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In this article, we are interested in the large-time behaviour of a solution to a non-
local interaction equation, where a density of particles/individuals evolves subject to an
interaction potential and an external potential. It is known that for regular interaction
potentials, stable stationary states of this equations are generically finite sums of Dirac
masses.

For a finite sum of Dirac masses, we give i) a condition to be a stationary state, ii)
two necessary conditions of linear stability w.r.t. shifts and reallocations of individual
Dirac masses, and iii) show that these linear stability conditions implies local non-linear
stability. Finally, we show that for regular repulsive interaction potential Wε converg-
ing to a singular repulsive interaction potential W , the Dirac-type stationary states ρ̄ε

approximate weakly a unique stationary state ρ̄ ∈ L∞. We illustrate our results with
numerical examples.
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merical simulation.
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1. Introduction

In this paper, we study the following non-local interaction equation:

∂tρ = ∇x ·(ρ∇x[W ∗ ρ + V ]), (1.1)

where ρ(t, x) denotes a density of particles/individuals at position x ∈ Rd and time
t ≥ 0 subject to an even interaction potential W (x) = W (−x) and an external

1



February 8, 2010 18:46 WSPC/INSTRUCTION FILE RaFeStabilityFinal

2 Authors’ Names

potential V (x).
Non-local equations like (1.1) have recently obtained focused attention as

macroscopic- or continuum models for microscopic- or particle-discrete processes.
Examples for such models are various: Simplified inelastic models for granular media
are described by convex attractive potentials (see Ref. 2, ?, ?), collective behaviour
of individuals, such as swarming or chemotaxis gives rise to a variety of continuum
models (see 21, 28, 29, 22, 16, 9, 10, 8, 14, 23, 8). In Ref. 18, 24, (1.1) is used
to model the network of F-actin filaments in the cellular cytoskeleton. Finally, re-
lated models can be found in opinion dynamics (see Ref. 3) or Lennard-Jones type
potentials used in crystallisation (see Ref. 30).

A main feature of models like eq. (1.1) lies in the concentration of solutions
towards measures for aggregative interaction potential. For regular C2-potentials as
in Ref. 13, 18, 24, 15 aggregation towards measures occurs as time goes to infinity.
More singular attractive interaction potentials like W (x) ∼ |x|1+α with 0 ≤ α < 1,
will lead to concentration of solutions to Dirac measures within finite time (see
Ref. 6, 5, 19, 4) or even collapse to a unique Dirac mass within finite time (see
Ref. 12).

Adding a diffusion term to eq. (1.1) can prevent blow-up of solutions and may
produce smoothed blow-up profiles for attractive interaction potentials (see e.g.
Ref. 11, 13). However, the famous Patlak-Keller-Segel model of chemotaxis shows
that strongly singular attractive interactions, such as W (x) = − 1

2π log |x| in dimen-
sion 2, are able to counterbalance diffusion. More precisely for the 2D Patlak-Keller-
Segel model, there exists a threshold of critical initial mass, which decides between
global solutions and blow-up within finite time (see e.g. Ref. 8, 7 and the references
therein and Ref. 6 for chemotaxis without diffusion and various type of attractive
singularities).

In this article we shall focus the one-dimensional case

∂tρ = ∂x (ρ∂x(W ∗ ρ) + V ) , x ∈ R. (1.2)

Note that (1.2) conserves the total mass
∫
R dρ(x) = 1, which w.l.o.g. shall be nor-

malised to one. Thus, the solution ρ(t, x) can be interpreted as a probability density
and a change of variables introducing the pseudo-inverse of the distribution function∫ x

−∞ dρ, i.e.

u(z) = inf

{
x ∈ R :

∫

(−∞,x]

dρ(x) > z

}
z ∈ [0, 1],

transforms eq. (1.2) for non-negative measure solutions ρ(t, x) into the following
integral equation for non-decreasing functions u(t, z) (see Ref. 20, 15, 11)

∂tu(t, z) =
∫ 1

0

W ′ (u(ξ)− u(z)) dξ − V ′(u(z)), ∀z ∈ [0, 1]. (1.3)
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Indeed, eq. (1.3) has, for instance, the advantage that atomic parts of measure so-
lutions ρ(t, x) are transformed into constant parts of the pseudo-inverse u(t, z).
In order to verify eq. (1.3), note the useful change of variable

∫
R g(x) dρ(x) =∫ 1

0
g(u(ξ)) dξ, which holds for any g ∈ L1(supp (ρ)).

Moreover, in the absence of a confining potential V = 0, the centre of mass∫
R x dρ(t, x), or equivalently, the mass

∫ 1

0
u(t, z) dz is preserved by (1.2) or eq. (1.3),

respectively :

V = 0 ⇒ d

dt

∫

R
x dρ(t, x) = 0,

d

dt

∫ 1

0

u(t, z) dz = 0, (1.4)

which is a direct consequence of W ′ being anti-symmetric.

The main objective of this article is the stability of stationary states of (1.2).
Previous stability results showed for convex attractive interaction potentials that
solutions converge to a single Dirac mass as stationary states (see e.g. Ref. 13, 11,
2, 12).

However, stationary states consisting of several Dirac masses can be found, for
instance, for locally repulsive double-well potential (see Ref. 18, 24 for a model of
the two alignment directions of actin-filaments in the cellular cytoskeleton).

As an example, consider a smooth double-well interaction potential W with a
local maximum at x = 0 and a local minimum at x = x1 > 0 in the absence of an
external potential, i.e. V = 0. Thus by (1.4), the (centre of) mass

∫ 1

0
u(z) dz = 0 is

conserved in time.
First, we observe that the constant solution ū = 0 is obviously (due to W ′(0) =

0) a stationary state of (1.3) and corresponds to a single Dirac mass ρ(x) = δ0(x)
at x = 0. Moreover, ū = 0 is linear unstable w.r.t. mass-preserving perturbations
u = ū + v(z) with

∫ 1

0
v(z) dz = 0 :

∂tv(t, z) =
∫ 1

0

W ′′(0) (v(ξ)− v(z)) dξ = −W ′′(0) v(z),

and −W ′′(0) > 0 as the double-well is locally repulsive.

In fact, the aggregative/confining effect of the double-well potential over large
distances is first seen on the following family of steady states with two Dirac masses
ρ̄(x) or monotone increasing two-valued step-functions ū(z) :

ū(z, z0) =

{
−(1− z0)x1 z < z0 ,

z0 x1 z > z0 ,
(1.5a)

ρ̄(x, z0) = z0 δ−(1−z0) x1 + (1− z0) δz0 x1 . (1.5b)

where the parameter z0 ∈ (0, 1) denotes the jump-point and the parameter of mass
distribution, respectively. Note that the two Dirac masses of (1.5) are set apart by
the same distance x1 as the two extremal points of W .
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Linear stability analysis will show in section 3 that if the repulsive concavity is
dominated by the aggregating convexity (i.e. −W ′′(0) < W ′′(x1)), the two-Dirac
stationary state (1.5) are linearly stable on an open interval of the parameter of
mass-distribution z0 :

−W ′′(0) < W ′′(x1) ⇒ linear stability of (1.5) ∀z0 ∈ (1− z∗0 , z∗0),

where z∗0 := W ′′(x1)
W ′′(x1)+W ′′(0) > 1

2 . This means that linear stability holds if and only
if the mass distribution is not too asymmetric.

For the opposite case with dominating repulsion −W ′′(0) > W ′′(x1), the ques-
tion of stable stationary states arises and we conjecture at this point the existence
of stable states with more than two Dirac masses.

It is indeed not very surprising that local repulsion has a distributive effect
on the stationary states. As example, consider the extreme limit W (x) → δ0(x),
in which the non-local term in eq. (1.2) converges formally towards a quadratic
diffusion term, which is expected to render stationary states continuous.

While we will not consider diffusion terms in this paper, we shall nevertheless
point out the diffusion-like effects of local singular repulsive interaction potentials.
Examples for such singular repulsive potentials appear, for instance, in swarm-
ing models, like the attractive-repulsive Morse potential W (x) = −Ca e−|x|/la +
Cr e−|x|/lr . For repulsive potentials with modulus like singularity at x = 0, so-
lutions subject to bounded initial data are no longer expected to convergence to
measures, but to remain bounded (see Ref. 26).

Throughout this article we shall suppose the following assumptions on the sym-
metric interaction potential W and on the confining potential V :
Regularity and symmetry assumption

W (x) = W (−x) ∈ C2,α(R), V (x) ∈ C2,α(R), (1.6)

for a Hölder exponent 0 < α ≤ 1.

The existence theory of (1.2) constructs probability measures as solutions via
limits of the Jordan-Kinderlehrer-Otto scheme after interpreting (1.2) as a gra-
dient flow on Wasserstein spaces. In Ref. 11, this was done essentially under the
assumption that V, W ∈ W 2,∞ (less regular coefficients are acceptable under some
convexity conditions). In Ref. 12, the existence theory was generalised to any di-
mension and singular attractive interaction potentials W , which are (amongst other
assumptions) λ-convex (i.e. W − λ

2 x2 is convex for a λ < 0).
In the following, we denote by M1(R) the set of measures on R, and by P∞ ⊂

M1(R) the set of measures with bounded support.

In this article, we shall only consider compactly supported solutions ρ(t, x). In
section 2, we will recall uniform-in-time propagation of compact support of solutions
of (1.2) under one of the following sufficient conditions (see Ref. 12):
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Initial support and confinement assumptions

ρin(x) ∈ M1(R), supp (ρin) ⊂ [−C, C] for a C < ∞, (1.7a)

V 6= 0 : ∃C1 > C : ‖W ′‖L∞([−2C1,2C1]) < min {V ′(C1), −V ′(−C1)} , (1.7b)

or

V = 0 : There exists Ra ≥ 0 such that W ′(x) ≥ 0 for x ≥ Ra, and

lim inf
x→+∞

W ′(x) > 8
√

2supx∈[−Ra,Ra]|W ′(x)|. (1.7c)

Note that uniform compact support follows under condition (1.7b) since the external
potential V confines the interaction potential W , while the condition (1.7c) ensures
a “self-confining” interaction potential W in the absence of an external potential
V = 0.

In section 2, we shall also recall from Ref. 26 that stationary states of (1.2)
for analytic potentials V and W satisfying one of the conditions (1.7) are always
a finite sum of Dirac masses. Moreover, for less regular interaction potentials W ∈
C2 it was shown in Ref. 26 that stationary states ρ̄ whose support contains an
accumulation point can not have a spectral gap in L1 for the linearised equation.
Hence, asymptotically stable stationary states of (1.2) under the assumptions (1.6)
and (1.7) are necessarily finite sums of Dirac masses.

The main findings of this paper are organised in the following way:

Proposition 2.4 in subsection 2.1 provides a criterion for a given sum of Dirac
masses to be a stationary state of (1.2) and (1.3), respectively.

In section 3, we investigate the stability of a stationary state consisting of a finite
sum of Dirac masses. First, we present the above mentioned linear stability analysis
of the two Dirac stationary state (1.5), which serves to identify two eigenspaces rep-
resenting shifts and reallocations of individual Diracs to decide about linear stability.
Corresponding to these eigenspaces, Proposition 3.1 states two necessary conditions
for linear stability and Theorem 3.1 proves for regular interaction potentials that
these linear stability conditions imply indeed the local non-linear stability of the sta-
tionary states under small Wasserstein W∞-perturbations (i.e. W∞(ρ, ρ̄) = ‖u−ū‖∞
is small enough). We shall also show related numerical simulations.

In section 4, we show that regular repulsive-aggregative interaction potentials
may have stable stationary states consisting of arbitrarily many Dirac masses, which
converges weakly towards a continuous stationary state if the repulsive part becomes
singular repulsive.

More precisely, we consider smoothed, locally repulsive interaction potentials
Wε(x) = x2 − |x|ε approximating the singular, locally repulsive potential W (x) =
x2−|x| as ε → 0 and calculate explicitly how a corresponding family of non-unique
stable stationary states consisting of an increasing sum of Dirac masses converge
weakly towards the unique bounded stationary state of the limiting potential W . In
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Proposition 4.1 we prove this weak limit rigorously for a strictly convex potential
V and Wε(x) = −|x|ε → W (x) = −|x| as ε → 0.

Moreover, we illustrate this limit with numerical simulations.

2. Preliminaries and stationary state condition

Throughout this paper, we shall only consider solutions ρ(t, x) with uniform-in-time
compact support, and thus compactly supported stationary states. The following
Proposition states that the confinement conditions (1.7) on the external potential
V and the interaction potential W ensure such solutions.

Proposition 2.1 (Existence and uniform compact support, Ref. 11, 12).
Let V and W satisfy (1.6). Then, there exists a unique compactly supported solution
ρ(t, x) ∈ Liploc([0,∞),P∞(R)) of (1.2) subject to compactly supported initial data
ρin ∈ M1(R).

Let moreover V and W satisfy (1.7). Then, there exists a constant C such that
for all times t ≥ 0 :

supp (ρ(t, ·)) ⊂ [−C, C], t ≥ 0.

The following proposition identifies the stationary states of (1.2) for analytical
potentials V , W as finite sums of Dirac masses.

Proposition 2.2 (Analytic potentials have sums of Dirac masses as sta-
tionary states, Ref. 26). Assume that W and V are analytical and satisfy (1.7).
Then, every steady state solution of (1.2) with bounded support is a finite sum of
Dirac masses: ρ̄ =

∑n
i=1 ρiδui with ρi > 0 and

∑n
i=1 ρi = 1.

Proof. For the sake of the reader, we recall the proof of Ref. 26. For a stationary
solution ρ̄ of (1.2), or equally for a steady state ū of (1.3), we have for z ∈ [0, 1],

0 =
∫ 1

0

W ′(ū(ξ)− ū(z)) dξ − V ′(u(z)) = −(W ′ ∗ ρ̄ + V ′)(ū(z))

and the analytic function W ′ ∗ ρ̄+V ′ equals zero for any x = ū(z) ∈ supp(ρ̄) on the
support of ρ̄. Thus, if supp(ρ̄) has an accumulation point, then W ′∗ρ̄(x)+V ′(x) ≡ 0
is constant zero. This is in contradiction to the compact support conditions (1.7b)
and (1.7c). We conclude that the support supp(ρ̄) is therefore a finite set of points.

Note that the interaction potential W (x) := dist(x, [−1, 1]), where dist denotes
a C∞-version of the distance towards the interval [−1, 1] admits the L1(R) steady
state ρ̄ = 1[− 1

2 , 1
2 ] and thus shows that such a strong result can no longer be expected

for non-analytic potentials.
Nevertheless, the following proposition states that steady states which are

strictly linearly stable are necessarily sums of Dirac masses:
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Proposition 2.3 (Sums of Dirac masses are the only asymptotically stable
stationary states for regular potentials, Ref. 26). Let V, W satisfy (1.6). Let
ρ̄ be a steady state of (1.2), and ū being its pseudo-inverse. If ρ̄ is such that supp(ρ̄)
has an accumulation point, then the pseudo-inverse equation (1.3) linearised around
ū in L1 has no spectral gap.

2.1. Sums of Dirac masses as stationary states

In this subsection, Proposition 2.4 provides a criterion for finite sum of n ∈ N Dirac
masses with normalised mass to be a stationary state ρ̄(x) of (1.2):

ρ̄(x) =
n∑

i=1

ρiδui(x),
n∑

i=1

ρi = 1, ρi > 0, (2.1)

which corresponds to increasing stepfunction ū(z) as stationary states of (1.3)

ū(z) =
n∑

i=1

ui 1Ii , Ii = [
∑

j<i

ρj ,
∑

j≤i

ρj), |Ii| = ρi. (2.2)

Proposition 2.4 (Stationary condition for sums of Dirac masses). Assume
V , W ∈ C1(R). For a given integer n ∈ N, a non-negative measure ρ̄(x) as in (2.1)
or an increasing stepfunction ū(z) as in (2.2) constitutes a compactly supported
stationary state of eq. (1.2) or eq. (1.3), respectively, if and only if the following
condition holds

n∑

j=1

W ′(uj − ui) ρj = V ′(ui), i = 1, . . . , n . (2.3)

Proof.
A stepfunction ū =

∑n
i=1 ui 1Ii with |Ii| = ρi is a steady-state of (1.3) iff for all

z ∈ Ii, i = 1, . . . , n:

0 =
∫ 1

0

W ′(ū(ξ)− ui) dξ − V ′(ui) =
n∑

j=1

ρjW
′(uj − ui)− V ′(ui), z ∈ Ii,

which shows (2.3).

Example 2.1 (Examples of stationary states). If V = 0, the condition (2.3)
in the case n = 3 of three Dirac masses constitutes the vector product



−W ′(u3 − u2)
W ′(u3 − u1)
−W ′(u2 − u1)


×




ρ1

ρ2

ρ3


 = 0 ,

which is satisfied by a positive, normalised vector of masses

(ρ1, ρ2, ρ3) =
(−W ′(u3 − u2), W ′(u3 − u1),−W ′(u2 − u1))
−W ′(u3 − u2) + W ′(u3 − u1)−W ′(u2 − u1)

(2.4)
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if and only if sign(−W ′(u3 − u2)) = sign(−W ′(u2 − u1)) = sign(W ′(u3 − u1)).
For a double-well potential W (x) as mentioned in the introduction (see also

(3.1)) below), this is equivalent to choosing three values ui such that 0 < u2 −
u1, u3 − u2 < x1 and u3 − u1 > x1. Thus, there exists a family of stationary
states spanned by two of the three values ui as parameters (with the third value
determined by

∑3
i=1 ρiui = 0 due to (1.4) as V = 0). Note that in (1.5) all the two

Dirac stationary states were uniquely determined equally by the values of ui or by
the parameter z0 ∈ (0, 1), i.e. the masses ρi. Here in (2.4) in contrast only the ui

values determine uniquely the masses ρi. For given masses ρi, it depends on the
monotonicity of W ′ in order to find either zero, a unique, several, or even infinitely
many values ui solving (2.4). However, for generic W ′ (e.g. W ′′ 6= 0 except on some
points) we can expect a unique vector of values ui although it seems hard (and not
very instructive) to formulate a rigorous statement.

For odd numbers of Dirac masses, the skew-symmetric matrix W ′(ui − uj) has
(at least) one zero-eigenvalue as the case n = 3. Thus, similar families of stationary
states will exist for non-trivial matrices W ′(ui − uj). Hence, without external po-
tential V = 0, we have to expect stationary states, which consists out of arbitrarily
many Dirac masses. In section 4 we shall see that these stationary states can be
stable.

On the other hand, for even numbers of Dirac masses, all the eigenvalues of the
skew-symmetric matrices W ′(ui − uj) are purely imaginary eigenvalue pairs. Thus,
for potential with proper monotonicity W ′ these matrices are generically of full rank
and thus invertible. Therefore, for given external potential V (x), we expect steady
states satisfying :

ρj =
n∑

i=1

(W ′(uj − ui))
−1

V ′(ui), j = 1 . . . n,

provided the ρj are positive.

3. Local stability of discrete stationary states

In this section, we will study the stability of stationary states consiting of a finite
sum of Dirac masses.

We recall the example mentioned in the introduction of a smooth double-well
interaction potential W with a single local maximum at x = 0 and a local minimum
at x = ±x1 for a x1 > 0 :

β := −W ′′(0) > 0, W ′(0) = 0, α := W ′′(±x1) > 0, W ′(±x1) = 0. (3.1)

Due to the absence of an external potential V = 0 the conservation law (1.4) holds
and the (centre of) mass

∫ 1

0
u(z) dz = 0 is conserved in time.
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In order to check for stability of the two Dirac steady states (1.5), i.e.

ū(z, z0) =

{
−(1− z0)x1 z < z0 ,

z0 x1 z > z0 ,

we linearise around ū and apply the exponential ansatz v(z) = eλtφ(z) for mass
preserving perturbations

∫ 1

0
v(z) dz = 0 =

∫ 1

0
φ(z) dz = 0, which yields the following

mixed local/non-local eigenproblem
{

(λ1 − λ) φ(z) = +(α + β)
∫ z0

0
φ(z) dz z < z0,

(λ2 − λ) φ(z) = −(α + β)
∫ z0

0
φ(z) dz z > z0,

(3.2)

where λ1 and λ2 are the following convex combinations of α and β

λ1 := z0β − (1− z0)α, λ2 := (1− z0)β − z0α.

We identify two eigenspaces depending on the left hand side of (3.2) :

Shifts In case that λ1 6= λ 6= λ2 the eqs. (3.2) show φ to be piecewise constant and
a simple calculation leads to the stable eigenmodes

λ = −α < 0, φ(z) =

{
− 1−z0

z0
Cφ z < z0,

Cφ z > z0,
∀Cφ 6= 0.

Note that the corresponding eigenspace consists of mass-preserving spatial
shifts of the two Dirac masses. Stability w.r.t shifts is then due to the sta-
bilising interaction between the two aggregates as the interaction potential
W is aggregative at the distance x1 with α = W ′′(±x1) > 0.

Reallocations In case that λ1 = λ 6= λ2, we have
∫ z0

0
φ(z) dz = 0 by the first eq.

in (3.2) and φ = 0 for z > z0 by the second eq. in (3.2), which yields the
eigenmodes

λ = z0β − (1− z0)α, φ(z) =

{
ϕl(z) z < z0,

0 z > z0,
∀ϕl(z) :

∫ z0

0

ϕl dz = 0.

By the symmetry z0 ↔ (1 − z0) in (3.2) we find mirrored eigenmodes for
λ2 = λ 6= λ1. If, especially λ1 = λ = λ2 and, thus, z0 = 1

2 , we obtain

λ =
β − α

2
, φ(z) =

{
ϕl(z) z < 1

2 , ∀ϕl(z) :
∫ z0

0
ϕl dz = 0,

ϕr(z) z > 1
2 , ∀ϕr(z) :

∫ z0

0
ϕr dz = 0.

All these eigenspaces represent mass-preserving reallocations of one (or
both) Dirac masses. Note that a local reallocation does not need to smooth
a Dirac mass. Indeed, a simple reallocation consist of splitting a Dirac into
two by two local shifts within the intervals (0, z0) or (z0, 1).
Stability w.r.t. reallocations for equal mass distribution z0 = 1

2 is given
if and only if the short range repulsion is controlled by the long range
aggregation, i.e. β < α. Moreover, for asymmetric mass distribution z0 6= 1

2 ,
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there exists a threshold of maximal asymmetry, where λ1(z∗0) = z∗0β− (1−
z∗0)α = 0.

Altogether for a locally repulsive double-well potential (3.1) we have linear stabil-
ity of the steady states (1.5) with respect to mass-preserving shifts and reallocations
provided that β < α on an open interval of parameters z0 :

β < α ⇒ max{λ1,2(z0)} < 0 ∀z0 ∈ (1− z∗0 , z∗0) , z∗0 :=
α

α + β
>

1
2
.

This is the result stated in the introduction. Here, we complement it with numer-
ical simulations performed using an explicit Euler scheme for the pseudo-inverse
equation (1.3). Note that approximating u(z) on z ∈ [0, 1] by piecewise constant
step functions on an equidistant grid with n+1 grid points (we have used n = 256)
is equivalent to a particle method for equation (1.2), where a measure ρ(x) is ap-
proximated by a sum of n Diracs with mass 1

n . The numerics are implemented in
Matlab. In order to depict a measure ρ(x), we represent each Dirac mass by a tri-
angle centred at the position ui with basis-length 1/90 and with area equivalent to
the mass of the represented Dirac.

Figure 1 shows how the solution of (1.2) with the symmetric (in the ρ picture)
initial data uin(z) = 0.05(sin(6πz) + 6πz) − C with C such that

∫ 1

0
uin(z) dz =

0 (bold line) converges to the stable symmetric two Dirac stationary state ρ̄ =
1
2δ−23/2 + 1

2δ23/2 , for the double-well potential W (x) = x4−x2. Note that the initial
data constitute three smoothed Dirac masses, where the middle one is placed on
a unstable stationary position, i.e. at a local maximum of the function (W ∗ ρ)(x)
(recall that ∂tu(t, z) = (W ′ ∗ ρ)(u(t, z)). As a consequence, the middle smoothed
Dirac persists for a rather long time while the attraction exerted from the two outer
smoothed Diracs remains symmetrically balanced.

On the other hand, Figure 2 shows (again for W (x) = x4 − x2) how a small
Dirac perturbation of an instable two Dirac stationary state (1.5) is first slowly,
later quickly attracted by the opposite Dirac. Note that the amount of the mass
which is exchanged in order to reach a stable stationary state will in general depend
on the initial perturbation.

3.1. Linear stability conditions for discrete stationary states

We want to study the stability of finite sum of Dirac masses steady states ρ̄ as in
(2.1) by showing stability of the pseudo-inverse ū as in (2.2).

We will first introduce two conditions of linear stability, which generalises sta-
bility w.r.t. shifts and reallocations as in the example above. For W satisfying (1.6),
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Fig. 1. Convergence towards a stable, symmetric two Dirac stationary state (1.5) for the doublewell
potential W (x) = x4−x2. The left image plots u(t, z) at time t = 0 (initial data, bold line), t = 1, 2
(dashed lines), t = 4, 6, 9, 15 (dash-dotted lines), and t = 25 (stable stationary state, solid line).
The right image plots the measures ρ(t, x) and the amplified potential 500(W ∗ ρ)(x) at the times
t = 0 (bold lines) and t = 25 (solid line) as well as ρ(t, x) at time t = 2 (dashed line).
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x)Fig. 2. Perturbation of a two Dirac stationary state (1.5) with slightly unstable mass distribution

for the doublewell potential W (x) = x4 − x2 (with slightly meaning z0 = 0.67 compared to the
critical value z∗0 = 2

3
) leads to exchange of mass and convergence towards a stationary state

with stable mass distribution. The left image plots u(t, z) at time t = 0 (initial data, bold line),
t = 25 (dashed line) t = 30, 31, 32, 33 (fast exchange of mass, dash-dotted lines), and t = 40
(stable stationary state, solid line). The right image plots the measures ρ(t, x) at times t = 0
(two Dirac masses plus Dirac perturbation close to the left Dirac, bold line), t = 25 (dashed line),
t = 30, 31, 32, 33 (fast exchange of mass, dash-dotted lines) and t = 40 (stable stationary state,
solid line).

the linearised eq. (1.3) for u = ū + v reads as:

∂tv(z) =
∫ 1

0

W ′′ (ū(ξ)− ū(z)) (v(ξ)− v(z)) dξ − V ′′(ū(z))v(z)

=−



n∑

j=1

W ′′(uj − ū(z))ρj + V ′′(ū(z))


 v(z)

+
n∑

j=1

W ′′ (uj − ū(z))
∫

Ij

v(ξ) dξ (3.3)
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We recall that in the absence of an external potential V = 0 the conservation law
(1.4) will permit stability only w.r.t. perturbations v(z), which leave the (centre of)
mass unchanged

∫ 1

0
v(z) dz = 0.

Recalling the above example suggests two eigenspaces to be checked for linear
stability: First, all perturbations leading to

Reallocations, i.e.

{
v(z) :

∫
Ii

v(ξ) dξ = 0 , i = 1, . . . , n

if V = 0 then
∫ 1

0
v(z) dz = 0

}
, (3.4)

and secondly, perturbations yielding to

Shifts, i.e.

{
v(z) :

v =
∑n

i=1 vi 1Ii

if V = 0 then
∑n

i=1 viρi = 0

}
. (3.5)

The following statements of linear stability hold:

Proposition 3.1. Let V and W satisfy (1.6). Then, for stationary states ρ̄ =∑n
i=1 ρiδui as given in (2.1), or ū =

∑n
i=1 ui 1Ii as given in (2.2), we have:

Linear stability with respect to reallocations if and only if

(SR) 0 < mi :=
n∑

j=1

W ′′(uj − ui)ρj + V ′′(ui) ∀i = 1, . . . , n .

Linear stability with respect to shifts if and only if the matrix M

M := diag (mi)− (ρi W ′′(uj − ui)) (3.6)

has a strictly positive spectrum σ(M) in the sense that for some ν > 0
either

(SS1) V 6= 0 : σ(M) ⊂ {z ∈ C : Re(z) > ν}.
or, in the case V = 0, the spectrum σ(M |H) of M restricted onto the
hyperspace H = {(wi)i=1,...,n :

∑n
i=1 wi = 0} is strictly positive

(SS2) V = 0 : σ(M |H) ⊂ {z ∈ C : Re(z) > ν}.

Remark 3.1.
Note that in the following subsection we will show that the conditions (SR) and

(SS1) or (SS2) imply also local non-linear stability in a sense as defined below.

Proof. When restricted to reallocating perturbations (3.4) the second term of the
linearised equation (3.3) vanishes and stability is obviously equivalent to mi > 0
for all i = 1, . . . , n.

To show stability with respect to shifts, we have to control the second term of
the linearised equation (3.3) proportional to the vector

∫
Ii

v(z) dz. Therefore, we
integrate over Ii

d

dt

(∫
Ii

v(z) dz
)

= −M
(∫

Ii
v(ξ) dξ

)
, i = 1, . . . , n,
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which yields directly the stability condition (SS1). In the case V = 0, the conserva-
tion law

∫ 1

0
v(ξ) dξ = 0 allows to eliminate one component

∫
Ii

v(z) dz, which leads
to the stability condition (SS2).

Remark 3.2. Notice that if (SS2) is satisfied, H is the eigenspace of M associated
to the eigenvalue 0.

Example 3.1. Following up the above example of two Dirac masses stationary
states ρ̄ = z0δ−(1−z0) x1 + (1− z0)δz0 x1 , the stationary condition (2.3)

(
0 −W ′(x1)

W ′(x1) 0

)
·
(

z0

1− z0

)
= 0 .

holds iff W ′(x1) = 0. Linear stability w.r.t. reallocations (SR) requires

0 < mi =
n∑

j=1

W ′′ (uj − ui) ρj =
{−βz0 + α(1− z0) > 0 i = 1,

αz0 − β(1− z0) > 0 i = 2,

which is satisfied for β
α+β < z0 < α

α+β and recovers the linear stability result at
the beginning of this section. Moreover, linear stability w.r.t. local shifts, i.e. (SS2)
holds always true as:

M =
(

α(1− z0) −αz0

−α(1− z0) +αz0

)
⇒ M ·

(
v

−v

)
= α

(
v

−v

)

on the hyperspace {(v1, v2) : v1 + v2 = 0},

Example 3.2 (Stability of three Dirac masses). There is no simple statement
on the stability of stationary states consisting of the three Dirac masses (2.4) pos-
sible. Indeed, asking for stability w.r.t. reallocations, it seems that the sign of the
mi

mi = −W ′′(u1−ui)W
′(u3−u2)+W ′′(u2−ui)W

′(u3−u1)−W ′′(u3−ui)W
′(u2−u1))

−W ′(u3−u2)+W ′(u3−u1)−W ′(u2−u1)

can be tuned by modifying W ′′(uj − ui) while keeping W ′(uj − ui) fixed.
The possible stability of the three Dirac stationary states is important for models

using interaction potentials. For instance, one might intuitively expect that stable
stationary states of a double-well potential (3.1) should consist of two Dirac masses.
However, the above formula for the mi suggests and section 4 will show that there
are stable three (and more) Dirac stationary states, which are even locally non-
linear stable in the sense of the following section. This raises the question of the
robustness versus the flexibility of stationary states under quasi-stationary model
variations. This might be relevant, for instance, when modelling the dynamics of
the cytoskeleton (see Ref. 18, 24).
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3.2. Local non-linear stability without mass exchange

In this section, we prove local non-linear stability of stationary states consisting of
finitely many Dirac masses ρ̄ =

∑n
i=1 ρiδui as given in (2.1) under small Wasserstein

W∞-perturbations (we recall that W∞(ρ1, ρ2) = ‖u1 − u2‖∞, where u1, u2 are the
pseudo-inverses of ρ1, ρ2).

More precisely, the proof shows equivalently the local non-linear stability of
stationary states ū =

∑n
i=1 ui 1Ii

as in (2.2) of the pseudo-inverse equation (1.3)
under small L∞-perturbations u = ū + v of ū such that

‖v‖L∞([0, 1]) ≤ ε,

for a ε > 0. Such a perturbation v(z) is equivalent to small Wasserstein W∞-
differences W∞(ρ̄, ρ) ≤ ε for two probability measure ρ and ρ̄, that is:

{
(ρ− ρ̄)|R/∪n

i=1[ui−ε,ui+ε] = 0,∫
[ui−ε,ui+ε]

dρ =
∫
[ui−ε,ui+ε]

dρ̄, ∀i = 1, . . . , n,

Finally, in the case V = 0, the conservation of (the centre) of mass (1.4) restricts
additionally the admissible perturbations such that

∫ 1

0

v(ξ) dξ = 0,

∫

R
x dρ(x) =

∫

R
x dρ̄(x).

Theorem 3.1 (Local non-linear stability). Let V and W satisfy (1.6) and
(1.7). Assume that a steady-state ū =

∑n
i=1 ui1Ii of eq. (1.3) or ρ̄ =

∑n
i=1 ρiδui

of eq. (1.2), is linear stable w.r.t. reallocations, (i.e. (SR) holds) and shifts (i.e.
(SS1) holds or (SS2) holds if V = 0).

Then, for initial data uin satisfying ‖uin − ū‖∞ small enough (and preserving
the (centre of) mass if V = 0), we have

‖u(t)− ū‖∞ = W∞(ρ(t), ρ̄) ≤ C (1 + tn−1) e−ηt,

for a constant C and with η := min{ν, m1, . . . ,mn} with ν defined in (SS1) or
(SS2), and the mi are defined by (SR).

Remark 3.3. For more general perturbations ρin−ρ̄ ∈ M1(R), one can only expect
orbital stability. This is currently work in progress in Ref. 27.

Remark 3.4. The smallness assumption of Theorem 3.1 on ‖u − ũ‖∞ for two
probability measures ρ̄ =

∑n
i=1 ρiδui and ρ̃ =

∑n
i=1 ρ̃iδũi is satisfied if

|ui − ũi| ≤ ε, |ρi − ρ̃i| ≤ ε, ∀i = 1, . . . , n.

In order to prove Theorem 3.1, we will need the following technical lemma:

Lemma 3.1. If for all t ≥ 0 the matrix N(t) ∈ L∞(Mn(C)) is upper triangular
with Re(nii(t)) ≤ −η < 0 for all i = 1, . . . , n, then there exist a constant C > 0
such that

∥∥e
R t
0 N(s) ds

∥∥ ≤ C(1 + tn−1)e−ηt
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holds for all induced matrix norms.

We first Prove Lemma 3.1 :

Proof. We define w(t) := e
R t
0 N(s) dsX for X ∈ Cn and w(t) is the solution of the

differential equation

d

dt
w(t) = N(t)w(t) = diag(nii(t))w(t) + [N(t)− diag(nii(t))] w(t)

subject to the initial condition w(0) = X. Then, wi(t) is given by

wi(t) = e
R t
0 nii(s) ds wi(0) +

n∑

j=i+1

∫ t

0

e
R t

s
nii(s

′) ds′nij(s)wj(s) ds,

and a backward recurrence argument shows that

|wi(t)| ≤ C(1 + tn−i)‖X‖∞e−ηt ∀i = 1, . . . , n. (3.7)

Indeed, (3.7) holds for i = n and assuming (3.7) for i ∈ {I + 1, . . . , n} yields

|wI(t)| ≤ |wi(0)|e−ηt +
n∑

j=I+1

∫ t

0

C(1 + sn−j)‖X‖∞e−ηse−η(t−s) ds

≤ |wi(0)|e−ηt + C(1 + tn−I−1)t‖X‖∞e−ηt

≤ C(1 + tn−I)‖X‖∞e−ηt,

which proves the lemma after using the equivalence of matrix norms.

We now prove Theorem 3.1:

Proof. Step 1: We first show an estimate on the vector
∫

Ii
v(t, z) dz.

Given V, W ∈ C2,α, we Taylor expand eq. (1.3) point wise around u = ū + v :

∂tv(z) =
∫ 1

0

W ′′(ū(ξ)− ū(z))(v(ξ)− v(z)) dξ − V ′′(ū(z))v(z)

+
∫ 1

0

[W ′′(ū(ξ)− ū(z) + θ1(ξ, z))−W ′′(ū(ξ)− ū(z))](v(ξ)− v(z))dξ

+ [−V ′′(ū(z) + θ2(z)) + V ′′(ū(z))] v(z)

where |θ1(ξ, z)| ≤ |v(ξ)−v(z)| and |θ2(z)| ≤ |v(z)|. For a finite sum of Dirac masses
ū =

∑n
i=1 ui1Ii , we denote vi(z) = v(z) on the intervals Ii. Then, by the Hölder

continuity of V ′′ and W ′′, we have for z ∈ Ii

∂tvi(z) =− vi(z)




n∑

j=1

W ′′(uj − ui)ρj + V ′′(ui)




+
n∑

j=1

W ′′(uj − ui)
∫

Ij

vj(ξ) dξ + O(‖v‖1+α
∞ ) , for z ∈ Ii ,
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and integration over the intervals Ii for i = 1, . . . , n yields

d

dt

(∫

Ii

vi(z) dz

)
= −M

(∫

Ij

vj(ξ) dξ

)
+ O(‖v‖1+α

∞ ), (3.8)

where M is the matrix defined by (3.6).

Note that in case V = 0 the conservation law (1.4), i.e
∫ 1

0
v(z) dz = 0 allows to

eliminate, for instance, the component
∫

In
vn(z) dz in (3.8) and the condition (SS2)

implies that the resulting n − 1-dimensional matrix has its spectrum included in
R+ × iR, which we shall again denoted by M for the sake of simplicity.

Next, there exist a change of basis in Cn or Cn−1, respectively, such that the
matrix M is transformed into an upper triangular matrix M̃ in a new basis (ẽi),
and then,

Re(m̃ii) > ν > 0, (3.9)

either for i = 1, . . . , n in the case V 6= 0 due to condition (SS1) or for i = 1, . . . , n−1
in the case V = 0 due to condition (SS2).

Similarly, we denote by ω̃i(t) the vector
∫

Ii
v(t, z) dz in this new base. In this

new base, the system (3.8) writes:

d

dt
(ω̃i) = −M̃ (ω̃i) + O(‖v‖1+α

∞ ). (3.10)

Step 2: We show estimates on the |vi| by multiplying (1.3) with sign(vi(z)). Recalling
the vector 0 < mi, i = 1 . . . n defined in (SR), we calculate

∂t|vi(z)| =−mi|vi|(z) + sign(v(z))
n∑

j=1

W ′′(uj − ui)
∫

Ij

vj(ξ) dξ + O(‖v‖1+α
∞ )

Altogether, we have for Ω(t) := (|v1|, . . . , |vn|, ω̃1, . . . , ω̃n) (or ω̃n−1 if V = 0):

d

dt
Ω = N Ω + O(‖Ω‖1+α) with N(t) =

(−diag(mi) O(1)(t)
0 −M̃

)
,

where thank to (SS1) and (3.9),

max{Re(nii)} = max{−mi,−Re(m̃ii)} ≤ max{−mi,−ν} < 0,

and |nij(t)| is uniformly bounded in time. Moreover, Ω(t) is given by:

Ω(t) = e
R t
0 N(s) ds Ω(0) +

∫ t

0

e
R t

s
N(s′) ds′O(‖Ω‖1+α)(s) ds

and lemma 3.1 estimates for the upper triangular matrix N with η := max{mi, ν}
‖e
R t
0 N(s) ds‖∞ ≤ C(1 + tn−1) e−ηt
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and further

‖Ω(t)‖∞ ≤ C(1 + tn−1)e−ηt‖Ω(0)‖∞

+ C

∫ t

0

‖Ω‖1+α
∞ (s)(1 + (t− s)n−1)e−η(t−s) ds.

Thus, a Gronwall type estimate (see Ref. 1) shows

‖Ω(t)‖∞ ≤ C(1 + tn−1)e−ηt ,

for ‖Ω(0)‖∞ small enough which finishes the proof.

4. Towards singular repulsive potentials

In this section, we show explicitly the weak limit of the stationary states of regular
interaction potentials satisfying (1.6) as they approximate the singular repulsive
potential W (x) = x2 − |x|. More precisely, we consider a family of interaction
potentials Wε(x) = x2 − |x|ε, with |x|ε denoting a evenly smoothed version of the
modulus on the interval (−ε, ε) for ε > 0:

Wε(x) = x2 − |x|ε, W ′
ε(x) = 2x− signε(x), W ′′

ε (x) = 2− 2δε(0) ,

where we only assume that

signε(0) = 0 , signε(±ε) = ±1 , δε(0) =
1
ε

.

We then suppose a stationary state ū =
∑n

i=1 ui1Ii with |Ii| = ρi consisting
of n Dirac masses for a n ∈ N. By Prop. 2.4 these stationary states satisfy the
condition (2.3). If we assume that all the Dirac masses are separated by a distance
maxi=1,..,n{ui+1 − ui} > ε, it follows that

0 =
n∑

j=1

ρjW
′
ε(uj − ui) = −2ui +

∑

j<i

ρj −
∑

j>i

ρj , (4.1)

where we have used that
∑n

j=1 ρj = 1 and
∑n

j=1 ujρj = 0. Hence, subtracting (4.1)
for indices i + 1 and i leads to

ui+1 − ui =
ρi + ρi+1

2
. (4.2)

Hence, choosing a vector of masses ρi with ρi+ρi+1
2 > ε, we obtain n − 1 unique

relative distances ui+1−ui consistent with the above assumption maxi=1,..,n{ui+1−
ui} > ε. Moreover, the constraint

∑n
j=1 ujρj = 0 yields, for instance, to a unique

value u1, and, thus, to a unique vector ui and stationary state of that type. The
special case ρi = 1

n shows that ε has to be chosen smaller than 1
n in order to have

such a stationary state.
In order to have stable stationary states Prop. 3.1 requires for stability with

respect to reallocations (3.4) the conditions

mi =
n∑

j=1

ρjW
′′
ε (uj − ui) = 2− ρi

ε
> 0 ,
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which imply the constraint ε > ρi

2 . Secondly, stability with respect to shifts (3.5)
holds always as the matrix

M = diag(mi)− ρiW
′′
ε (uj − ui) = 2




1− ρ1 −ρ1 · · · −ρ1

−ρ2 1− ρ2 · · · −ρ2

...
...

...
−ρn −ρn · · · 1− ρn


 .

restricted on the hyperspace {wi :
∑n

i=1 wi = 0} equals to the diagonal matrix
M = diag(2) (use e.g. w1 = −∑n

i=2 wi). Altogether, we have constructed explicitly
a class of stable (in the sense of Prop. 3.1) stationary states for any n given masses
ρi satisfying ρi+ρi+1

2 > ε > ρi

2 for ε < 1
n .

We may now consider the weak limit (with test-functions in Cc(R)) of these sta-
ble stationary states. Observe, that by (4.2) and

∑n
i=1 ρi = 1 some straightforward

calculations show

un − u1 = 1− ρ1

2
− ρn

2
, un + u1 =

ρ1

2
− ρn

2
.

Thus, as ρi < 1
n we have u1 = − 1

2 + ρ1
2 → − 1

2 and un = 1
2 − ρn

2 → 1
2 as n → ∞.

Then, for a given test function φ ∈ Cc(R) (or equivalently φ ∈ Cb(R) since the
support of ρ is uniformly bounded) we calculate using (4.2)

∫

R
φ(x) dρ̄(x) =

n∑

i=1

φ(ui) ρi =
n∑

i=1

∫ ui+
ρi
2

ui− ρi
2

φ(ui) dx

=
∫ un+ ρn

2

u1− ρ1
2

n∑

i=1

φ(ui)1[ui− ρi
2 ,ui+

ρi
2 ] dx

→
∫ 1

2

− 1
2

φ(x) dx =
∫

R
1[− 1

2 , 1
2 ]φ(x) dx ,

as ρi < 1
n and since φ is continuous.

The characteristic function ρ = 1[− 1
2 , 1

2 ] is indeed the unique stationary state
ρ ∈ L∞(R) of the limiting potential W (x) = x2 − |x|. In fact, we have on the
support of ρ(x)

0 = (W ′ ∗ ρ)(x) =
∫

R
2(x− y)dρ(y)−

∫

R
sign(x− y)dρ(y)

= 2x−
∫ x

−∞
dρ(y) +

∫ −∞

x

dρ(y) .

Hence, taking the derivative in x, we obtain 0 = 2 − 2ρ on the support of ρ. This
yields the stationary state ρ̄ = I[− 1

2 , 1
2 ], which is moreover unique as one can check

that any gap within the support of ρ being stationary state of W = x2−|x| requires
ρ to have a Dirac mass at the edges of such a gap.

Example 4.1 (Non-uniqueness and numerical simulations). We remark that
the above constructed stable stationary states of the regular potential Wε i) do not
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Fig. 3. Convergence towards a stable symmetric two Dirac stationary state for the smoothed
double-well potential W (x) = x2 − |x|ε with ε = 0.4. The left image plots u(t, z) at time t = 0
(bold line, initial data), t = 2 (dashed line) and t = 25 (stable stationary state, solid line). The
right image plots the measures ρ(t, x) at times t = 0 (bold line), t = 2 (dashed line) and t = 25
(solid line).

depend on the particular smoothing how Wε → W (except that W ′
ε(0) = 0 and

W ′′
ε (0) = 1

ε ) and ii) are obviously non-unique since the masses ρi can be chosen
arbitrarily within the limits ρi+ρi+1

2 > ε > ρi

2 for ε < 1
n . Nevertheless, all these

stationary state converge towards the unique stationary state ρ = 1[−0.5,0.5] of the
singular repulsive potential W = x2 − |x|.

To illustrate the non-uniqueness of the stationary states of the potentials Wε(x)
regard first Figure 3 for a softly smoothed modulus |x|ε with ε = 0.4: Four smoothed
initial Diracs converge towards a two Dirac stationary state.

Secondly, for increasing local repulsion, i.e. ε = 0.18, we observe non-uniqueness
also in the number of Diracs: Observe how different initial data with three or four
smoothed Dirac converge to stable three or four Diracs stationary state (see Figures
4 and 5).

Finally, Figure 6 shows convergence towards a multiple Dirac stationary state
for strong local repulsion ε = 0.03.

In the following we prove convergence of the stable steady-states for interaction
potentials, which approximate the singular repulsive potential W (x) = −|x|, where
we define W ′(0) = sign(0) = 0. In particular, we shall consider stationary states
confined by an external potential V (x), i.e.

∂tρ(t, x) = ∂x (ρ (W ′ ∗ ρ + V ′)) , (4.3)

and the stationary states of an approximating, piecewise C2 potential Wε(x) with
W ′

ε(0) = 0, W ′′
ε |(−ε,ε) = −C1

ε < 0 and Wε(x) = W (x) outside the interval (−ε, ε)

∂tρε(t, x) = ∂x (ρε (W ′
ε ∗ ρε + V ′)) , (4.4)
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Fig. 4. Convergence to a stable symmetric three Dirac stationary state for the smoothed double-
well potential W (x) = x2 − |x|ε with ε = 0.18 subject initial data consisting of three smoothed
Diracs. The left image plots u(t, z) at time t = 0 (bold line, initial data), t = 6 (dashed line) and
t = 80 (stable stationary state, solid line). The right image plots the measures ρ(t, x) at times
t = 0 (bold line) and t = 80 (solid line).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

z

u(
z)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

5

10

15

20

25

30

x

ρ(
x)

Fig. 5. Convergence towards a stable symmetric four Dirac stationary state for the smoothed
double-well potential W (x) = x2 − |x|ε with ε = 0.18 subject initial data consisting of four
smoothed Diracs. The left image plots u(t, z) at time t = 0 (bold line, initial data), t = 2 (dashed
line) and t = 50 (stable stationary state, solid line). The right image plots the measures ρ(t, x) at
times t = 0 (bold line) and t = 50 (solid line).

The existence of a stationnary-state ρ̄ of (4.3) is proven in Ref. 17, and the existence
of a steady-state ρ̄ε of (4.4) is proven in Ref. 26. The following proposition proves
the weak convergence of the stationary states ρ̄ε ⇀ ρ̄ as ε → 0.

Proposition 4.1. Let V ∈ C2(R) with V ′′ ≥ κ > 0. Suppose that ρ ∈ L∞(R) is a
steady state of (4.3) and ρε a stable steady state of (4.4), stable in the sense that:

0 < (Wε ∗ ρε + V )′′ (x) ∀x ∈ supp (ρε). (4.5)
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Fig. 6. Convergence towards a stable symmetric multiple Dirac stationary state for the smoothed
double-well potential W (x) = x2 − |x|ε with ε = 0.03 subject initial data consisting of four
smoother Diracs. The left image plots u(t, z) at time t = 0 (bold line, initial data), t = 4 (dashed
line) and t = 80 (stable stationary state, solid line). The right image plots the measures ρ(t, x) at
times t = 0 (bold line) and t = 80 (solid line).

Then,

ρε ⇀ ρ in M1 as ε → 0.

Remark 4.1. Note the particular role of harmonic potential V (x) = x2. In fact,
one can check that the proof of Proposition 4.1 holds identically true for Wε(x) =
x2 − |x|ε and V = 0. However, this exchange of the harmonic potential between V

and W is not robust and the presented proof doesn’t work for interaction potentials
with a confining part different than x2. Nevertheless, we believe that such a proof
should be possible but it will require preciser estimates on the positions of the
Diracs of ρε than presented here.

Proof.
We divide the proof in four steps.

Step 1: The stationary state ρε cannot concentrate mass too much in the sense that
∫ x+ε

x−ε

ρε ≤ C1ε , (4.6)

where C1 = C1(‖W ′′‖L∞(R/{0}), ‖V ′′‖L∞(R)). In fact, for x ∈ supp(ρε) with ρε

satisfying (4.5), we estimate

0 ≤ (Wε ∗ ρε + V )′′ (x) ≤ −C1

ε

∫ x+ε

x−ε

ρε + ‖W ′′‖L∞([−ε,ε]c)‖ρε‖M1 + ‖V ′′‖∞.

Step 2: The stationary state ρε cannot spread out too much in the sense that if
x ∈ conv(supp(ρε)), then there exist x̃ ∈ supp(ρε) such that |x − x̃| ≤ C2 ε, where
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C2 = C2(C1, ‖W ′‖L∞(R), κ). Indeed, suppose a gap within the supp(ρε) between
the points x1, x2 ∈ supp(ρε), i.e. the interval (x1, x2) ∩ supp(ρ) = ∅. Then,

0 = (Wε ∗ ρε + V )′(x2)− (Wε ∗ ρε + V )′(x1)

=
∫

R
(W ′

ε(x2 − y)−W ′
ε(x1 − y)) dρε(y) + V ′(x2)− V ′(x1)

=
∫ x1

x1−ε

(W ′
ε(x2 − y)−W ′

ε(x1 − y)) dρε(y)

+
∫ x2+ε

x2

(W ′
ε(x2 − y) + W ′

ε(x1 − y)) dρε(y) + V ′′(xθ)(x2 − x1),

with xθ ∈ (x1, x2). Thus, thank to (4.6) in step 1, we estimate

0 ≥ −2‖W ′
ε‖L∞(R)C1ε + κ(x2 − x1).

Step 3: supp(ρε) ⊂ supp(ρ) and almost all the mass of ρ is in conv(supp(ρε)).
First, since V is convex, supp(ρ) is essentially convex, in the sense that supp(ρ)

is dense in conv(supp(ρ)). As ρ ∈ L∞ by Proposition 2.1, this follows similar to
step 2 for an interval (x1, x2) such that (x1, x2) ∩ supp(ρ) = ∅ from

0 = (W ′ ∗ ρ)(x2)− (W ′ ∗ ρ)(x1) + V ′(x2)− V ′(x1) (4.7)

= −2
∫ x2

x1

ρ dx + V ′′(θ)(x2 − x1) = V ′′(θ)(x2 − x1).

Next, we consider the left points x := min {y ∈ R; y ∈ supp(ρ)}, and xε :=
min {y ∈ R; y ∈ supp(ρε)}. Thus,

W ′ ∗ ρ(x) =
∫

supp(ρ)/{x}
ρ dx = 1, W ′ ∗ ρε(xε) =

∫

supp(ρε)/{xε}
ρε dx ≤ 1, (4.8)

and, as ρ and ρε are both steady states, we have

V ′(x) = W ′ ∗ ρ(x) ≤ W ′ ∗ ρε(xε) = V ′(xε)

An analog estimates holds for the right points y := max {y ∈ R; y ∈ supp(ρ)}, and
yε := max {y ∈ R; y ∈ supp(ρε)}. Thus, since V is convex, we conclude

supp(ρε) ⊂ supp(ρ).

Moreover, for xε ∈ supp(ρε) ⊂ supp(ρ) it follows also from (4.7) that W ′ ∗ ρ)(xε) +
V ′(xε) = 0. Thus,

0 = ((W ′ ∗ ρ)(xε) + V ′(xε))− ((W ′
ε ∗ ρε)(xε) + V ′(xε))

= (W ′ ∗ (ρ− ρε))(xε) + ((W ′ −W ′
ε) ∗ ρε)(xε)

= −2
∫ xε

−∞
(ρ− ρε) dx + O(ε).
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That is
∫ xε

−∞ ρ dx = O(ε). Repeating this argument on the right side of the support,
we get

∫

supp(ρ)\supp(ρε)

ρ dx = O(ε).

Step 4: Weak convergence of ρε ⇀ ρ.
It is sufficient to show that for any x ∈ R,

∫ x

−∞
(ρ− ρε) dx → 0.

If x /∈ conv(supp(ρ)), this follows obviously from supp(ρε) ⊂ supp(ρ). If x ∈
conv(supp(ρ)), then we have either x /∈ conv(supp(ρε)), and therefore by step 3,

∫ x

−∞
(ρ− ρε) dx ≤

∫

supp(ρ)\supp(ρε)

ρ dx = O(ε),

or we have x ∈ conv(supp(ρε)), and thus, by step 2 that there exist x̃ ∈ supp(ρε)
such that |x− xε| ≤ Cε, and

∫ x

−∞
ρε dx =

∫ x̃

−∞
ρε dx + O(ε) =

1
2

(1−W ′ ∗ ρε) + O(ε)

=
1
2

(1−W ′
ε ∗ ρε) + O(ε) =

∫ x̃

−∞
ρ dx + O(ε)

=
∫ x

−∞
ρ dx + O(ε)

This ends to proof of Proposition 4.1.
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