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Abstract

In this paper, we are interested in the nonlinear stability of Dirac-type steady solutions to
an integro-differential equation appearing in the study of populations which are structured
with respect to a quantative (continuous) trait. We show that stability conditions of adaptive
dynamics extend to this model.

1 Introduction

Adaptive dynamics (see [10], [11], [7], [8]) is a branch of evolutionary ecology, that aims at
describing the Darwinian evolution of populations along a phenotypic trait, which characterises
each individual. This trait as well as the state of the resident population define the survival rate
and reproduction rate of the individual. In the asexual case that we consider here, an offspring
has exactly the same trait as its ancestor, except if a mutation occurs. Adaptive dynamics
provides in particular some conditions for a population of a given trait to be stable with respect
to evolution. Those stable populations are then called Evolutionary attractors.

We consider in this article a simple model to describe a population which is structured with
respect to a quantitative continuous trait. We represent the one-dimensional phenotypic trait
as x ∈ X ⊂ R, and the population (at a given time t ≥ 0) by a measure g(t, ·) over the set
of phenotypic traits X. Then, the population evolution is described by the following integro-
differential equation:

∂g

∂t
= sg g, (1.1)

where sg is the fitness, that is the birth rate minus the death rate. We neglect here the mutations,
since they do not play an important role when the initial condition is strictly positive, which we
assume here (see [4]). In this paperw we only consider logistic fitnesses of the following type:

sg(x) = a(x) −

∫

X

b(x, y) dg(y), (1.2)

where a : X → R represents the fitness without competition, and b : X ×X → R+ represents
the part part of fitness due to competition.
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This model has been derived from stochastic models of finite populations (see [3]), taking
the limit of an infinite number of individuals with the correct time scale, with an additionnal
mutation term. It has also been studied in [4], where numerical simulations show some speciation
processes: from an initial population where every traits are present, a finite number of traits are
selected, while the others become extinct.

In this article, we complete the study of [4] concerning the large time behaviour of (1.1).
According to Adaptive dynamics, the population should tend to an Evolutionary Attractor of
the selection process sg (see [5]). However, while Evolutionary Attractors are well defined for
monomorphic populations (see [5]), the case of several coexisting traits remains unclear. In
the first part of this paper, we propose therefore an extension of the consept of evolutionary
Attractors to the non-monomorphic case. Then, we show that with this definition, Evolutionary
Attractors are locally stable for our model (1.1). In a last section, we study numerically some
examples.

In section 2, we give definitions which enable to extend to non-monomorphic populations some
of the concepts of adaptive dynamics. Then, section 3 is devoted to the presentation of results
already obtained for the model that we consider, and to the exposition of the main theorem.
This theorem is proven in section 4, and numerical simulations are presented in section 5.

2 Adaptive dynamics in the case of non-monomorphic popula-

tions.

Our results will be obtained under the following

Assumption 1: X is a compact interval of R, a ∈ C2(X), b ∈ C1(X,X), ∀y ∈ X, b(·, y) ∈
C2(X), and:

a, a′, a′′ ∈ L∞(X),

b, ∂xb, ∂
2
xxb ∈ L∞(X,X).

Note that for a population consisting in a finite number of species g(t) =
∑n

i=1 ρi(t)δx̄i
, eq.

(1.1) becomes:

∀i = 1, . . . , n, ρ′i(t) =



a(x̄i) −
n
∑

j=1

ρj(t)b(x̄i, x̄j)



 ρi(t). (2.3)

Definition 2.1 Let (x̄i)i=1,...,n ∈ Xn. We assume that the system of ordinary differential equa-
tions (2.3) admits a steady solution (ρ̄i)i=1,...,n, (ρ̄i 6= 0∀i = 1, . . . , n), which is linearly stable,
that is:

(b(x̄i, x̄j))i,j=1,...,n is invertible, (2.4)

Re
[

Spec
(

DF(ρ̄i)i=1,...,n

)]

⊂ R
∗
−, (2.5)

where F ((ρi)i=1,...,n) :=
([

a(x̄i) −
∑n

j=1 ρjb(x̄i, x̄j)
]

ρi

)

i=1,...,n
.
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Such a familly (x̄i)i=1,...,n ∈ Xn is called a strategy. It means that the population g =
∑n

i=1 ρ̄iδx̄i
, where

(ρ̄i)i=1,...,n = (b(x̄i, x̄j))
−1
i,j=1,...,n(a(x̄i))i=1,...,n, (2.6)

is stable as long as no over trait is present (that is it is ecologically stable).

We now define Evolutionary stable strategies (ESS), and Evolutionary Attractors (see [5], [8],
[10], [7]): They are steady solutions of eq. (1.1) which have a stronger stability than strategies.

For a discution on ESS and Evolutionary Attractors, and numerical examples, see Section 4.

Definition 2.2 We suppose that Assumption 1 holds. A strategy (x̄i)i=1,...,n is called ESS (Evo-
lutionary Stable Strategy) if:

∀i = 1, . . . , n,
(

∂xsPn
j=1 ρ̄jδx̄j

)

(x̄i) = 0,

∀i = 1, . . . , n,
(

∂2
xxs

Pn
j=1 ρ̄jδx̄j

)

(x̄i) < 0,

where ρ̄j is defined in (2.6), and ∂xsPn
j=1 ρ̄jδx̄j

, ∂2
xxs

Pn
j=1 ρ̄jδx̄j

are derivatives of x 7→ sPn
j=1 ρ̄jδx̄j

(x) =

a(x) −
∑n

j=1 ρ̄jb(x, x̄j).

Remark 2.3 If the first condition is true, the stategy is called singular (see [10]).

Definition 2.4 Let G be defined by:

G : (xi)i=1,...,n 7→
(

∂xsPn
j=1 ρjδxj

(xi)
)

i=1,...,n
, (2.7)

where ρj = (b(xi, xj))
−1
i,j=1,...,n(a(xi))i=1,...,n.

A strategy (x̄i)i=1,...,n is an Evolutionary Attractor if it is an ESS, and if there exists ν > 0
such that :

∀u ∈ R
n, tu diag





(

1

−∂2
xxs

Pn
j=1 ρ̄jδx̄j

(x̄i)

)

i=1,...,n



DG((x̄i)i=1,...,n)u < −ν‖u‖2. (2.8)

Remark 2.5 In adaptive dynamics, where we consider a monomorphic population g(t, x) =
ρ(t)δx(t), the motion of x(·) is given by the so-called canonical equation (see [8], [2]):

d

dt
x(t) = C

(

ρ(t), ǫ, ∂2
xxsρ(t)δx(t)

(x(t))
)

∂xsρ(t)δx(t)
(x(t)), ρ(t) :=

a(x(t))

b(0)
,

where ǫ describes the frequency of mutations. One then defines Convergent stable strategies
(CSS) as strategies x̄ stable for this ordinary differential equation. Evolutionary Attractors are
then strategies that are both ESS and CSS. Our definition can be seen as an extension of this
definition when several traits coexist : ineq. (2.8) means that the L2 norm is a Lyapounov
function for the following ordinary differential equation :

∀i = 1, . . . , n,
d

dt
xi =

1

−∂2
xxs

Pn
j=1 ρ̄jδx̄j

(x̄i)
∂xsPn

j=1 ρjδxj
(xi),

where (ρj)j=1,...,n = (b(xi, xj))
−1
i,j=1,...,n(a(xi))i=1,...,n.
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3 Continuously structured populations

In this section, we shall present an extension of the model (2.3) to the case of a population
g(t, ·) ∈M1(X) which may contain an infinite (continuous) number of traits.

3.1 The Model and existing results.

If we neglect mutations, a population g : t ∈ R+ 7→M1(X) submitted to a logistic competition
will evolve under the effect of fitness as follows:

{

g(0, ·) = g0 ∈M1(X),
∂tg(t, x) =

[

a(x) −
∫

X
b(x, y)g(t, y) dy

]

g(t, x).
(3.9)

This model has been studied in [4]. We recall here the main result of that paper.

Theorem 3.6 (Theorems 2.1 and 3.1 in [4].)
Let X be a compact interval of R, g0 ∈ L1(X), g0 ≤ 0 be the initial population, and a, b ∈

C1(X) such that:

{x; a(x) > 0} 6= ∅ and ∀x, y ∈ supp(g0), 0 < bm ≤ b(x, y) ≤ bM <∞,

(where supp(g0) denotes the support of the function g0). Then, there exists a unique solution
g ∈ C([0,+∞[;L1(X)) of eq. (3.9). If a is bounded, g is bounded with respect to time:

‖g(t, ·)‖L1(X) ≤ max

(

‖g0‖L1(X),
supX a

bm

)

. (3.10)

Let us define fε(t, x) := g( t
ε
, x). For each sequence εn → 0, there exists a subsequence (still

denoted by (εn)n) such that (fεn) converges to a limit f which is a measure with respect to y:

fεn −−−→
n→∞

f L∞(w∗]0, T [, σ(M1(X), Cb)). (3.11)

Moreover, if we define

Rε(t, x) :=

∫ t

0

(

a(x) −

∫

X

b(x, y)fε(σ, y) dy

)

dσ,

and

R(t, x) :=

∫ t

0

(

a(x) −

∫

X

b(x, y)f(σ, y) dy

)

dσ, (3.12)

then:

• If a, b satisfy Assumption 1, R is differentiable with respect to t, and is C2 with respect to
x

• Rε converges to R uniformly on each compact set of R+ ×X,
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• for any t ≥ 0, R(t, x) ≤ 0 for all x ∈ X s.t. g0(x) > 0,

• supp(f(t, ·)) ⊂ {x ∈ X;R(t, x) = 0}.

Remark 3.7 As a consequence, still under Assumption 1, provided that R(t, x) = 0,

If x ∈ int(supp(g0)), then ∂xR(t, x) = 0 and ∂2
xxR(t, x) ≤ 0.

if x ∈ ∂(supp(g0)), then ν∂xR(t, x) ≤ 0, where ν ∈ {1,−1} is the outer vector of int(supp(g0))
at point x.

3.2 Statement of the result: local stability of evolutionary attractors.

In many numerical experiments, populations satisfying (3.9) seem to gather around a finite
number of phenotypic traits which are Evolutionary Attractors. We also know that in general,
Evolutionary Attractors are not unique (see subsection 5.2), and therefore not globally stable.
The main result of this work is that the Evolutionary Attractors defined in the first section are
nevertheless locally stable.

We define, for a given strategy (x̄i)i=1,...,n,

Iδ
i := {x; |x− x̄i| < δ}.

The following assumption defines the type of initial condition for which our local stability
results hold:

Assumption 2: For some δ, λ > 0,

• supp g0 = ∪i=1,...,nI
δ
i , and more precisely g0 6= 0 a.e. on ∪i=1,...,n I

δ
i ,

• ∀i = 1, . . . , n,
∣

∣

∣

∫

Iδ
i
g0(x) dx− ρ̄i

∣

∣

∣
≤ λ.

Remark 3.8 Note that those hypothesis on g0 are much stronger than the simpler assumption
that g is close to

∑n
i=1 ρ̄iδx̄i

in the sense of measures.
The assumption supp(g0) = ∪n

i=1I
δ
i can be relaxed to supp g0 = ∪n

i=1Ĩi, where Ĩi are small
enough intervals containing x̄i, that is, those intervals need not be symetric around x̄i.

Our main results writes:

Theorem 3.9 Let a, b satisfy Assumptions 1 and (x̄i)i=1,...,n be an Evolutionary Attractor (in
the sense of def 2.4). There exist λ0, δ0 > 0 (depending on a, b, (x̄i)i=1,...,n), such that if
λ ∈ (0, λ0), δ ∈ (0, δ0), g0 ∈ L1(X) satisfies Assumption 2 and g is the solution of (3.9) given by
Theorem 3.6.Then the asymptotic population distribution f given by (3.11) is

∀t, f(t, ·) =
n
∑

i=1

ρ̄iδx̄i
,

where (ρ̄i)i=1,...,n are defined by (2.6).
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Remark 3.10 Notice that in Theorem 3.9, the limit distribution f of fε is unique, thus the
whole sequence fε converges toward f (and not only subsequences as in Theorem 3.6).

The hypothesis ∀i = 1, . . . , n,
∣

∣

∣

∫

Iδ
i
g − ρ̄i

∣

∣

∣
≤ λ can be relaxed if a stronger assumption on the

matrix (b(x̄i, x̄j))i,j=1,...,n is made.

One can find parameters a and b such that several Evolutionary Attractors exist. Numerically,
we do observe, as expected, that each of them is locally stable (see subsection 5.2).

4 Proof of Theorem 3.9.

4.1 A control on
(

∫

Iδ
i
g(t, x) dx

)

i=1,...,n
.

In the following proposition, we show that if Assumption 3 is satisfied for λ, δ small enough,

then,
(

∫

Iδ
i
g(t, x) dx

)

i=1,...,n
remains close to (ρ̄i)i=1,...,n at all times in the evolution of eq. (3.9).

Proposition 4.11 Let a, b satisfy Assumption 1, and (x̄i)i=1,...,n be a strategy. There exist
λ0, δ0 > 0 (depending on a, b, (x̄i)i=1,...,n), such that if λ ∈ (0, λ0), δ ∈ (0, δ0), g0 ∈ L1(X)
satisfies Assumption 2, g is the solution of (3.9) given by Theorem 3.6, and (ρ̄i)i=1,...,n is defined
in (2.6), then,

∀t ≥ 0, ∀i = 1, . . . , n,

∣

∣

∣

∣

∣

∫

Iδ
i

g(t, x) dx− ρ̄i

∣

∣

∣

∣

∣

≤ λ. (4.13)

Proof of Proposition 4.11.

• Estimates on ∂t

∫

Iδ
i
g(t, x) dx: for each i ∈ {1, . . . , N},

∀x ∈ Iδ
i , ∂tg|Iδ

i
(t, x) =



a(x) −
n
∑

j=1

∫

Iδ
j

b(x, y)g(t, y) dy



 g(t, x)

=

(

a(x̄i) +O(x− x̄i)

−
n
∑

j=1

∫

Iδ
j

(

b(x̄i, x̄j) +O (|x− x̄i| + |x̄j − y|)

)

g(t, y) dy

)

g(t, x).

Thus :

∂t

∫

Iδ
i

g(t, x) dx =



a(x̄i) −
n
∑

j=1

b(x̄i, x̄j)

∫

Iδ
j

g(t, x) dx





∫

Iδ
i

g(t, x) dx+O(δ).

We already know thanks to (3.10) that ‖g‖L1 is bounded. Then, we define ρ̃i(t) :=
∫

Iδ
i
g(t, x) dx, so that (ρ̃i)i=1,...,n satisfies:

∀i = 1, . . . , n, ρ̃′i(t) =



a(x̄i) −
n
∑

j=1

b(x̄i, x̄j)ρ̃j(t)



 ρ̃i(t) +O(δ).
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From the definition of (ρ̄j)j=1,...,n, we know that a(x̄i) =
∑n

j=1 b(x̄i, x̄j)ρ̄j , so that:

∀i = 1, . . . , n, ρ̃′i(t) = −





n
∑

j=1

b(x̄i, x̄j)(ρ̃j(t) − ρ̄j)



 ρ̃i(t) +O(δ), (4.14)

∀i = 1, . . . , n, (ρ̃i − ρ̄i)
′ (t) = −





n
∑

j=1

b(x̄i, x̄j)(ρ̃j(t) − ρ̄j)



 ρ̄i +O(δ) +O
(

‖ρ̃i − ρ̄i‖
2
∞

)

,

(4.15)

• We can write eq. (4.15) as follow:

∀i = 1, . . . , n, (ρ̃i − ρ̄i)
′ (t) =

(

DF(ρ̄i)i=1,...,n
(ρ̃(t) − ρ̄)

)

i
+O(δ) +O

(

‖ρ̃− ρ̄‖2
∞

)

,

where DF(ρ̄i)i=1,...,n
= −diag ((ρ̄i)i=1,...,n) (b(x̄i, x̄j))i,j (see def 2.1). The solution of this

system of ordinary differential equations is given by:

ρ̃(t) − ρ̄ = e
tDF(ρ̄i)i=1,...,n (ρ̃(0) − ρ̄) +

∫ t

0
e
(t−s)DF(ρ̄i)i=1,...,n

(

O(δ) +O
(

‖ρ̃(s) − ρ̄‖2
∞

))

ds.

Thus:

‖ρ̃(t) − ρ̄‖∞ ≤
∥

∥

∥e
tDF(ρ̄i)i=1,...,n

∥

∥

∥

∞
‖ρ̃(0) − ρ̄‖∞+

∫ t

0

∥

∥

∥e
(t−s)DF(ρ̄i)i=1,...,n

∥

∥

∥

∞

(

O(δ) +O
(

‖ρ̃(s) − ρ̄‖2
∞

))

ds.

As (x̄i)i is a strategy (see def 2.1), the eigenvalues of the matrix DF(ρ̄i)i=1,...,n
have a

negative real part: Re
[

Spec(DF(ρ̄i)i=1,...,n
)
]

⊂]−∞,−µ[, µ > 0. This provides the estimate
∥

∥

∥
e
tDF(ρ̄i)i=1,...,n

∥

∥

∥

∞
≤ O(tn)e−tµ, and then:

‖ρ̃(t) − ρ̄‖∞ ≤ e−tµO(tn) ‖ρ̃(0) − ρ̄‖∞ +

∫ t

0
O ((t− s)n) e−(t−s)µ

(

O(δ) +O
(

‖ρ̃(s) − ρ̄‖2
∞

))

ds,

≤ C1‖ρ̃(0) − ρ̄‖∞ +

(

O(δ) + sup
s∈[0,t)

‖ρ̃(s) − ρ̄‖2
∞

∫ t

0
O((t− s)n)e−(t−s)µ ds

)

≤ C1‖ρ̃(0) − ρ̄‖∞ +O(δ) + C2

(

sup
s∈[0,t)

‖ρ̃(s) − ρ̄‖∞

)2

.

We assume that λ < 1
4C2

, ‖ρ̃(0) − ρ̄‖∞ < λ
4C1

< λ, and δ > 0 is small enough (so that

O(δ) < 1
4). Let define T := sup {T1 > 0; ∀t < T1, ‖ρ̃(t) − ρ̄‖∞ < λ} ∈ [0,∞]. As ρ̃(·) − ρ̄

is continuous and ‖(ρ̃i − ρ̄i)(0)‖∞ < λ, we see that T > 0. If T <∞, then:
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‖ρ̃(T ) − ρ̄‖∞ ≤ C1
λ

4C1
+
λ

4
+ C2

(

1

4C2

)

λ

≤
3

4
λ.

Thus, T = ∞, which proves (4.13).

�

From now on, we define for f given in Theorem 3.6 (note that f can be a measure with respect
to x):

ρi(t) :=

∫

Iδ
i

f(t, dx). (4.16)

Thanks to Prop. 4.11, it is possible to show that (ρi(t))i=1,...,n is close to (ρ̄i)i=1,...,n:

Corollary 4.12 Let a, b satisfy Assumption 1, and (x̄i)i=1,...,n a strategy. There exist λ0, δ0 >
0 (depending on a, b, (x̄i)i=1,...,n), such that if λ ∈ (0, λ0), δ ∈ (0, δ0), g0 ∈ L1(X) satisfies
Assumption 2, g is the solution of (3.9) given by Theorem 3.6, and (ρ̄i)i=1,...,n defined by (2.6),
then the asymptotic population distribution f given by (3.11) in Thm 3.6 has its support in
∪i=1,...,nI

δ
i , and:

∀i = 1, . . . , n, |ρi(t) − ρ̄i| ≤ λ for a.e. t ∈ R+. (4.17)

Proof of Corollary 4.12. Let ϕ ∈ Cb(R), and 0 < T < T ′,
∫

R+

∫

X

ϕ(x)χ[T,T ′]df(t)(x) = lim
m→∞

∫

R+

∫

X

ϕ(x)χ[T,T ′]dfεm(t)(x)

= lim
m→∞

∫ T ′

T

∫

X

g(
t

εm
, x)ϕ(x) dx dt,

and since supp g(t, ·) ⊂ ∪n
i=1I

δ
i ,

∫

R+

∫

X

ϕ(x)χ[T,T ′]df(t)(x) = lim
m→∞

n
∑

i=1

∫ T ′

T

∫

Iδ
i

g(
t

εm
, x)ϕ(x) dx dt.

Thus, if supp(ϕ) ⊂ (∪i=1,...,nI
δ
i )c, then

∫ ∫

ϕdf = 0, that is supp(f(t, ·)) ⊂ ∪i=1,...,nI
δ
i .

Let i ∈ {1, . . . , n}. If ϕ is a cut-off Cb(R) function such that ϕ|Iδ
i
≡ 1 and ϕ|∪j 6=iI

δ
j
≡ 0, then,

∫ T ′

T

∫

X

ϕdf = lim
m→∞

∫ T ′

T

∫

Iδ
i

g(
t

εm
, x) dx dt.

Thanks to (4.13), for n large enough,
∣

∣

∣

∣

∣

∫

Iδ
i

g(
t

εm
, x) dx− ρ̄i

∣

∣

∣

∣

∣

< λ.
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Thus:
∣

∣

∣

∣

∣

∫ T ′

T

(

∫

Iδ
i

g(
t

εm
, x) dx− ρ̄i

)

dt

|T ′ − T |

∣

∣

∣

∣

∣

< λ.

Since this is true for all 0 < T < T ′, the following inequality is true almost everywhere in
time:

∣

∣

∣

∣

∫

X

ϕ(x)df(t)(x) − ρ̄i

∣

∣

∣

∣

< λ.

Since supp(f) ⊂ ∪i=1,...,nI
δ
i , we get the result.

�

4.2 f is a sum of Dirac masses.

In this subsection, we first prove that f is a sum of Dirac masses f(t, x) =
∑n

i=1 ρi(t)δxi(t).
Then, and that’s the difficult part of this subsection, we show that t 7→ (xi(t))i=1,...,n is smooth.

This requires several steps: We first show the Hölder and Lipschitz regularity of (xi(·))i=1,...,n,
and then we prove an equality which provides the Lipschitz regularity of (ρi(·))i=1,...,n. Thanks
to the information about the smoothness of (xi(·))i=1,...,n, we are then able to write down a
differential equation satisfied by (xi(·))i=1,...,n.

Proposition 4.13 Let a, b satisfy Assumption 1, and (x̄i)i=1,...,n be an ESS. There exist λ0, δ0 >
0 (depending on a, b, (x̄i)i=1,...,n), such that if λ ∈ (0, λ0), δ ∈ (0, δ0), g0 ∈ L1(X) satisfies
Assumption 2, g is the solution of (3.9) given by Theorem 3.6, f is the asymptotic population
distribution given by (3.11), and (ρ̄i)i=1,...,n, (ρi(·))i=1,...,n are defined in (2.6), (4.16), then there
exists C > 0 such that R (defined in (3.12) in Thm 3.6) satisfies:

∀x ∈ Iδ, ∀t ≥ 0, ∂2
xxR(t, x) < −C t, (4.18)

and f can be written as:

f(t, x) =
n
∑

i=1

ρi(t)δxi(t)(x), for a.e. t > 0, (4.19)

where xi(t) ∈ Iδ
i , ∀i = 1, . . . , n.

Proof of Proposition 4.13.

Thanks to Corollary 4.12, we know that for all i = 1, . . . , n, supp(f(t, ·)) ∩ Iδ
i 6= ∅. Thus,

thanks to Proposition 3.6, for each i = 1, . . . , n, there exists xi(t) ∈ Iδ
i such that R(t, xi(t)) = 0.

We also know from Proposition 3.6 that for all x ∈ Iδ
i , R(t, x) ≤ 0. In order to prove the

uniqueness of xi(t), it is sufficient to show that ∂2
xxR(t, ·)|Iδ < 0.
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Let i ∈ {1, . . . , n}, and x ∈ Iδ
i .

∂2
xxR(t, ·)(x) =

∫ t

0

[

a′′(x) −

∫

X

∂2
xxb(x, y)f(σ, y) dy

]

dσ

=

∫ t

0



a′′(x) −
∑

j

∫

Iδ
j

∂2
xxb(x, y)d (f(σ)) (y)



 dσ

=

∫ t

0



a′′(x̄i) +
(

a′′(x) − a′′(x̄i)
)

−
n
∑

j=1

(

∂2
xxb(x̄i, x̄j)

)

ρ̄j

−
n
∑

j=1

(

∫

Iδ
j

∂2
xxb(x, y)d (f(σ)) (y) −

∫

Iδ
j

∂2
xxb(x, y)

ρ̄j

|Iδ
j |
dy

−

∫

Iδ
j

(

∂2
xxb(x, y) − ∂2

xxb(x̄i, x̄j)
) ρ̄j

|Iδ
j |
dy

)



 dσ

≤

∫ t

0

[

∂2
xxs

Pn
i=1 ρ̄iδx̄j

(x̄i) + oδ(1) + n‖∂2
xxb‖∞λ

]

dσ,

thanks to Corollary 4.12. Since (x̄i)i=1,...,n is an ESS, one has ∀j = 1, . . . , n, ∂2
xxs

Pn
k=1 ρ̄kδx̄k

(x̄j) <
0. Thus, if λ is small enough,

∂2
xxR(t, ·)|Iδ

i
< Ct < 0.

Finally, f can be written under the form f(t, x) =
∑n

i=1 ri(t)δxi(t), where ∀i = 1, . . . , n, xi(t) ∈

Iδ
i , and thus ∀i = 1, . . . , n, ri(t) =

∫

Iδ
i
f = ρi(t).

�

Remark 4.14 Thanks to Remark 3.7, if xi(t) /∈ ∂Iδ
i , then ∂xR(t, xi(t)) = 0. If xi(t) = x̄i − δ

(resp. xi(t) = x̄i + δ), then ∂xR(t, xi(t)) ≤ 0 (resp. ∂xR(t, xi(t)) ≥ 0). As a consequence, if
xi(t) ∈ ∂Iδ

i ,
∀x ∈ Iδ

i , sgn (∂xR(t, xi(t))) = sgn(xi(t) − x̄i) = sgn(xi(t) − x).

Proposition 4.15 Let a, b satisfy Assumption 1, and (x̄i)i=1,...,n be an ESS. There exist λ0, δ0 >
0 (depending on a, b, (x̄i)i=1,...,n), such that if λ ∈ (0, λ0), δ ∈ (0, δ0), g0 ∈ L1(X) satisfies As-
sumption 2, g is the solution of (3.9) given by Theorem 3.6, f is the asymptotic population
distribution given by (3.11), and (ρ̄i)i=1,...,n, (ρi(·))i=1,...,n, (xi(·))i=1,...,n are defined in (2.6),
(4.16), (4.19), then,

1. ∀i = 1, . . . , n, xi(·) is Hölder 1
2 on [T,∞) a.e., for all T > 0, that is

∃C > 0, for a.e. t > T, for a.e. |h| ≤
T

2
, |xi(t) − xi(t+ h)| ≤ C |h|

1
2 .
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2. ∀i = 1, . . . , n, xi(·) is Lipschitz continuous a.e. on [T,∞) ∩ {t;xi(t) ∈ Int(Iδ
i )} for all

T > 0, that is

∃C > 0, for a.e. t, t′ ∈⊂ [T,∞) ∩ {t;xi(t) ∈ Int(Iδ
i )}, |xi(t) − xi(t

′)| ≤ C|t− t′|.

3. For a.e. t ∈ R+ ∩ {t;xi(t) ∈ Int(Iδ
i )}, xi and ρi satisfy the equation

0 = a(xi(t)) −
n
∑

j=1

b(xj(t), xi(t))ρj(t).

4. ∀i = 1, . . . , n, ρi(·) is Lipschitz continuous a.e. on [T,∞) ∩ {t;xi(t) ∈ Int(Iδ
i )} for all

T > 0, that is

∃C > 0, for a.e. t, t′ ∈⊂ [T,∞) ∩ {t;xi(t) ∈ Int(Iδ
i )} a.e., |ρi(t) − ρi(t

′)| ≤ C|t− t′|.

Proof of Proposition 4.15.

1. We use here the parabola-like shape of x 7→ R(t, x). Let i ∈ {1, . . . , n}, then

R(t+ h, xi(t)) = R(t, xi(t)) + ha(xi(t)) −

∫ t+h

t

n
∑

j=1

b(xi(t), xj(σ))ρj(σ) dσ

≥ ha(xi(t)) − h‖b‖∞ sup
σ∈R

‖f(σ, ·)‖M1

≥ −Ch.

R(t+ h, xi(t)) = R(t+ h, xi(t+ h)) + (xi(t) − xi(t+ h))∂xR(t+ h, xi(t+ h))

+
1

2
(xi(t) − xi(t+ h))2∂2

xxR(t+ h, θ) for some θ ∈ [xi(t), xi(t+ h)]

≤ −
C (t− |h|)

2
(xi(t) − xi(t+ h))2,

because if xi(t+ h) ∈ Int(Iδ
i ), then ∂xR(t+ h, xi(t+ h)) = 0, and if xi(t+ h) ∈ ∂Iδ

i , then
sgn (∂xR(t+ h, xi(t+ h))) = −sgn (xi(t) − xi(t+ h)) thanks to Remark 4.14. We get the
regularity result:

|xi(t) − xi(t+ h)| ≤ C

(

|h|

t

) 1
2

+O(|h|).

Notice that thank to this estimate, for each i = 1, . . . , n, {t ≥ 0;xi(t) ∈ Int(Iδ
i )} is an

open set of R+.

2. Let i ∈ {1, . . . , n}, and t ∈ {t ≥ 0;xi(t) ∈ Int(Iδ
i )}. This set is open in R+ and xi(·)

is continuous, thus, if h is small enough, xi(t + h) ∈ Int(Iδ
i ). Thanks to Remark 4.14,

0 = ∂xR(t+ h, xi(t+ h)) = ∂xR(t, xi(t)). Then:
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0 = ∂xR(t+ h, xi(t+ h)) − ∂xR(t, xi(t))

= h



a′(xi(t+ h)) −

∫ t+h

t

n
∑

j=1

∂xb(xi(t+ h), xj(σ))ρj(σ)
dσ

h





+ ∂xR(t, xi(t+ h)) − ∂xR(t, xi(t)).

(4.20)

We can estimate the two terms of this equality:
∣

∣

∣h
(

a′(xi(t+ h)) −
∫ t+h

t

∑n
j=1 ∂xb(xi(t+ h), xj(σ))ρj(σ) dσ

h

)∣

∣

∣ ≤
(

‖a′‖∞ + ‖∂xb‖∞‖f‖L∞(L1)

)

|h|,

∂xR(t, xi(t+ h)) − ∂xR(t, xi(t)) = (xi(t+ h) − xi(t)) ∂
2
xxR(t, xi(t)) +O

(

t (xi(t+ h) − xi(t))
2
)

.

(4.21)
Thus, identity (4.20) provides the following equality:

0 = O(h) +
(

xi(t+ h) − xi(t)
)

∂2
xxR(t, xi(t)) +O

(

t(xi(t+ h) − xi(t))
2
)

. (4.22)

Thanks to part 1 of this proposition, (xi(t+ h) − xi(t))
2 = 1

t
O(|h|), thus:

(

xi(t+ h) − xi(t)
)

∂2
xxR(t, xi(t)) = O(|h|).

Thanks to Proposition 4.13, ∂2
xxR(t, xi(t)) < −C t < 0, thus xi(·) is Lipschitz continuous

on [T,∞) for all T > 0:

|xi(t+ h) − xi(t)| <
C̃|h|

t
=

1

t
O(|h|).

3. Let i ∈ {1, . . . , n}, then

0 = R(t+ h, xi(t+ h)) −R(t, xi(t))

= h



a(xi(t+ h)) −

∫ t+h

t

n
∑

j=1

b(xi(t+ h), xj(σ))ρj(σ)
dσ

h





+R(t, xi(t+ h)) −R(t, xi(t)). (4.23)

But ρj ∈ L∞(R+), thus almost every t is a Lebesgue point (see [13]). As a consequence,
for a.e. t > 0, as h→ 0,

∫ t+h

t

n
∑

j=1

b(xi(t+ h), xj(σ))ρj(σ)
dσ

h
=

∫ t+h

t

n
∑

j=1

b(xi(t), xj(σ))ρj(σ)
dσ

h

+OC̃,‖∂xb‖∞
(h)

→
n
∑

j=1

b(xi(t), xj(t))ρj(t). (4.24)
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We can also estimate the other terms of the above equation:

a(xi(t+ h)) = a(xi(t)) +O
(

xi(t+ h) − xi(t)
)

,

R(t, xi(t+ h)) −R(t, xi(t)) = (xi(t+ h) − xi(t))∂xR(t, xi(t))

+O
(

t(xi(t+ h) − xi(t))
2
)

= O
(

t(xi(t+ h) − xi(t))
2
)

(4.25)

= O
(

t|h|2
)

,

when t ∈ {t ≥ 0;xi(t) ∈ Int(Iδ
i )} (since 0 = ∂xR(t, xi(t)), thanks to Remark 4.14).

Let t ∈ {t ≥ 0;xi(t) ∈ Int(Iδ
i )} such that (4.24) holds (this is true a.e.). We shall show

the result for this particular t. Identity (4.23) provides the following equality (here, O and
o may depend on t):

0 = h



a(xi(t)) +O
(

xi(t+ h) − xi(t)
)

−
n
∑

j=1

b(xi(t), xj(t))ρj(t) + oh(1)



+O
(

|h|2
)

.

(4.26)

But xi(t+ h) − xi(t) = O(|h|
1
2 ), thus, if we divide (4.26) by h, we get:

a(xi(t)) −
n
∑

j=1

b(xi(t), xj(t))ρj(t) = O(|h|) + oh(1) →h→0 0,

that is a(xi(t))−
∑n

j=1 b(xi(t), xj(t))ρj(t) = 0. Since this is true for a.e. t ∈ {t ≥ 0;xi(t) ∈

Int(Iδ
i )}, we get the result.

4. Thanks to Assumption 2, the matrix (b(x̄i, x̄j))i,j=1,...,n is invertible, and so is also
(b(xi(t), xj(t)))i,j=1,...,n if δ is small enough. The result follows from the cofactor formula.

�

Thanks to the regularity of (xi(·))i=1,...,n, (ρi(·))i=1,...,n, we can define those functions for all
t > 0 (and not only for a.e. t ≥ 0).

Proposition 4.16 Let a, b satisfy Assumption 1, and (x̄i)i=1,...,n be an ESS. There exist λ0, δ0 >
0 (depending on a, b, (x̄i)i=1,...,n), such that if λ ∈ (0, λ0), δ ∈ (0, δ0), g0 ∈ L1(X) satisfies As-
sumption 3, g is the solution of (3.9) given by Theorem 3.6, f is the asymptotic population
distribution given by (3.11), and (ρ̄i)i=1,...,n, (ρi(·))i=1,...,n, (xi(·))i=1,...,n are defined in (2.6),
(4.16), (4.19), then, for each i = 1, . . . , n, xi(·) is C1 on [T,∞) ∩ {t;xi(t) ∈ Int(Iδ

i )} for all
T > 0, and:

x′i(t) =
∂xsPn

j=1 ρj(t)δxj(t)
(xi(t))

−∂2
xxR(t, xi(t))

.
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Proof of Proposition 4.16. We proceed as in the proof of part 2 of Proposition 4.15.
Formula (4.21) still holds, and thanks to the regularity of (xi(·))i=1,...,n, (ρi(·))i=1,...,n (see parts
2 and 4 of Proposition 4.15),

a′(xi(t+ h)) −

∫ t+h

t

n
∑

j=1

∂xb(xi(t+ h), xj(σ))ρj(σ)
dσ

h
→ ∂xsPn

j=1 ρj(t)δxj(t)
(xi(t)).

Using this estimate, identity (4.20) becomes:

0 = h∂xsPn
j=1 ρj(t)δxj(t)

(xi(t)) + o(h)

+
(

xi(t+ h) − xi(t)
)

∂2
xxR(t, xi(t)) +O

(

(xi(t+ h) − xi(t))
2
)

.

We know from part 2 of Proposition 4.15, that (xi(t))i=1,...,n is Lipschitz-continuous, thus

0 = h∂xsPn
j=1 ρj(t)δxj(t)

(xi(t)) +
(

xi(t+ h) − xi(t)
)

∂2
xxR(t, xi(t)) + o(h).

From Proposition 4.13, we know that ∂2
xxR(t, xi(t)) < −C t < 0, wich provides the result.

�

We now prove the following technical lemma:

Lemma 4.1 If I is an interval of R, J an open set of I, K > 0, c ∈ R, and h : I 7→ R is such
that:















h is continuous on I,
h is K-Lipschitz continuous on each connected component of J :

∀[x, y] ⊂ J, ‖h(x) − h(y)‖ ≤ K ‖x− y‖ ,
h = c on I \ J,

then h is K-Lipschitz continuous on I.

Proof of Lemma 4.1. Let x, y ∈ I, x < y. We want to prove that:

|h(x) − h(y)| ≤ K|x− y|. (4.27)

If (x, y) ⊂ J , this follows from the K-lipschitz continuity of h on J . Otherwise, we define:

x̄ = inf{x̃ > x; x̃ /∈ J},
ȳ = sup{ỹ < y; ỹ /∈ J}.

Since h is continuous, h(x̄) = h(ȳ) = c. If x 6= x̄ (resp. y 6= ȳ), then h is K-Lipschitz continuous
on (x, x̄) (resp. (ȳ, y)), and thus:

|h(x) − h(x̄)| ≤ K|x− x̄|, (resp. |h(y) − h(ȳ)| ≤ K|y − ȳ|) .
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Then,

|h(x) − h(y)| ≤ |h(x) − h(x̄)| + |h(x̄) − h(ȳ)| + |h(ȳ) − h(y)| ,

≤ K|x− x̄| + 0 +K|y − ȳ|,

≤ K|x− y|.

We get thus inequality (4.27). Since this is true for all x, y ∈ I, we get the K-Lipschitz
continuity of h.

�

Proposition 4.17 Let a, b satisfy Assumptions 1, and (x̄i)i=1,...,n be an ESS. There exist λ0, δ0 >
0 (depending on a, b, (x̄i)i=1,...,n), such that if λ ∈ (0, λ0), δ ∈ (0, δ0), g0 ∈ L1(X) satisfies As-
sumption 2, g is the solution of (3.9) given by Theorem 3.6, f is the asymptotic population
distribution given by (3.11), and (ρ̄i)i=1,...,n, (ρi(·))i=1,...,n, (xi(·))i=1,...,n are defined in (2.6),
(4.16), (4.19), then

1. (xi(·))i=1,...,n is uniformly Lipschitz continuous on [R,+∞), for all R > 0 :

∀R > 0,∃K > 0, ∀t, t′ ≥ R,
∣

∣xi(t) − xi(t
′)
∣

∣ ≤ K
∣

∣t− t′
∣

∣ ,

2. ∀t > 0,

0 = a(xi(t)) −
n
∑

j=1

b(xj(t), xi(t))ρj(t). (4.28)

Proof of Proposition 4.17.

1. Let i ∈ {1, . . . , n}. We know from Prop.4.16 that :

∀t ∈ {t > 0;xi(t) ∈ Int(Iδ
i )}, x′i(t) =

∂xsPn
j=1 ρj(t)δxj(t)

(xi(t))

−∂2
xxR(t, xi(t))

.

From Proposition 4.13, we know that
∣

∣∂2
xxR(t, xi(t))

∣

∣ > Ct, thus,

∣

∣

∣

∣

d

dt
(xi(t))

∣

∣

∣

∣

≤
‖a′‖∞ + ‖∂xb‖∞‖f‖L∞(L1)

Ct
, (4.29)

and xi(·) is C̃-Lipschitz continuous on [R,+∞) ∩ {t;xi(t) ∈ Int(Iδ
i )}, with R > 0. More-

over, we know that xi(·) is continuous on R
∗
+ and is locally constant equal to x̄i − δ or

x̄i + δ on {t;xi(t) ∈ Int(Iδ
i )}c = {t;xi(t) ∈ ∂Iδ

i }.

The interval [R,+∞) is connected, thus it is enough to prove that xi(·) is locally C̃-
Lipschitz continuous. Let t ∈ [R,+∞).

If xi(t) ∈ int(Iδ
i ), this is true on a neighbourhood of t, and xi(·) is C̃-Lipschitz continuous

on this neighbourhood by (4.29).
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If xi(t) = x̄i − δ, xi is continuous, and on a neighbourhood of t, xi(·) ≤ x̄i,. Lemma 4.1
applies to this neighbourhood.

If xi(t) = x̄i + δ, Lemma 4.1 also applies.

Finally, xi(·) is C̃-Lipschitz on [R,+∞).

2. Thank to the Lipschitz regularity obtained in part 1 of this corollary, the proof of part 3
of Proposition 4.15 can be extended to all time t ∈ R

∗
+, except the estimate (4.25), which

must be modified in the following way :

If xi(t) ∈ Int(Iδ
i ), then ∂xR(t, xi(t)) = 0, and estimate (4.25) is valid.

If xi(t+ h) ∈ Int(Iδ
i ), then :

R(t, xi(t+ h)) −R(t, xi(t)) = (xi(t+ h) − xi(t)) ∂xR(t, xi(t+ h)) +O
(

t (xi(t+ h) − xi(t))
2
)

,

= O
(

t (xi(t+ h) − xi(t))
2
)

,

where O
(

t (xi(t+ h) − xi(t))
2
)

depends on a and b but not on xi(t+ h).

Finally, if xi(t), xi(t + h) /∈ Int(Iδ
i ), provided that h is small enough, either xi(t) =

xi(t+ h) = x̄i − δ, or xi(t) = xi(t+ h) = x̄i + δ (thanks to the regularity of xi(·)).

�

4.3 Convergence to the Evolutionary Attractor (x̄i)i=1,...,n.

Proposition 4.18 Let a, b satisfy Assumption 1, and (x̄i)i=1,...,n be an evolutionary attractor.
There exist λ0, δ0 > 0 (depending on a, b, (x̄i)i=1,...,n), such that if λ ∈ (0, λ0), δ ∈ (0, δ0),
g0 ∈ L1(X) satisfies Assumption 2, g is the solution of (3.9) given by Theorem 3.6, f is the
asymptotic population distribution given by (3.11), and (ρ̄i)i=1,...,n, (ρi(·))i=1,...,n, (xi(·))i=1,...,n

are defined in (2.6), (4.16), (4.19). Then

∀t > 0, ∀i = 1, . . . , n, xi(t) = x̄i, and ρi(t) = ρ̄i.

Proof of Proposition 4.18.

• We derive an evolution equation :

We know from Prop 4.17 that (xi(·))i=1,...,n is Lipschitz continuous on [R,+∞) for every
R > 0, thus (xi(·))i=1,...,n is differentiable almost everywhere. If xi(t) ∈ Int(Iδ

i ), then
d
dt
xi(t) is given by Prop 4.16. If xi(t) ∈ ∂Iδ

i , the only possibility is d
dt
xi(t) = 0, as xi(·)

cannot get out of Iδ
i thank to Prop 4.13. Then, for a.e. t > 0,

d

dt
‖(xi(t) − x̄i)i=1,...,n‖

2 = 2

(

(xi(t) − x̄i)i, (
d

dt
xi(t))i

)

,

= 2
∑

i∈I(t)

(xi(t) − x̄i)
∂xsPn

j=1 ρj(t)δxj(t)
(xi(t))

−∂2
xxR(t, xi(t))

, (4.30)
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where I(t) := {i ∈ {1, . . . , n};xi(t) ∈ Int(Iδ
i )}.

Moreover, since ∂xR(t, xi(t)) = 0 if xi(t) ∈ Int(Iδ
i ), we have :

n
∑

i=1

d
dt

((xi(t) − x̄i)∂xR(t, xi(t)))

−∂2
xxR(t, xi(t))

=
∑

i∈I(t)c

d
dt

((xi(t) − x̄i)∂xR(t, xi(t)))

−∂2
xxR(t, xi(t))

=
∑

i∈I(t)c

(xi(t) − x̄i)
d
dt

(∂xR(t, xi(t)))

−∂2
xxR(t, xi(t))

,

where we used the fact that if xi(t) ∈ ∂(Iδ
i ), then d

dt
xi(t) = 0. Notice now that the

derivative in time of ∂xR(t, xi(t)) is given by :

d

dt
(∂xR(t, xi(t))) =

d

dt

∫ t

0
∂xsPn

j=1 ρj(σ)δxj(σ)
(xi(t)) dσ

= ∂xsPn
j=1 ρj(t)δxj(t)

(xi(t)).

Thus,

n
∑

i=1

d
dt

((xi(t) − x̄i)∂xR(t, xi(t)))

−∂2
xxR(t, xi(t))

=
∑

i∈I(t)c

(xi(t) − x̄i)
∂xsPn

j=1 ρj(t)δxj(t)
(xi(t))

−∂2
xxR(t, xi(t))

. (4.31)

If we sum those eq. (4.30) and (4.31), we get :

1

2

d

dt
‖(xi(t)−x̄i)i=1,...,n‖

2+
n
∑

i=1

d
dt

((xi(t) − x̄i)∂xR(t, xi(t)))

−∂2
xxR(t, xi(t))

=
n
∑

i=1

(xi(t)−x̄i)
∂xsPn

j=1 ρj(t)δxj(t)
(xi(t))

−∂2
xxR(t, xi(t))

.

(4.32)

• We first estimate ∂2
xxR(t, xi(t)) :

∂2
xxR(t, xi(t)) =

∫ t

0



a′′(xi(t)) −
n
∑

j=1

∂2
xxb (xi(t), xj(σ)) ρj(σ)



 dσ

=

∫ t

0



a′′(x̄i) −
n
∑

j=1

∂2
xxb (x̄i, x̄j) ρ̄j



 dσ + tO (‖xi(t) − x̄i‖)

+tO

(

sup
σ∈[0,t)

‖(xj(σ) − x̄j)j=1,...,n‖

)

+ tO

(

sup
σ∈[0,t)

‖(ρj(σ) − ρ̄j)j=1,...,n‖

)

,

and since we know from (4.28) that:

ρk(σ) − ρ̄k =
[

(b(xi(σ), xj(σ)))−1
i,j=1,...,n (a(xi(σ)))i,j=1,...,n

]

k

−
[

(b(x̄i, x̄j))
−1
i,j=1,...,n (a(x̄i))i=1,...,n

]

k
,

= O (‖(xj(σ) − x̄j)j=1,...,n‖) ,
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we get the estimate:

∂2
xxR(t, xi(t)) = t∂2

xxs
Pn

j=1 ρ̄jδx̄j
(x̄i) + tO

(

sup
σ∈[0,t)

‖(xj(σ) − x̄j)j=1,...,n‖

)

. (4.33)

• Next, we estimate
(

∂xsPn
j=1 ρj(t)δxj(t)

(xi(t))
)

i=1,...,n
.

If we take G as in Definition 2.4,

(

∂xsPn
j=1 ρj(t)δxj(t)

(xi(t))
)

i=1,...,n
=

(

∂xsPn
j=1 ρ̄jδx̄j

(x̄i)
)

i=1,...,n
+DG((x̄j)j=1,...,n)(xj(t) − x̄j)j=1,...,n

+O
(

‖(xj(t) − x̄j)j=1,...,n‖
2
)

.

Since (x̄i)i=1,...,n is a singular strategy, ∂xsPn
j=1 ρ̄jδx̄j

(x̄i) = 0, and thus :

(

∂xsPn
j=1 ρj(t)δxj(t)

(xi(t))
)

i=1,...,n
= DG((x̄j)j=1,...,n)(xj(t)−x̄j)j=1,...,n+O

(

‖(xj(t) − x̄j)j=1,...,n‖
2
)

.

(4.34)

• We use estimates (4.33), (4.34) and equality (4.32) to show a simplified inequality.

we define F (t) := 1
2

d
dt
‖(xi(t)− x̄i)i=1,...,n‖

2 +
∑n

i=1

d
dt

((xi(t)−x̄i)∂xR(t,xi(t)))

−∂2
xxR(t,xi(t))

to simplify nota-

tions. We see that

F (t) =
1

t
t(xi(t) − x̄i)i=1,...,n

diag









1

−∂2
xxs

Pn
j=1 ρ̄jδx̄j

(x̄i) +O
(

supσ∈[0,t) ‖(xj(σ) − x̄j)j=1,...,n‖
)





i





(

DG((x̄j)j=1,...,n)(xi(t) − x̄i)i=1,...,n +O
(

‖(xi(t) − x̄i)i=1,...,n‖
2
)

)

=
1

t
t(xi(t) − x̄i)i=1,...,ndiag

((

1

−∂2
xxs

Pn
j=1 ρ̄jδx̄j

(x̄i)
+O (δ)

)

i

)

(DG((x̄j)j=1,...,n)(xi(t) − x̄i)) +
1

t
O
(

‖(xj(t) − x̄j)j=1,...,n‖
3
)

.

Since (x̄i)i=1,...,n is a Evolutionary Attractor, we know that

∀u ∈ R
n, tu diag





(

1

−∂2
xxs

Pn
j=1 ρ̄jδx̄j

(x̄i)

)

i=1,...,n



DG((x̄i)i=1,...,n)u < −ν‖u‖2.

Then, provided that δ > 0 is small enough,
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∀u ∈ R
n, tu diag





(

1

−∂2
xxs

Pn
j=1 ρ̄jδx̄j

(x̄i)
+O (δ)

)

i=1,...,n



DG((x̄i)i=1,...,n)u < −
3ν

4
‖u‖2.

Then

F (t) ≤
−3ν

4t
‖(xi(t) − x̄i)i=1,...,n‖

2 +
nδ

t
O
(

‖(xj(t) − x̄j)j=1,...,n‖
2
)

,

thus, if δ > 0 is small enough,

F (t) ≤
−ν

2t
‖(xi(t) − x̄i)i=1,...,n‖

2. (4.35)

• We conclude from this inequality that ∀t > 0, (xi(t))i=1,...,n = (x̄i)i=1,...,n in the following
way:

Integrating inequality (4.35),

1

2
‖(xi(t) − x̄i)i=1,...,n‖

2 +

∫ t

τ

n
∑

i=1

d
dσ

((xi(σ) − x̄i)∂xR(σ, xi(σ)))

−∂2
xxR(σ, xi(σ))

dσ

≤
1

2
‖(xi(τ) − x̄i)i=1,...,n‖

2 −
ν

2

∫ t

τ

‖(xi(σ) − x̄i)i=1,...,n‖
2

σ
dσ,

≤
n

2
δ2 −

ν

2

∫ t

τ

‖(xi(σ) − x̄i)i=1,...,n‖
2

σ
dσ. (4.36)

Our aim is to get an estimate on ‖(xi(t) − x̄i)i=1,...,n‖
2 from ineq. (4.36) thanks to Gron-

wall’s lemma. To do so, we need to find a bound from below for the term
∫ t

τ

∑n
i=1

d
dσ

((xi(σ)−x̄i)∂xR(σ,xi(σ)))

−∂2
xxR(σ,xi(σ))

dσ

(if it goes to −∞, (4.36) won’t provide much information on ‖(xi(t) − x̄i)i=1,...,n‖
2 !). We

use an integration by part:

∫ t

τ

∑n
i=1

d
dσ

((xi(σ) − x̄i)∂xR(σ, xi(σ)))

−∂2
xxR(σ, xi(σ))

dσ

=

n
∑

i=1

[

(xi(σ) − x̄i)∂xR(σ, xi(σ))

−∂2
xxR(σ, xi(σ))

]t

τ

−

∫ t

τ

n
∑

i=1

(xi(σ) − x̄i)∂xR(σ, xi(σ))
d

dσ

(

1

−∂2
xxR(σ, xi(σ))

)

dσ

=
n
∑

i=1

[

(xi(σ) − x̄i)∂xR(σ, xi(σ))

−∂2
xxR(σ, xi(σ))

]t

τ

−

∫ t

τ

n
∑

i=1

(xi(σ) − x̄i)∂xR(σ, xi(σ))
∂2

xxs
Pn

j=1 ρj(σ)δxj(σ)
(xi(σ))

(∂2
xxR(σ, xi(σ)))2

dσ.(4.37)
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We notice here that the last term is positive, since thanks to Remark 4.14, (xi(σ) −
x̄i)∂xR(σ, xi(σ)) ≥ 0, and since (x̄i)i being an ESS, provided that δ > 0 is small enough,
∂2

xxs
Pn

j=1 ρj(σ)δxj(σ)
(xi(σ)) = ∂2

xxs
Pn

j=1 ρ̄jδx̄j
(x̄i) +O(δ) < 0. Then, thanks to ineq.(4.18) in

Prop 4.13, (4.37) becomes :

∫ t

τ

∑n
i=1

d
dσ

((xi(σ) − x̄i)∂xR(σ, xi(σ)))

−∂2
xxR(σ, xi(σ))

dσ

≥
n
∑

i=1

[

(xi(σ) − x̄i)∂xR(σ, xi(σ))

−∂2
xxR(σ, xi(σ))

]t

τ

≥ −
δ
(

‖a′‖∞ + ‖b′‖∞‖f‖L∞(M1)

)

t

Ct
−
δ
(

‖a′‖∞ + ‖b′‖∞‖f‖L∞(M1)

)

τ

Cτ
≥ −C,

where the constant C > 0 only depends on a, b, δ. This bound from below provides an
estimate on ‖(xi(t) − x̄i)i=1,...,n‖

2 thank to ineq. (4.36). We get :

‖(xi(t) − x̄i)i=1,...,n‖
2 ≤ Cst(a, b, δ) − ν

∫ t

τ

‖(xi(σ) − x̄i)i=1,...,n‖
2

σ
dσ.

That is we have an inequality of the following type:

φ(t) ≤ K − ν

∫ t

τ

φ(σ)ψ(σ) dσ,

where φ(t) = ‖(xi(t)− x̄i)i=1,...,n‖
2, and ψ(σ) = 1

σ
. Thanks to Gronwall’s Lemma, we get :

φ(t) ≤ Kexp

(

−ν

∫ t

τ

ψ(σ) dσ

)

.

That is, for a.e. t > 0 :

‖(xi(t) − x̄i)i=1,...,n‖
2 ≤ Cst(a, b, δ)e−ν

R t
τ

dσ
σ ,

≤ Cst(a, b, δ)
(τ

t

)ν

.

This estimate is true for a.e. t, τ > 0. Then, for a.e. t > 0, we can let τ → 0 and get :

‖(xi(t) − x̄i)i=1,...,n‖
2 → 0 as τ → 0,

which provides the result : for a.e. t > 0, xi(t) = x̄i.

�

5 Examples and numerical simulations.

In this section, we study numerically some explicit cases. The numerical results are obtained
thanks to the numerical scheme described in [4].
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5.1 Examples of monomorphic ESS and Evolutionary Attractors.

Let consider the monomorphic strategies when a, b are defined by

a(x) = 1 +Ax2, b(x, y) = 1 +B(x− y)2, A 6= 0. (5.38)

Let (x̄1) be a monomorphic strategy, and ḡ = δx̄1 the associated population (see (2.6)). This
strategy (x̄1) is singular (see Rem. 2.3) if

∂xsḡ(x̄1) = 2Ax̄1 = 0,

that is the only singular monomorphic strategy for a, b defined by (5.38) is x̄1 = 0. We now
investigate under which conditions this singular strategy is an ESS or an Evolutionary Attractor:

• (x̄1 = 0) is an ESS if :
∂2

xxsḡ(x̄1) = 2(A−B) < 0,

that is if and only if A < B.

• (x̄1 = 0) is an Evolutionary Attractor if it is an ESS and for every u ∈ R,

u
1

−∂2
xxsḡ(0)

DG(0)u = u2 2A

−2(A−B)
≤ −νu2,

for some ν > 0. That is, (x̄1) is a evolutionary attractor if and only if A < B and A < 0.

We now illustrate numerically the notions of ESS and Evolutionary Attractor :

• In fig. 1 and fig. 2, we consider the case of an ESS wich is not an evolutionary attractor,
that is 0 < A < B. In fig. 1, the initial condition g0 is symmetric and then the population
g gathers in x = 0. In fig. 2, the initial condition g0 is not symmetric and then the
population g gets away from x = 0. This behaviour is typical of an ESS wich is not an
evolutionary attractor.

• In fig. 3, we consider an evolutionary Attractor, that is A < B, A < 0. The population g
evolves towards x̄1 = 0, and then gathers around that trait.

• In fig. 4 and fig. 5, we consider the case where B < A < 0. In this situation, x̄i = 0 is not
an ESS, but is known in the field of adaptive dynamics as a Convergent stable strategy
(CSS), (see Remark 2.5). This kind of unstable strategy is thought to be responsible for
speciation (sympatric speciation). In fig. 4, we consider an initial condition wich is not
centered in x = 0, then, the population evolves toward x = 0, as long as it is not too close
to x = 0. In fig. 5, we consider an initial condition wich is centered in x = 0, then, the
population splits into two different species.
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Figure 1: Simulations for a, b defined by (5.38), A = 1
2 , B = 1, and g0(x) = 5.5e−100 x2

, at times
t = 0, 500, 1500.

Figure 2: Simulations for a, b defined by (5.38), A = 1
2 , B = 1, and g0(x) = 5.5e−100 (x−0.05)2 ,

at times t = 0, 500, 1000.
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Figure 3: Simulations for a, b defined by (5.38), A = −1, B = −1
2 , and g0(x) = 5.5e−100 (x−0.7)2 ,

at times t = 0, 150, 2500.
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Figure 4: Simulations for a, b defined by (5.38), A = −1, B = −1.1, and g0(x) = 5.5e−100 (x−0.7)2 ,
at times t = 0, 100, 500.

Figure 5: Simulations for a, b defined by (5.38), A = −1, B = −1.1, and g0(x) = 5.5e−100 x2
, at

times t = 0, 850, 1100.
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Figure 6: graphs of a (continuous line), B (dash line), and 2
3 (B(· + 1) +B(· − 1)) (dot line).

5.2 A case where several Evolutionary Attractors exist.

In this subsection, we construct coefficients a and b : (x, y) 7→ B(x − y) such that several
Evolutionary Attractors exist. If a and B symmetric are such that:

a(1) = 1, a(2) =
11

15
, B(0) = 1, B(1) =

7

8
, B(2) =

1

10
, (5.39)

then both ḡ1 = δ0 and ḡ2 = 2
3 (δ−1 + δ1) are strategies for eq. (1.1). We construct B as a

symmetrical spline that interpolates values (5.39), and a as:

a(x) := min(B(x),
2

3
(B(x+ 1) +B(x− 1)) −

1

5
x2(x− 1)2(x+ 1)2.

Then, ḡ1 = δ0 and ḡ2 = 2
3 (δ−1 + δ1) are both Evolutionary Attractors for eq. (1.1), and even

more:

sḡ1(x) < 0 if x 6= 0,

sḡ2(x) < 0 if x /∈ {−1, 1}.

Numerically, we observe a local stability of each of the two Evolutionary Attractors ḡ1 (see
fig. 7) and ḡ2 (see fig. 8).
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