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Abstract

We study the large-time behaviour of a non-local evolution equation for the

density of particles or individuals subject to an external and an interaction potential.

In particular, we consider interaction potentials which are singular in the sense that

their first derivative is discontinuous at the origin.

For locally attractive singular interaction potentials we prove under a linear

stability condition local non-linear stability of stationary states consisting of a finite

sums of Dirac masses. For singular repulsive interaction potentials we show stability

of stationary states of uniformly bounded solutions under a convexity condition.

Finally, we present numerical simulations to illustrate our results.

1 Introduction

In this paper, we study the following non-local interaction equation:

∂tρ = ∇x ·(ρ∇x[W ∗ ρ + V ]), (1)

where ρ(t, x) denotes a density of particles/individuals at position x ∈ Rd and time t ≥ 0
subject to an interaction potential W (x) and an external potential V (x).

Equations like (1) model the many particles limit of various phenomena appearing, for
instance, in biology and physics. We refer to [CT, Vil, MCO] for reviews on this type of
equations. Moreover, it is known (see e.g. [CDFLS, BCL, Rao1, FR]) that the behaviour
of the solution depends crucially on the regularity/singularity of the interaction potential
W at x = 0. One can distinguish the following three main classes :
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Regular interaction potentials appear, for instance, in simplified models of granular media
(see e.g. [CMV, LT, BCP]) with W typical being convex. In cell-biomechanical
models (see [CE, KPSV, PSV]) with W may be a locally repulsive double-well
potential like W (x) = x4 − x2. Another example is the quadratic Morse potential
W (x) = −Ca e−x2/la + Cr e−x2/lr , which is used, for instance, in models of flocking
and swarming. Previous results on regular potentials can be found e.g. in [AGS,
CMV, BDiF, Rao1, FR].

Interaction potentials with an attractive singularity at x = 0 appear also in models of
swarms and collective behaviour (see e.g. [BV, BCM00]) but describe also chemo-
taxis (see [BDP, BCC]) with typically W (x) = − 1

2π
log |x| in 2D. This type of

potentials has been studied e.g. in [CDFLS, Lau, CR, BB, BCC, BL].

Interaction potentials with a repulsive singularity at x = 0 appear mainly in swarming
models (see [CHOB, MEK, TBL]) with the attractive-repulsive Morse potentials
W (x) = −Ca e−|x|/la + Cr e−|x|/lr being a typical example. Related problems can
be found in physics, see e.g. Lennard-Jones type potentials [The]. We refer to e.g.
[Rao1, FR] for previous results.

In this article we shall focus on the one-dimensional case

∂tρ = ∂x (ρ ∂x(W ∗ ρ) + V ) , x ∈ R. (2)

Notice that (2) conserves the total mass
∫

R
ρ(x) dx = 1, which w.l.o.g. shall be assumed

to be normalised. The solution ρ(t, x) can then be interpreted as a probability density and
a change of variables introducing the pseudo-inverse of the distribution function

∫ x

−∞
dρ,

i.e.

u(z) = inf

{

x ∈ R :

∫

(−∞,x]

dρ(x) > z

}

z ∈ [0, 1],

transforms equation (2) for non-negative measure solutions ρ(t, x) into the following in-
tegral equation for the non-decreasing functions u(t, z) (see [LT, BDiF])

∂tu(t, z) =

∫ 1

0

W ′ (u(ξ) − u(z)) dξ − V ′(u(z)), ∀z ∈ [0, 1]. (3)

We remark that solutions of (3) with regular or singular attractive interaction poten-
tials are known to concentrate to measure see e.g. [BDiF, CDFLS]. In such cases, equation
(3) is advantageous both for the stability analysis and for numerical simulations as atomic
parts of measure solutions ρ(x) correspond to constant parts of the pseudo-inverse u(z).

Notice also that in absence of a confining potential V the symmetry of W implies
that the centre of mass

∫

R
x ρ(x) dx is conserved by eq. (2), or equivalently, that

∫ 1

0
u is

preserved by (3) :
d

dt

∫

R

xρ(t, x) dx =
d

dt

∫ 1

0

u(t, z) dz = 0. (4)
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Throughout this article we shall suppose the following basic assumptions on ρin, V
and W :

Assumptions 1: symmetry and support

Symmetry: The interaction potential W (x) = W (−x) is symmetic for all x ∈ R.

Confinement: One of the two following conditions shall be satisfied :

∃C1 > 0 : ∀x ≥ C1 V ′(x) ≥ ‖W ′‖∞, V ′(−x) ≤ ‖W ′‖∞, (5)

or

V = 0, ∃C1, C2 > 0 : ∀x ≥ C1 W ′(x) ≥ C2 x, W ′(−x) ≤ −C2 x. (6)

Compactly supported initial data: We assume initial data ρin ∈ M1(R) with compact
support supp(ρin) ⊂ [−C, C] for a constant C < ∞. In case V 6= 0 we assume
moreover that C ≤ C1 with C1 as in (5).

The second set of assumptions specifies the regularity/singularity of interaction po-
tential W at x = 0, which is crucial for the properties and asymptotics of the solutions :

Assumptions 2: regularity

The external potential V and the interaction potential W shall satisfy

V ∈ C2(R), W ∈ C2(R/{0}),

and moreover that there exist a constant W ′(0+) > 0 such that

x 7→ W̃ (x) := W (x) − W ′(0+)|x| ∈ C2(R), (7)

where we distinguish the following three cases:

2A The interaction potential W is called regular iff W ′(0+) = 0,

2B The interaction potential W is called singular attractive iff W ′(0+) > 0,

2C The interaction potential W is called singular repulsive iff W ′(0+) < 0. In this case
we moreover assume initial data ρin ∈ W 2,∞(R).
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The existence theory of (2) for regular (Assumption 2A) interaction potentials W (see
e.g. [AGS, BDiF] and the precise statements are recalled in Proposition 2.1) constructs
probability measures as solutions via limits of the Jordan-Kinderlehrer-Otto scheme after
interpreting (2) as a gradient flow on Wasserstein spaces associated to the energy:

E(t) :=
1

2

∫

R

∫

R

ρ(t, x)ρ(t, y)W (x − y) dx dy +

∫

R

ρ(t, x)V (x) dx. (8)

For singular attractive interaction potentials (Assumption 2B) it is well known that
classical solutions of (2) may blow up in finite time (see [BB, BCL]). Recently in [CDFLS]
a Wasserstein gradient flow theory of measure-valued solutions was developed for inter-
action potentials W , which are (amongst other assumptions) λ-convex (i.e. W − λ

2
x2 is

convex for some λ < 0). This includes singular attractive interaction potentials as in
Assumption 2B.

A major point in [CDFLS] introduced a modified equation, which gives sense to ∇W
at the singularity. Here, this corresponds to setting W ′(0) = 0 (which can be seen as a
reminiscence of the symmetry W (x) = W (−x)) and the following modified version of (2)

∂tρ(t, x) = ∂x

[

ρ(t, x)

(
∫

y 6=x

W ′(x − y)ρ(t, y) dy + V ′(x)

)]

, (9)

where we write (with a slight abuse of notation) ρ(t, y) dy instead of dρ(t, ·)(y). The
corresponding pseudo-inverse equation reads then as:

∂tu(t, z) =

∫

{ξ∈[0,1]: u(ξ)6=u(z)}

W ′ (u(ξ) − u(z)) dξ − V ′(u(z)). (10)

Finally, for singular repulsive (Assumption 2C) interaction potentials, there exists a
unique solution of (2) subject to initial data ρin ∈ W 2,∞. The solution ρ is then uniformly
bounded (see [Rao1] and the precise statements are recalled in Proposition 2.1).

The main objective of this article is to study the stability of stationary states of (2) (or
its generalisation (9)) for singular interaction potential W . We shall have to distinguish
the cases with attractive singularity at x = 0 (Assumption 2B) and repulsive singularity
at x = 0 (Assumption 2C).

As preliminaries we will recall in Section 2 in Proposition 2.1 previous existence re-
sults from [CDFLS, AGS, BDiF, Rao1] for all interaction potentials W (satisfying the
Assumptions 1 and either 2A, 2B or 2C). Moreover, Proposition 2.2 generalise a large-
time estimate on ρ from [Rao1] to singular interaction potentials.

In Section 3 we study singular attractive interaction potentials W satisfying Assump-
tion 2B. In Subsection 3.1, we show in this case that stable stationary states are generically
finite sums of Dirac masses, that is :

ρ̄(x) =

n
∑

i=1

ρ̄iδūi
(x), ρ̄i > 0,

n
∑

i=1

ρ̄i = 1, (11)
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and the corresponding pseudo-inverse writes as :

ū(z) =

n
∑

i=1

ūi 1Ii
, Ii = [

∑

j<i

ρ̄j ,
∑

j≤i

ρ̄j), |Ii| = ρ̄i, (12)

Moreover, Proposition 3.2 recalls a criterion from [FR] for ρ̄ as given in (11) to be a
stationary state of (9).

Our first main result proves local non-linear stability of stationary states ρ̄ for sin-
gular attractive interaction potentials under the following condition of linear stability of
stationary states ρ̄ of (2) against all perturbations u = ū + v, which shift the positions ūi

of Dirac masses, i.e. (see [FR])

Shifts :

{

v(z) =

n
∑

i=1

vi 1Ii
(z) :

v1, . . . , vn ∈ R,

if V = 0 then
∑n

i=1 viρ̄i = 0

}

, (13)

and a stationary state ρ̄ of (10) as given in (11) or (12), respectively, is said to be linearly
stable with respect to shifts if and only if the matrix M ∈ Mn(R) defined by:

Mij :=

{

ρ̄iW
′′(ūj − ūi), if i 6= j,

−∑

k 6=i ρ̄kW
′′(ūk − ūi) − V ′′(ūi), if i = j.

(14)

has a strictly positive spectrum σ(M) in the sense that for some ν > 0, either

(SS1) V 6= 0 : σ(M) ⊂ {z ∈ C : Re(z) > ν}.

or, in the case V = 0, the spectrum σ(M |H) of M restricted onto the hyperspace H =
{(wi)i=1,...,n :

∑n
i=1 wi = 0} is strictly positive

(SS2) V = 0 : σ(M |H) ⊂ {z ∈ C : Re(z) > ν}.

Notice that if V = 0, the conservation law (4) will permit only stability w.r.t. perturba-
tions ρ of ρ̄, which leave the centre of mass unchanged :

∫

R

xdρ(x) =

∫

R

xdρ̄(x). (15)

We are now able to state our first main results, which shows that a stationary state ρ̄
as given in (11) or (12), respectively, satisfying the condition (SS1) or (SS2) if V = 0 is
locally non-linear stable in the Wasserstein W∞-norm.
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Theorem 1.1 (Local non-linear stability for singular attractive potentials). Assume that
ρin, V , W satisfy the Assumptions 1 and 2B and also that V , W̃ ∈ C2,α(R) (see (7))
for some α > 0. Let ρ̄ =

∑n
i=1 ρ̄iδūi

be a stationary state of (2) that satisfies (SS1) or
(SS2) if V = 0. If V = 0 assume moreover that ρin and ρ̄ have the same centre of mass
∫

R
x ρin(x) dx =

∫

R
x ρ̄(x) dx. Let ρ ∈ ACloc([0,∞),P2(R)) be the solution of (9) with

initial data ρin as stated in Proposition 2.1.
Then, there exit constants C, ε > 0 (depending only on V, W and ρ̄) such that if:

W∞(ρin, ρ̄) = ‖uin − ū‖∞ ≤ ε,

then for t ≥ 0,
W∞(ρ(t, ·), ρ̄) = ‖u(t, ·) − ū‖∞ ≤ C(1 + tn−1) e−νt, (16)

where ν is defined in (SS1) or (SS2), respectively.

Remark 1.1. In a previous article [FR] we have shown local non-linear stability for
regular interaction potentials W under the conditions (SS1) or (SS2) if V = 0 and
under the second condition (SR)

(SR) 0 < mi :=
n

∑

j=1

W ′′(ūj − ūi)ρ̄j + V ′′(ūi) ∀i = 1, . . . , n,

which implies linear stability with respect to reallocations, i.e. all perturbations of the
form

Reallocations :

{

v(z) :

∫

Ii
v(ξ) dξ = 0 , i = 1, . . . , n

if V = 0 then
∫ 1

0
v(z) dz = 0

}

. (17)

Then, similar to Theorem 1.1, we obtained for sufficiently small initial data W∞(ρin, ρ̄) =
‖uin − ū‖∞ ≤ ε the asymptotic stability:

W∞(ρ, ρ̄) = ‖u(t) − ū‖∞ ≤ C(1 + tn−1) e−ηt, η := min{ν, m1, . . . , mn},

with a rate η := min{ν, m1, . . . , mn} which combines (SS1) or (SS2) if V = 0 and (SR).
Note that the non-linear stability proof in [FR] is based on Taylor expansions and does

not apply to singular interaction potentials like in Assumption 2B, for which (9) is not
even linearisable around stationary states ρ̄.

Finally we remark that the condition of linear stability with respect to reallocations is
not needed for singular attractive potentials. One could say that singular attraction always
ensures stability with respect to reallocations.

The proof of Theorem 1.1 is detailed at the end of section 3. It shows in a first step
how the singular attractive interaction potential forces the solution to consist entirely of
Dirac masses within finite time. In a second step these Dirac masses converge towards
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the stationary state due to the condition (SS1) of (SS2) if V = 0. See also Figure 1 for
a numerical example to illustrate these two steps.

The second part of this papers considers singular repulsive interaction potentials W
satisfying Assumption 2C in Section 4. In Subsection 4.1 Proposition 4.1 shows for any
V , W satisfying Assumptions 1 and 2C that the solutions ρ(t, ·) of (2) converges, up to
extraction of a subsequence, to a stationary state ρ̄ of (2). Notice that the uniform bound
ρ ∈ L∞(R+ ×R) and the uniformly bounded support imply that ρ̄ is not measure valued,
i.e. ρ̄ ∈ L1 ∩ L∞(R).

The following second main result of this paper shows that eq. (2) admits a unique
globally attractive stationary state ρ̄ provided some convexity assumptions on V and W :

Theorem 1.2. Assume that ρin, V and W satisfy the Assumptions 1 and 2C. Let ρ ∈
L∞(R+ ×R)∩Liploc(R+, W 2,∞(R)) be the solution of (2) with initial data ρin ∈ W 2,∞(R)
as given in Proposition 2.1. Assume moreover that either

• V ′′ > C > 0 and W |(0,∞) is convex,

• or V = 0 and W ′′|(0,∞) > C > 0.

Then, there exists a unique (up to a shift in x if V = 0) stationary state ρ̄ ∈ L1∩L∞(R)
of (2), and:

W∞(ρ(t, ·), ρ̄) = ‖u(t, ·) − ū‖∞ → 0.

Notice that in general the shape of the stationary states of Theorem 1.2 cannot easily
be determined for given W and V . One exception is the example W (x) = x2 − |x| and
V = 0 when (W ′ ∗ ρ)(x) = 2x + 1 − 2

∫ x

−∞
ρ(y) dy) and thus ρ̄(x) = 1 on the support of

ρ̄. In Section 5 we will present numerical examples to illustrate several cases.
Moreover, we mention the interesting weak limit of Dirac-type stable stationary states

of (2) for regular interaction potentials (satisfying Assumption 2A) towards the stable
stationary state ρ̄ ∈ L1 ∩ L∞(R) of (9) with a singular repulsive interaction potential W
(satisfying Assumption 2C) (see [FR]).

The proof of Theorem 1.2 is shown at the end of section 4.

In Section 5 finally, we present numerical simulations using mainly an implicit Euler
discretisation of the pseudo-inverse equation (3).

The first example illustrate the proof of Theorem 1.1.
The second example show convergence to a stationary state consisting of two separated

continuous parts for a singular repulsive interaction potential W and a repulsive-confining
external potential V .

Finally, we show the behaviour of solutions of (3) with interaction potentials W , which
are more singular than supposed in Assumption 2C, for instance, W (x) ∼ −|x|α for α < 1.
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2 Preliminary

The following proposition recalls the existence theories for (2) and (9) and shows that
the support of ρ(t, ·) is uniformly bounded in time. Thanks to this result we shall only
consider compactly supported solutions of (2) or (9) throughout this paper.

Proposition 2.1 (Existence and compact support [CDFLS, BDiF, Rao1]). Assume V ,
W and ρin satisfy Assumption 1. Moreover,

if Assumption 2A is satisfied and W is regular, then there exists a unique solution
ρ(t, x) ∈ Liploc([0,∞),P∞(R)) of (2) subject to the initial data ρin (see [AGS,
BDiF, CDFLS]),

if Assumption 2B is satisfied and W is singular attractive at x = 0, then there exists a
unique solution ρ(t, x) ∈ ACloc([0,∞),P2(R)) of (9) subject to the initial data ρin

(see [CDFLS]).

if Assumption 2C is satisfied and W is singular repulsive at x = 0, then there exists a
unique solution ρ(t, x) ∈ L∞(R+ × R) ∩ Liploc(R+, W 2,∞(R) of (2) subject to the
initial data ρin ∈ W 2,∞(R) (see [Rao1]).

Moreover, there exists a constant C > 0 such that for all times t ≥ 0,

supp (ρ(t, ·)) ⊂ [−C, C], t ≥ 0.

The next proposition (which is a generalisation of a result of [Rao1]) provides an
estimate on the long-time behaviour of the solution, which excludes, for instance, that (2)
admits a periodic limit cycle. This result underlines the analysis of stationary states in
order to determine the asymptotic behaviour of solutions of (2). (For an analogue result
for singular repulsive potentials see Proposition 4.1.)

Proposition 2.2 (Asymptotic control of the solution). Let ρin, V, W satisfy the Assump-
tions 1 and either 2A, 2B, or 2C. Let ρ be the solution of (9) with initial data ρin given
by Proposition 2.1. Then,

∫

R

ρ(t, x)
(

∫

y 6=x

W ′(x − y)ρ(t, y) dy + V ′(x)
)2

dx → 0 as t → ∞. (18)

Remark 2.1. If V and W are convex with one of them being strictly convex, then x 7→
∫

W ′(x−y)ρ(t, y) dy+V ′(x) is strictly increasing and (18) implies the convergence of ρ(t, ·)
to a single Dirac mass δx̄, where the position x̄ is determined either by V (x̄) = miny∈R V (y)
or by x̄ =

∫

R
x ρin(x) dx if V = 0.

Here we do not assume convexity of V or W . Thus (18) does not imply the convergence
of ρ(t, ·) to a single stationary state.
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Proof of Proposition 2.2. The case of regular potentials (Assumption 2A) has already
been shown in [Rao1]. Here, we prove Proposition 2.2 in the cases where Assumption 2B
or Assumption 2C are satisfied.

Step 1: We estimate the first and second time derivative of the energy E (see (8))

As e.g. in [CDFLS, Rao1], we compute:

dE

dt
(t) = −

∫

R

ρ(t, x)

(
∫

y 6=x

W ′(x − y)ρ(t, y) dy + V ′(x)

)2

dx ≤ 0. (19)

Then, we calculate d2E
dt2

:

d2E

dt2
= 2

∫

R

ρ(t, x)

(
∫

y 6=x

W ′(x − y)ρ(t, y) dy + V ′(x)

)2

×

∂x

(
∫

y 6=x

W ′(x − y)ρ(t, y) dy + V ′(x)

)

dx

− 2

∫

R

ρ(t, x)

(
∫

y 6=x

W ′(x − y)ρ(t, y) dy + V ′(x)

)
∫

y 6=x

W ′(x − y)×

∂y

(

ρ(t, y)

(
∫

z 6=y

W ′(y − z)ρ(t, z) dz + V ′(y)

))

dy dx.

We compute the first term and integrating the second by part to get (with W̃ (x) =
W (x) − W ′(0+)|x| ∈ W 2,∞(R) as defined in (7)) :

d2E

dt2
= 2

∫

R

ρ(t, x)

(
∫

y 6=x

W ′(x − y)ρ(t, y) dy + V ′(x)

)2

×
[

(W ′(0−) − W ′(0+))ρ(t, x) +

∫

y 6=x

W̃ ′′(x − y)ρ(t, y) dy + V ′′(x)

]

dx

− 2(W ′(0+) − W ′(0−))

∫

ρ(t, x)2

(
∫

y 6=x

W ′(x − y)ρ(t, y) dy + V ′(x)

)2

dx

− 2

∫

R

ρ(t, x)

(
∫

y 6=x

W ′(x − y)ρ(t, y) dy + V ′(x)

)
∫

y 6=x

W̃ ′′(x − y)×
(

ρ(t, y)

(
∫

z 6=y

W ′(y − z)ρ(t, z) dz + V ′(y))

))

dy dx.

Since V, W̃ ∈ W 2,∞(R) and ρ is uniformly compactly supported, we get :

d2E

dt2
= − 8W ′(0+)

∫

R

ρ(t, x)2

(
∫

y 6=x

W ′(x − y)ρ(t, y) dy + V ′(x)

)2

dx + O(1),
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Note that if W is regular (Assumption 2A) we have d2E
dt2

= O(1). Here, in the cases where
W satisfies either Assumption 2B or Assumption 2C, we have

d2E

dt2
≤ C if 2B holds or

d2E

dt2
≥ −C if 2C holds (20)

for some constants C < ∞. However, these estimates (20) on d2E
dt2

are sufficient to conclude
as in the following.

Step 2: We show that dE
dt

→ 0.

We shall only detail the singular attractive case Assumption 2B. The singular repulsive
case Assumption 2C is shown in a similar way.

Since the energy E is non-increasing (19) and uniformly bounded from below by

E ≥ min
x∈supp(ρ)⊂[−C,C]

W (x) + min
x∈supp(ρ)⊂[−C,C]

V (x),

there exists a limit limt→∞ E and for ε > 0 a time T > 0 such that for all t ≥ T :

∫ ∞

t

−dE

dt
< ε.

Moreover, we can Taylor expand using (20) :

∫ ∞

t

dE

dt
≤

∫ t+| 1
2C

dE
dt

(t)|

t

dE

dt
(t) + C(s − t) ds ≤ − 1

4C

∣

∣

∣

∣

dE

dt
(t)

∣

∣

∣

∣

2

,

and thus, for any t ≥ T ,
∣

∣

∣

∣

dE

dt
(t)

∣

∣

∣

∣

≤ 2
√

Cε,

which shows dE
dt

→ 0 and finishes the proof of Proposition 2.2.

3 Singular attractive interaction potentials

3.1 Stable stationary states for singular attractive W

The following Proposition 3.1 recalls that compactly supported stationary states ρ̄ of (9)
with the supp(ρ̄) containing an accumulation point satisfying (21) are unstable in the
below sense. As a consequence are stable stationary states of (9) generically finite sums
of Dirac masses.

Proposition 3.1 (Instability of non-Dirac type stationary states for singular attractive
interaction potentials [Rao1]). Assume that ρin, V and W satisfy the Assumptions 1 and
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2B. Let ρ̄ ∈ M1
+(R) be a compactly supported stationary state of (9). If supp(ρ̄) has an

accumulation point x0 such that :

∃C > 0, ∃η > 0 : ∀γ ∈ (0, η),
1

γ

∫ x0+γ

x0

ρ̄(y) dy ≥ C, (21)

(or the same estimate with −η < γ < 0), then is ρ̄ locally unstable in the sense that for
any ε > 0 there exists ρε ∈ M1(R) such that W1(ρ

ε, ρ̄) ≤ ε and

E(ρε) < E(ρ̄), (22)

where E is the energy defined by (8).

The following proposition provides a criterion for a sum of Dirac masses to be a
stationary state of (9).

Proposition 3.2 (Stationary condition for sums of Diracs). Assume V , W satisfy the
Assumptions 1 and 2A or 2B. Then, for a given integer n ∈ N, a non-negative measure
ρ̄ as given in (11) or, equivalently, ū as given in (12) is a stationary state of eq. (9) or
(10), respectively, if and only if the following condition holds (with W ′(0) = 0):

n
∑

j=1

W ′(ūj − ūi) ρ̄j = V ′(ūi), i = 1, . . . , n . (23)

Proof. The proof can be found in [FR].

3.2 Proof of Theorem 1.1

Proof of Theorem 1.1. We consider u = ū + v ∈ L∞([0, 1]) a non-decreasing perturbation
of ū.

Step 1: After a finite time T > 0 the pseudoinverse u consists of n steps functions, i.e. ρ
is a sum of n Dirac masses.

We recall the formula (12) of ū. For t ≥ 0 choose i ∈ 1, . . . , n such that v(t, ·) is not
constant on Ii and consider z′ < z′′ ∈ Ii such that v(t, z′) < v(t, z′′). Then, we compute
using Assumption 2B (and sign(0) = 0)

∂t(v(z′′) − v(z′)) =

[
∫

{ξ∈[0,1];u(ξ)6=u(z′′)}

W ′(u(ξ) − u(z′′)) dξ − V ′(u(z′′))

]

−
[
∫

{ξ∈[0,1];u(ξ)6=u(z′)}

W ′(u(ξ) − u(z′)) dξ − V ′(u(z′))

]

= W ′(0+)

∫

[sign(u(ξ) − u(z′′)) − sign(u(ξ) − u(z′))] dξ

+

∫

[

W̃ ′(u(ξ) − u(z′′)) − W̃ ′(u(ξ) − u(z′))
]

dξ − V ′(u(z′′)) + V ′(u(z′))
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We recall that u is non-decreasing and compute the first term as
∫

sign(u(ξ) − u(z)) dξ = −|{ξ ∈ [0, 1]; u(ξ) < u(z)}| + |{ξ ∈ [0, 1]; u(ξ) > u(z)}|,

and estimates the second and the third term by the mean value theorem after defining
∆(t) := sup {|v(t, z1) − v(t, z2)|; i ∈ {1, . . . , n}, z1, z2 ∈ Ii}. Thus, as long as ∆(t) > 0,

∂t (v(z′) − v(z′′)) = O(∆)

+ W ′(0+)
(

|{ξ ∈ [0, 1]; u(ξ) > u(z′′)}| + |{ξ ∈ [0, 1]; u(ξ) < u(z′)}|
)

− W ′(0+)
(

|{ξ ∈ [0, 1]; u(ξ) < u(z′′)}| + |{ξ ∈ [0, 1]; u(ξ) > u(z′)}|
)

= O(∆) + W ′(0+)
(

1 − |{ξ ∈ [0, 1]; u(z′) ≤ u(ξ) ≤ u(z′′)}|
)

− W ′(0+)
(

1 + |{ξ ∈ [0, 1]; u(z′) < u(ξ) < u(z′′)}|
)

≤ O(∆) − W ′(0+)|{ξ ∈ [0, 1]; u(z′) ≤ u(ξ) ≤ u(z′′)}|
≤ O(∆) − W ′(0+)|z′′ − z′|,

where |O(∆)| ≤
(

‖W̃ ′′‖∞ + ‖Ṽ ′′‖∞
)

|∆|. As the above estimate holds for any z′ < z′′ ∈ Ii

such that v(t, z′) < v(t, z′′), we get in particular :

d

dt
∆(t) ≤ O(∆) − W ′(0+) min

i=1,...,n
|Ii|.

Moreover, ∆(0) is small as the initial data ρin are close to ρ̄ in W∞ :

∆(0) ≤ 2‖uin − ū‖∞ = 2W∞(ρin, ρ̄) ≤ ε.

Thus, for ε > 0 small enough,

|O(∆(0))| ≤ (‖W̃ ′′‖∞ + ‖Ṽ ′′‖∞) ε ≤ 1

2
W ′(0+) min

i=1,...,n
|Ii|,

and there exist a time T ∈ (0, 2 ε/(W ′(0+) mini=1,...,n |Ii|)] such that ∆(T ) = 0, that is
v(T, z) =

∑n
i=1 vi(T )1Ii

(z) and for all times after we have

∀t ≥ T, ∀z ∈ [0, 1] : v(t, z) =
n

∑

i=1

vi(t)1Ii
(z). (24)

Finally, ‖(vi(T ))‖ is small as ε > 0 is small :

‖vi(T )‖ ≤ ‖uin − ū‖∞ + T‖∂tv‖∞
≤ ε +

2ε

W ′(0+) mini=1,...,n |Ii|
(

‖W ′‖∞([−2C,2C]) + ‖V ′‖∞([−C,C])

)

≤ O(ε), (25)
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where C is the uniform bound on the support supp ρ as stated in Prop 2.1.

Note that u(T, z) =
∑n

i=1(ūi+vi(T ))1Ii
(z) denotes a shift perturbation of ū as defined

in (13). Hence, it remains to show that the linear stability condition with respect to shifts,
i.e. (SS1) or (SS2) if V = 0 implies the convergence of u to ū.

Step 2: We show that vi(t) → 0 for t ≥ T .

Since v(t, z) = vi(t) is constant on Ii for t ≥ T , we have for z ∈ Ii :

d

dt
vi = ∂tv(t, z) =

∫

[0,1]/Ii

W ′(ū(ξ) + v(ξ) − ū(z) − v(z)) dξ − V ′(ū(z) + v(z))

=
∑

j 6=i

ρ̄jW
′(ūj + vj(t) − ūi − vi(t)) − V ′(ūi + vi(t)),

since |Ij| = ρ̄j . If we multiply this equation with ρ̄i we get the ODE system :

d

dt
(ρ̄ivi) =

∑

j 6=i

ρ̄iρ̄jW
′(ūj + vj(t) − ūi − vi(t)) − ρ̄iV

′(ūi + vi(t)) for i = 1, . . . , n. (26)

Obviously vi = 0 is a stationary state of (26) since ū is a stationary state of (3).
To check the stability we linearise the equation (26) around vi = 0. By recalling that
V ∈ C2,α(R) and W = W ′(0+)|x| + W̃ ∈ C2,α(R \ {0}) for a α > 0, we calculate :

d

dt
(ρ̄ivi) =

∑

j 6=i

ρ̄iρ̄j

[

W ′ (ūj − ūi) + W ′′ (ūj − ūi) (vj(t) − vi(t)) + O(|vj(t) − vi(t)|1+α)
]

− ρ̄iV
′(ūi) − ρ̄iV

′′(ūi) vi(t) + O(|vi(t)|1+α)

=
∑

j 6=i

(

ρ̄iW
′′ (ūj − ūi) ρ̄jvj(t)

)

−
(

∑

j 6=i

ρ̄jW
′′ (ūj − ūi)

)

ρ̄ivi(t)

− V ′′(ūi)ρ̄ivi(t) + O
(

‖(ρ̄jvj)(t)‖1+α
)

,

and thus,
d

dt
(ρ̄ivi) = −M (ρ̄ivi) + O

(

‖(ρ̄jvj)(t)‖1+α
)

, (27)

where M is the matrix defined in (14).

In the following we distinguish the cases (SS1) and (SS2) if V = 0 :

We show Theorem 1.1 in the case where (SS1) is satisfied.

For t ≥ T we have v(t, z) =
∑n

i=1 vi(t)1Ii
(z) and the vi(t) satisfy (27). Thus, the

solution (ρ̄ivi) is given by

(ρ̄ivi) = e−(t−T )M (ρ̄ivi)(T ) +

∫ t

T

e−(t−s)M O(‖(ρ̄ivi)(s)‖1+α
∞ ) ds.

13



Then, as (SS1) is satisfied, Lemma 6.1 applied to e−(t−T )M and e−(t−s)M yields

‖(ρ̄ivi)‖ ≤ ‖(ρ̄ivi)(T )‖(1 + (t − T )n−1) e−(t−T )ν

+ C

∫ t

T

‖(ρ̄ivi)(s)‖1+α(1 + (t − s)n−1) e−(t−s)ν ds.

Moreover the estimate (25) implies that ‖(ρ̄ivi)(T )‖ can be made sufficiently small to
apply the second part of Lemma 6.2, which yields for ε > 0 small enough

‖(ρ̄ivi)(t)‖ ≤ C(1 + tn−1) e−νt.

We show Theorem 1.1 in the case where (SS2) is satisfied.

Since V = 0 the centre of mass of ρ(t, ·) is conserved by (2) we have 0 =
∫ 1

0
v(t, z) dz =

∫ 1

0
uin(z) − ū(z) dz and

∀t ≥ T, (ρ̄ivi) ∈ H =

{

(wi)i=1,...,n;

n
∑

i=1

wi = 0

}

.

Let (ẽ1, . . . , ẽn−1) be a basis of H with ẽn :=
∑n

i=1 ei and (ei) denoting the canonical
base of R

n. Then, in the basis (ẽi) of R
n, the vector (ρ̄ivi)(t) writes as

∑n
i=1(ρ̄ivi)(t) ei =

∑n−1
i=1 wi(t) ẽi. In particular wn(t) = 0 for all t ≥ 0 and (w1(t), . . . , wn−1(t)) is given by

(wi)(t) = e−(t−T )M |H (wi)(T ) +

∫ t

T

e−(t−s)M |H O(‖(wi)(s)‖1+α
∞ ) ds,

where M |H is the matrix M restricted to H (and expressed in the basis (ẽi) of H). Since
(SS2) is satisfied, Lemma 6.1 applies to e−(t−T )M |H and e−(t−s)M |H and yields

‖ (wi) ‖ ≤ ‖(wi)(T )‖(1 + (t − T )n−2) e−(t−T )ν

+ C

∫ t

T

‖(wi)(s)‖1+α(1 + (t − s)n−2) e−(t−s)ν ds.

and similar as above, since ‖(ρ̄ivi)(T )‖ can be made sufficiently small by (25), we can
apply the second part of Lemma 6.2, to get for ε > 0 small enough

‖(ρ̄ivi)(t)‖ ≤ C(1 + tn−2) e−νt,

which concludes the proof of Theorem 1.1.
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4 Singular repulsive interaction potentials

4.1 Large time behaviour for singular repulsive W

The following result (which is a generalisation of a result of [Rao1]) shows that ρ(t, ·)
converges, up to extraction of a subsequence, to a stationary state of (2). Proposition 4.1
implies in particular the existence of a stationary state ρ̄ of (2) for any V, W satisfying
Assumptions 1 and 2C.

Proposition 4.1 (Convergence of subsequences to a stationary state). Let ρin, V and
W satisfy the Assumptions 1 and 2C. Let ρ ∈ L∞(R+ × R) ∩ Liploc(R+, W 2,∞(R)) be the
solution of (9) with initial data ρin given by Proposition 2.1.

Then, for any sequence tk → ∞, there exist a subsequence still denoted by tk such that:

W1 (ρ(tk, ·), ρ̄) = ‖u(tk, ·) − ū‖1 → 0 as k → ∞, (28)

where W1 denotes the 1−Wasserstein distance and ρ̄ is a steady-state of (9).

Remark 4.1. Notice that the limit ρ̄ in (28) is not necessarily unique as it may depend
both on the sequence tk and on the subsequence.

Proof of Proposition 4.1. Proposition 4.1 has been proven in the case of regular interac-
tion potentials in [Rao1]. Here, we will show how this proof extends to the case where
Assumption 2C is satisfied.

The pseudo-inverse u(t, ·) of ρ(t, ·) is an increasing function and is uniformly bounded
thanks to Proposition 2.1. Any sequence u(tk, ·) is thus uniformly bounded in BV ([0, 1]).
Therefore, there exists a subsequence, still denoted by u(tk, ·), which converges in L1 to
a limit denoted by ū:

‖u(tk, ·) − ū‖L1 → 0.

It remains to prove that ū is a stationary state of (3). In order to do so we shall use
the estimate (18) from Proposition 4.1, which writes in the pseudo-inverse variables as :

dE

dt
(tk) = −

∫ 1

0

(
∫

W ′(u(tk, z) − u(tk, ξ)) dξ + V ′(u(tk, z))

)2

dz.

Next, we define F̄ := −
∫ 1

0

(∫

W ′(ū(z) − ū(ξ)) dξ + V ′(ū(z))
)2

dz and it follows (see
[Rao1] for the details)

F̄ − dE

dt
≤ C

∥

∥

∥

∫

u(z)6=u(ξ)

W ′(u(z) − u(ξ)) dξ −
∫

ū(z)6=ū(ξ)

W ′(ū(z) − ū(ξ)) dξ
∥

∥

∥

L1
+ C‖u − ū‖L1 .
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and by (7) and sign(0) = 0,

F̄ − dE

dt
≤ C

∥

∥

∥

∫

u(z)6=u(ξ)

sign (u(z) − u(ξ)) + W̃ ′(u(z) − u(ξ)) dξ

−
∫

ū(z)6=ū(ξ)

sign (ū(z) − ū(ξ)) + W̃ ′(ū(z) − ū(ξ)) dξ
∥

∥

∥

L1
+ C‖u − ū‖L1.

As Assumption 2C is satisfied it follows from Proposition 2.1 that ρ, ρ̄ ∈ L∞(R) and,
hence, that u, ū are strictly increasing, which yields

sign (u(z) − u(ξ)) = sign (z − ξ) = sign (ū(z) − ū(ξ)) ,

and moreover

F̄ − dE

dt
≤ C‖W̃ ′′‖L∞(−2C,2C) ‖u − ū‖L1 + C‖u − ū‖L1.

Finally,

F̄ ≤ dE

dt
(tk) + C‖u(tk, ·) − ū‖L1 → 0 as k → ∞.

and F̄ = 0. Thus,

supp ρ̄ ⊂
{

x ∈ R;

∫

W ′(x − y)ρ̄(y) dy + V ′(x) = 0

}

,

and ρ̄ is a stationary state of (2). This shows Proposition 4.1.

4.2 Proof of Theorem 1.2

Proof of Theorem 1.2. By Proposition 4.1 there exists a stationary state ρ̄ of (2). In
particular, if V = 0, there exist such a stationary state with the same centre of mass as
ρin (since in this case the equation is invariant w.r.t. translation in space).

Let u(t, ·) be the pseudo-inverse of ρ(t, ·). By the assumptions of the theorem eq. (3)
writes as :

∂tu(z) =

∫ 1

0

[W ′(0+) sign(u(ξ)− u(z)) + W̃ ′(u(ξ) − u(z))] dξ − V ′(u(z)).

Moreover, Proposition 2.1 yields ρ, ρ̄ ∈ L∞(R) and u, ū are strictly increasing. Thus we

calculate using
∫ 1

0
sign(u(ξ) − u(z)) dξ =

∫ 1

0
sign(ξ − z) dξ = 1 − 2z :

∂tu(z) = W ′(0+)(1 − 2z) +

∫ 1

0

W̃ ′[(ū(ξ) − ū(z)) + (v(ξ) − v(z))] dξ − V ′(u(z)).
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Using the mean value theorem, there exist functions θ1(z, ξ), θ2(z) ∈ [−2C, 2C] for z, ξ ∈
[0, 1] (where C is the uniform bound on the support as stated in Proposition 2.1) such
that :

∂tv(z) = W ′(0+)(1 − 2z) +

∫ 1

0

W̃ ′(ū(ξ) − ū(z)) dξ − V ′(ū(z))

+

∫ 1

0

W̃ ′′(θ1(z, ξ))(v(ξ) − v(z)) dξ − V ′′(θ2(z))v(z)

= −
(

∫ 1

0

W̃ ′′(θ1(z, ξ)) dξ + V ′′(θ2(z))
)

v(z) +

∫ 1

0

W̃ ′′(θ1(z, ξ))v(ξ) dξ,

since ū is a stationary state of (3).

In the following we shall distinguish the two cases :

Case where V ′′ > C > 0 and W |(0,∞) is convex.

Consider z∗ ∈ [0, 1] such that v(t, z∗) = ‖v(t, ·)‖∞ and assume w.l.o.g. that v(t, z∗) >
0. Since W is convex on (0,∞) we have W̃ ′′ ≥ 0 and

∂tv(z∗) ≤−
(

∫ 1

0

W̃ ′′(θ1(z
∗, ξ)) dξ

)

v(z∗) + ‖v‖∞
∫ 1

0

W̃ ′′(θ1(z, ξ)) dξ − V ′′(ū(z)) v(z∗)

≤− V ′′(ū(z)) v(z∗),

by the definition of z∗. Thus,

d

dt
‖v(t, ·)‖∞ ≤ −

(

inf
x∈supp(ρ)

V ′′(x)

)

‖v‖∞

holds for all t ≥ 0, which yields

‖v(t, ·)‖∞ ≤ ‖v(0, ·)‖∞ e−(infx∈supp(ρ) V ′′(x)) t.

This proves the Theorem 1.2 in this case.

Case where V = 0 and W ′′|(0,∞) > C > 0.

Consider again z∗ ∈ [0, 1] such that v(t, z∗) = ‖v(t, ·)‖∞ and assume w.l.o.g. that
v(t, z∗) > 0. Since V = 0 the centre of mass of ρ(t, ·) is conserved (see (4)) and
∫

R
x ρ(t, x) dx =

∫

R
x ρin(x) dx =

∫

R
x ρ̄(x) dx and

∫ 1

0
v(ξ) dξ = 0 holds for all t ≥ 0.

Moreover, W̃ ′′(ū(ξ) − ū(z)) − infx∈supp(ρ) W̃ ′′(x) ≥ 0. Thus,

∂tv(z∗) =

∫ 1

0

(

W̃ ′′(ū(ξ) − ū(z∗)) − inf
supp(ρ)

W̃ ′′(x)
)

v(ξ) dξ −
∫ 1

0

W̃ ′′(ū(ξ) − ū(z∗)) dξ v(z∗)

≤ ‖v‖∞
∫ 1

0

(

W̃ ′′(ū(ξ) − ū(z∗)) − inf
supp(ρ)

W̃ ′′(x)
)

dξ −
∫ 1

0

W̃ ′′(ū(ξ) − ū(z∗)) dξ v(z∗)

≤ −
(

inf
supp(ρ)

W̃ ′′(x)
)

‖v‖∞,
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Figure 1: Convergence towards an approximative single Dirac stationary state for the
(ε-smoothed) attractive interaction potential W (x) = |x|ε with ε = 0.03 and the external
potential V (x) = x4 − x2. The left image plots u(t, z) at time t = 0 (initial data, bold
line), t = 0.5 (dashed line), t = 5, 20 (dash-dotted lines) and t = 30 (stable stationary
state, solid line). The right image plots the measure ρ(t, x) at the times t = 0 (bold lines),
t = 0.5 (dashed line), t = 20 (dash-dotted line) and t = 30 (solid line).

by the definition of z∗. Then d
dt
‖v(t, ·)‖∞ ≤ −

(

infx∈supp(ρ) W̃ ′′(x)
)

‖v‖∞ holds for all t ≥ 0
and

‖v(t, ·)‖∞ ≤ ‖v(0, ·)‖∞ e−(infx∈supp(ρ) W̃ ′′(x))t,

proves the Theorem 1.2 in this case where V = 0.

5 Numerical examples

We perform numerical simulations using both an explicit and an implicit Euler scheme for
the pseudo-inverse equation (3). Note that approximating u(z) on z ∈ [0, 1] by piecewise
constant step functions on an equidistant grid with n + 1 grid points (we have used
n = 256) is equivalent to a particle method for equation (2), where a measure ρ(x) is
approximated by a sum of n Diracs with mass 1

n
. As expected, the implicit Euler scheme

remains stable for singular repulsive interaction potentials, for which the explicit Euler
scheme fails.

The numerics are implemented and plotted in Matlab. In order to depict a measure
ρ(x), we represent each Dirac mass by a triangle centred at the position ui with basis-
length 1/90 and with area equivalent to the mass of the represented Dirac.

In a first example we consider the confining external potential V (x) = x4 −x2 and the
attractive interaction potential W (x) = |x|ε, which is a piecewise C2-approximation of the
singular attractive potential W (x) = |x| with W ′′(x) = 1/ε for x ∈ (−ε, ε). Figure 1 shows
convergence of initially three smoothed Dirac masses uin(z) = 0.4 (sin(6πz) + 6πz) − C
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Figure 2: Convergence towards a stationary state consisting of two separated continuous
parts for the interaction potential W (x) = −|x| and the external potential V (x) = x4−x2.
The left image plots u(t, z) at time t = 0 (initial data, bold line), t = 0.5 (dashed line)
and t = 10 (stable stationary state, solid line). The right image plots the density ρ(t, x)
at the times t = 0 (bold lines) and t = 10 (solid line).

with C such that
∫ 1

0
uin(z) dz = 0 towards a ε-smoothed single Dirac stationary state.

In a first phase the solution converges quickly towards three ε-smoothed instable Dirac
masses (see t = 5). This first phase corresponds to Step 1. in the proof of Theorem 1.1.

In a second slow phase, the numerical scheme is able to resolve the instability of the ε-
smoothed Diracs. In fact, this is the reason why we take W (x) = |x|ε and not W (x) = |x|
in this example in the first place. Thus, Figure 1 shows in the following how the three
Diracs collapse to two Diracs (see t = 20) and finally to a single Dirac stationary state
(t = 30). This corresponds to Step 2. in the proof of Theorem 1.1. Note that since in
this example the external potential V is locally repulsive stationary states can consist of
more than a single Dirac mass.

In Figure 2 we show convergence to the stationary state of (3) for the singular repulsive
interaction potential W (x) = −|x| and the confining external potential V (x) = x4 − x2

subject to the initial data uin(z) = 0.2 (sin(6πz)+6πz)−C with C such that
∫ 1

0
uin(z) dz =

0. Note that ρ̄ consists of two continuous parts separated by the effect of the external
potential being locally repulsive.

Finally, the Figures 3 and 4 consider strongly singular repulsive interaction potentials.
Figure 3 shows how the solution of (2) with the symmetric (in the ρ picture) initial

data uin(z) = 0.2 (sin(8πz) + 8πz) − C with C such that
∫ 1

0
uin(z) dz = 0 (bold line)

converges to a smoothed Dirac stationary state for the singular repulsive double-well
potential W (x) = x2 − |x|α with α = 0.05. Figure 4 shows the same for W (x) = x2 − |x|α
with α = 0.001.
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Figure 3: Convergence towards a smoothed Dirac stationary state for the doublewell
potential W (x) = x2 − |x|α with α = 0.05. The left image plots u(t, z) at time t = 0
(initial data, bold line), t = 0.5 (dashed line), t = 1 (dash-dotted line), and t = 10 (stable
stationary state, solid line). The right image plots the density ρ(t, x) at the times t = 0
(bold lines), t = 0.5 (dashed line) and t = 10 (solid line).
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Figure 4: Convergence towards a smoothed Dirac stationary state for the doublewell
potential W (x) = x2 − |x|α with α = 0.001. The left image plots u(t, z) at time t = 0
(initial data, bold line), t = 0.5 (dashed line), t = 1 (dash-dotted line), and t = 10 (stable
stationary state, solid line). The right image plots the density ρ(t, x) at the times t = 0
(bold lines), t = 0.5 (dashed line) and t = 10 (solid line).
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6 Appendix

The proof of the following Lemma is classical but shall be recalled for the sake of the
reader.

Lemma 6.1. If a matrix M ∈ Mn(C) satisfies σ(M) ⊂ {z ∈ C : Re(z) > η}, then, for
any induced matrix-norm ‖ · ‖ of Rn×n, there exist a constant C > 0 such that for t ≥ 0

∥

∥e−M t
∥

∥ ≤ C(1 + tn−1) e−ηt.

Proof of Lemma 6.1. The Dunford decomposition theorem implies that there exists D ∈
Mn(C) diagonalisable (i.e. P−1DP = diag(λ1, . . . , λn) for a P ∈ GLn(C)) and N nilpotent
(i.e. Nn = 0) with M = D + N such that D and N commute, i.e. D N = N D. Thus,

e−t M = e−t De−t N = P
(

∞
∑

k=0

tk

k!
(−P−1DP )k

)

P−1
(

n−1
∑

k=0

1

k!
(−tN)k

)

= P diag(e−t λ1, . . . , e−t λn)P−1
(

n−1
∑

k=0

1

k!
(−tN)k

)

and we can then estimate
∥

∥e−tM
∥

∥ as follows :

∥

∥e−t M
∥

∥ ≤ ‖P‖
(

C max
i=1,...,n

{e−t λi}
)

‖P−1‖
(

n−1
∑

k=0

1

k!
tk‖N‖k

)

≤ C(1 + tn−1) e−ηt,

for constants C and with η = mini=1,...,n Re(λi).

Next, we prove the following Gronwall-type lemma:

Lemma 6.2. Let u ∈ Lip([T,∞), R+) satisfies for all t ≥ T :

1. If

u(t) ≤ α(t) + γ(t)

∫ t

0

β(s)u(s) ds,

then

u(t) ≤ α(t) + γ(t)

∫ t

0

α(s)β(s) exp

(
∫ t

s

β(σ)γ(σ) dσ

)

ds.

2. If u(T ) is small enough and

u(t) ≤ C u(T )(1 + tk) e−(t−T )κ + C

∫ t

T

u(s)1+α(1 + (t − s)k) e−(t−s)κ ds,

then there exist C > 0 such that:

u(t) ≤ C(1 + tk) e−tκ.
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Proof. To show 1. we define:

v(t) := exp

(

−
∫ t

0

β(s)γ(s) ds

)
∫ t

0

β(s)u(s) ds. (29)

with v(0) = 0 and

v′(t) = β(t)

(

u(t) − γ(t)

∫ t

0

β(s)u(s) ds

)

exp

(

−
∫ t

0

β(s)γ(s) ds

)

≤ β(t)α(t) exp

(

−
∫ t

0

β(s)γ(s) ds

)

.

Then,

v(t) ≤
∫ t

0

α(s)β(s) exp

(

−
∫ s

0

β(σ)γ(σ) dσ

)

ds. (30)

Using the definition (29) of v and (30), we can estimate u:

u(t) ≤ α(t) + γ(t)

∫ t

0

β(s)u(s) ds ≤ α(t) + γ(t)v(t) exp

(
∫ t

0

β(s)γ(s) ds

)

≤ α(t) + γ(t) exp

(
∫ t

0

β(s)γ(s) ds

)
∫ t

0

α(s)β(s) exp

(

−
∫ s

0

β(σ)γ(σ) dσ

)

ds

≤ α(t) + γ(t)

∫ t

0

α(s)β(s) exp

(
∫ t

s

β(σ)γ(σ) dσ

)

ds.

To show 2. we define y1(t) := u(t + T )etκ. Then,

y1(t) ≤ C u(T )(1 + tk) + C

∫ t

0

y1(s)
1+αe−καs(1 + (t − s)k) ds

≤ C u(T )(1 + tk) + C(1 + tk)

∫ t

0

y1(s)
1+αe−καs ds

Let M > 0. As long as y1(t)
αe−

κ
2
t ≤ M , we have

y1(t) ≤ C u(T )(1 + tk) + CM(1 + tk)

∫ t

0

y1(s)e
−κα

2
s ds.

We can then apply part 1 of this lemma to u = y1 and get :

y1(t) ≤ C u(T )(1 + tk)

+ CM(1 + tk)

∫ t

0

C u(T )(1 + sk)e−
κα
2

s exp

(
∫ t

s

e−
κα
2

σCM(1 + σk) dσ

)

ds

≤ C u(T )(1 + tk)MeCM ,

and if u(T ) is small enough, then y1(t)
αe−

κ
2
t ≤ M holds at all times, which implies

u(t) ≤ C(1 + tk) e−κt and the Lemma 6.2.
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