≤ 0 = Lw in Q1, v = h0 ≤ w on ∂Q1, the maximum principle
implies v ≤ w in Q1. Also, (55) implies Lh0 + h0

∫
kw ≤ 0 = Lv + v

∫
kv⋆ ≤ Lv + v

∫
kw

in Q1 ∩ {h > 0}, and v ≥ 0 implies h0 ≤ v on ∂ (Q1 ∩ {h > 0}). Hence we have h0 ≤ v in
Q1 ∩ {h > 0} and thus in Q1. Hence, Φa,b maps Ra,b into itself. By the Schauder fixed point
theorem, Φa,b has a fixed point va,b ∈ Ra,b which solves the problem in the box (52) and satisfies
the boundary conditions (56). Hence we are equipped with ua,b solution of (51) with

ua,b(x, z) = h0

(√
B2 + 1x+

B√
B2 + 1

z,
z√

B2 + 1

)
on ∂Q, (57)

and

h0

(√
B2 + 1x+

B√
B2 + 1

z,
z√

B2 + 1

)
≤ ua,b(x, z) ≤ e

µ

(√
B2+1 x+ B√

B2+1
z

)
Γ0
∞(z) in Q̄.

(58)
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We claim (see proof below) that there exists M̄ > 0 such that, for all a > 0, b > 0,

ua,b(x, z) ≤ M̄ Γ2δ/3
∞ (z) ≤ M̄

∥∥∥Γ2δ/3
∞

∥∥∥
∞

=:M, in Q̄. (59)

Now, for a given b > 0, choose A = Ab as in the construction of h above. The family (ua,b)a
is uniformly bounded, and is then uniformly bounded in C2,α(Q). This allows to let a → ∞,
possibly along a subsequence. In this limit, we have ua,b → ub, which is a solution of (49) in the
strip Sb := R× (−b, b), and satisfies (58), (59) in Sb; in particular (58) yields

ub(xb, 0) ≥ h0

(
1

ε
ln

(
µ− ε

µ
Ab

))
=: εb > 0, xb :=

1√
B2 + 1

1

ε
ln

(
µ− ε

µ
Ab

)
.

Since the problem in the strip is invariant w.r.t. translation in the x variable, we may assume
ub(0, 0) ≥ εb > 0. Since εb → 0 as b → ∞, before letting b → ∞ we need an additional argument
to get a uniform w.r.t. b lower bound for ub(0, 0).

Let us now prove (59). For 0 ≤ x ≤ a, it follows from (58) that the mass satisfies m(x) :=∫ b

−b
ua,b(x, z) dz ≤ C :=

∫
R e

µ B√
B2+1

z
Γ0
∞(z) dz. For −a ≤ x ≤ 0, observe that ua,b = h0 = 0 on

∂((−a, 0)×(−b, b)) so that we can follow Lemma 3.2 to obtain that the mass satisfies a Fisher-KPP
inequality. Sincem(−a) = 0 andm(0) ≤ C, the maximum principle yieldsm(x) ≤ max

(
2max r

k− , C
)

for −a ≤ x ≤ 0 and thus for −a ≤ x ≤ a. This uniform bound for the mass enables to argue
exactly as in subsection 3.3 — recall that c > c∗ has been fixed— to get (59).

Uniform lower bound for ub(0, 0). We choose R > 0 large enough so that (42) holds, and
C > 0 such that (48) holds. Then, for b ≥ R+ 1, vb(x, y) := ub

(
x−By√
B2+1

,
√
B2 + 1 y

)
satisfies (44)

in the strip S = R×
(
− R√

B2+1
, R√

B2+1

)
. We are therefore in the position to reproduce the proof

of Proposition 4.3 (i). Hence, there is κb > 0, depending on ub(0, 0), such that vb(x, y) ≥ κbΓ
0
R(y)

for all (x, y) ∈ (−∞, 0]× [−R,R]. Since b ≥ R + 1, we can apply the Harnack inequality to show
that there exists εb > 0 such that

vb(x, y) ≥ εb, ∀(x, y) ∈ (−∞, 0]× [−R,R]. (60)

Let us now introduce a smooth function ϕ : R → [0, 1], such that ϕ ≡ 0 on (−∞,−4]∪ [−1,∞),
and ϕ ≡ 1 on [−3,−2]. For η > 0, α ≥ 0, let us define

ψα,η(x, y) := αϕ(ηx)Γ0
R

(√
B2 + 1y

)
for (x, y) ∈ S̄.

In view of (59) we have vb ≤M so that, for any η > 0, we can define

α0 = α0(η, b) := max
{
α ≥ 0 : ∀(x, y) ∈ S̄, ψα,η(x, y) ≤ vb(x, y)

}
∈ [0, αmax],

with αmax := M/
∥∥Γ0

R

∥∥
∞. Hence vb − ψα0,η attains a zero minimum at a point (x0, y0) —

depending on η and b— which must lie in (− 4
η ,−

1
η )×

(
− R√

B2+1
, R√

B2+1

)
, thanks to the definition

of ψα,η and ϕ. Then,

0 ≥ −∆x,y (vb − ψα0,η) (x0, y0)− c
√
B2 + 1∂x (vb − ψα0,η) (x0, y0).

Using (44), the first part of (42) and straightforward computations, we arrive at

0 ≥
(
−λ0∞
4

− 2k+CRvb(x0, y0)

)
vb(x0, y0) +

α0

(
η2ϕ′′(ηx0) + ηc

√
B2 + 1ϕ′(ηx0)

)
Γ0
R

(√
B2 + 1y0

)
.

Then (60) yields

0 ≥

(
−λ0∞
4

− 2k+CRvb(x0, y0)−
M
(
η2∥ϕ′′∥∞ + ηc

√
B2 + 1∥ϕ′∥∞

)
εb

)
vb(x0, y0).
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Since η > 0 can be arbitrarily small, we discover that vb(x0, y0) ≥ −λ0
∞

8k+CR , which in turn implies

α0 ≥ ε :=
−λ0

∞
8k+CR∥Γ0

R∥∞
. Since ψα0,η

(
− 2

η , 0
)
= α0 there is a point xb where vb(xb, 0) ≥ ε, which

in turn provides a point x′b where ub(x′b, 0) ≥ ε. Since the problem in the strip is invariant w.r.t.
translation in the x variable, we can assume without loss of generality that x′b = 0. Thus we have
the desired lower uniform bound ub(0, 0) ≥ ε.

Conclusion. The family (ub)b is uniformly bounded, and is then uniformly bounded in C2,α
(
R2
)
,

and we may pass to the limit b→ ∞, possibly along a subsequence. In this limit, we have ub → u,
which is a solution of (49) in R2, and satisfies (58), (59) in R2 and u(0, 0) ≥ ε > 0. Hence, we
have constructed u which satisfies (10), (13) — which in turn implies (12)— and the upper bound
in (11). Last, the lower bound in (11) follows from Proposition 4.3 (i). This concludes the proof
of Theorem 1.4 in the case c > c∗. �
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