A Robust Coarse Space for Systems of PDEs with high heterogeneities: GenEO
 \author{ Nicole Spillane

}

Abstract

Coarse spaces are instrumental in obtaining scalability for domain decomposition methods for partial differential equations (PDEs). However, it is known that most popular choices of coarse spaces perform rather weakly in the presence of heterogeneities in the PDE coefficients, especially for systems of PDEs. Here, we introduce in a variational setting a new coarse space that is robust even when there are such heterogeneities. We achieve this by solving local generalized eigenvalue problems in the overlaps of subdomains that isolate the terms responsible for slow convergence. We have proved a general theoretical result that rigorously establishes the robustness of the new coarse space and we give some numerical examples on two and three dimensional heterogeneous PDEs and systems of PDEs that confirm this

Problems we solve
Let V^{h} be a finite element space of functions in Ω based on a mesh $\mathcal{T}^{h}=\{\tau\}$ of domain Ω.
Given $f \in\left(V^{h}\right)^{*}$ find $u \in V^{h}$

$$
\Longleftrightarrow
$$

$$
\begin{aligned}
a(u, v) & =\langle f, v\rangle \quad \forall v \in V^{h} \\
\mathbf{A} \mathbf{u} & =\mathbf{f}
\end{aligned}
$$

Assumptions:
© A symmetric positive definite
(2) A is given as a set of element stiffness matrices + connectivity (list of DOF per element)
and verifies the assembling property:

$$
a(v, w)=\sum_{\tau} a_{\tau}\left(v_{\mid \tau}, w_{\mid \tau}\right)
$$

where $a_{\tau}(\cdot, \cdot)$ symmetric positive semi-definite
(3)The finite element basis $\left\{\phi_{k}\right\}_{k=1}^{n}$ of V^{h} verifies a unisolvence property on each element τ.
(0) Two more technical assumptions on $a(\cdot, \cdot)$ later!

Examples:

- Darcy $\quad a(u, v)=\Omega_{\Omega} \boldsymbol{\kappa} \nabla u \cdot \nabla v d x$
- Elasticity $\quad a(\boldsymbol{u}, \boldsymbol{v})=\Omega_{\Omega} \boldsymbol{C} \boldsymbol{\varepsilon}(\boldsymbol{u}): \boldsymbol{\varepsilon}(\boldsymbol{v}) d x$
- Eddy current
$a(\boldsymbol{u}, \boldsymbol{v})=\ell_{\Omega} \boldsymbol{\nu}$ curl $\boldsymbol{u} \cdot$ curl $\boldsymbol{v}+\boldsymbol{\sigma} \boldsymbol{u} \cdot \boldsymbol{v} d x$
with heterogeneities, high contrast in parameters
General Setting: Additive Schwarz
The following is done using only the connectivity information and a graph partitioner such as Metis. © Build a non overlapping partition of Ω.
(2Add one layer of elements to each subdomain $j=1, \ldots, N$ to get a partition into overlapping subdomains Ω_{j}.

Adding one layer of overlap to the green subdomain. (3) Define the local finite element spaces
$V_{j}:=\operatorname{span}\left\{\phi_{k}: \operatorname{supp}\left(\phi_{k}\right) \subset \Omega_{j}\right\}$. Then denote by $\mathbf{R}_{j}^{\top}: V_{j} \rightarrow V^{h}$ the natural local/global embedding and by $a_{\Omega_{j}}(u, v):=\Sigma_{\tau \subset \Omega_{j}} a_{\tau}\left(u_{\mid \tau}, v_{\mid \tau}\right)$ the local bilinear form (4) Define a coarse space V_{H} and denote by
$\mathbf{R}_{H}^{\top}: V_{H} \rightarrow V^{h}$ the natural coarse/global embedding

Two level additive Schwarz

$$
\mathbf{M}_{A S, 2}^{-1}:=\mathbf{R}_{H}^{\top} \mathbf{A}_{H}^{-1} \mathbf{R}_{H}+\sum_{j=1}^{N} \mathbf{R}_{j}^{\top} \mathbf{A}_{j}^{-1} \mathbf{R}_{j}
$$

$$
\text { where } \quad \mathbf{A}_{j}=\mathbf{R}_{j}^{\top} \mathbf{A} \mathbf{R}_{j} \quad \text { and } \quad \mathbf{A}_{H}=\mathbf{R}_{H}^{\top} \mathbf{A} \mathbf{R}_{H} .
$$

If we prove the existence of a C_{0}-stable decomposition (as defined next) for each $v \in V_{h}$ then the general Schwarz theory tells us that the condition number of the preconditioned operator is bounded by

$$
\kappa\left(\mathbf{M}_{A S, 2}^{-1} \mathbf{A}\right) \leq C_{0}^{2}\left(k_{0}+1\right)
$$

where each point belongs to at most k_{0} subdomains.

Definition (C_{0}-Stable decomposition)

Given a coarse space $V_{H} \subset V_{h}$, local subspaces $\left\{V_{j}\right\}_{1 \leq j \leq N}$ and a constant C_{0}, a C_{0}-stable decomposition of $v \in V_{h}$ is a family of functions,

$$
\left(v_{H}, v_{1}, \ldots, v_{N}\right) \in V_{H} \times V_{1} \times \ldots \times V_{N},
$$

which satisfies

$$
v=v_{H}+\sum_{j=1}^{N} v_{j}
$$

and $\quad a\left(v_{H}, v_{H}\right)+\sum_{j=1}^{N} a_{\Omega_{j}}\left(v_{j}, v_{j}\right) \leq C_{0}^{2} a(v, v)$.
A sufficient condition for this last inequality is: there exists a constant C_{1} such that
$a_{\Omega_{j}}\left(v_{j}, v_{j}\right) \leq C_{1} a_{\Omega_{j}}\left(v_{\Omega_{j}}, v_{\Omega_{j}}\right)$ for all $j=1, \ldots, N$. (1)
Then the decomposition is C_{0}-stable with

$$
C_{0}^{2}=2+C_{1} k_{0}\left(2 k_{0}+1\right) .
$$

Objective: define the coarse space in such a way that there exists a decomposition of any $v \in V^{h}$ which fulfills (1) for a C_{1} which is independant of the heterogeneities and the decomposition. Then the bound on the condition number and hence on the convergence rate will also be independant of these quantities leading to a robust method.
In order to do this we need to introduce partition of unity operators which will allow us to define the coarse space and the local components

Definition ('Discrete' partition of unity)
For any $j=1, \ldots N$, let

$$
\operatorname{dof}\left(\Omega_{j}\right):=\left\{k: \operatorname{supp}\left(\phi_{k}\right) \cap \Omega_{j} \neq \emptyset\right\}
$$

denote the space of all degrees of freedom in Ω_{j}, and $i \operatorname{dof}\left(\Omega_{j}\right):=\left\{k: \operatorname{supp}\left(\phi_{k}\right) \subset \bar{\Omega}_{j}\right\}$
denote the space of internal degrees of freedom in Ω_{j}. Notice that: $\left(V^{h}\right)_{\Omega_{j}}=\operatorname{span}\left\{\phi_{k}\right\}_{k \in \operatorname{dof}\left(\Omega_{j}\right)} \not \subset V^{h}$ and $V_{j}=\operatorname{span}\left\{\phi_{k}\right\}_{k \in i d o f\left(\Omega_{j}\right)} \subset V^{h}$.
Then for any $v=\Sigma_{k=1}^{n} v_{k} \phi_{k} \in V^{h}$ define the partition of unity operator as:
$\Xi_{j}(v):=\sum_{k \in \operatorname{idof}\left(\Omega_{j}\right)}^{\sum\left\{j: k \in \operatorname{idof}\left(\Omega_{j}\right)\right\}} v_{k} \phi_{k} \in V_{j}$.
It is indeed a partition of unity: $\Sigma_{j=1}^{N} \Xi_{j} v=v$
Definition (Ω_{j}°)
Let Ω_{j}° denote the part of Ω_{j} that is overlapped (left), then $\left.\left(\Xi_{j} v\right)\right|_{\Omega_{j} \backslash \Omega_{j}^{\circ}}=v_{\Omega_{j} \backslash \Omega_{j}^{\circ}}$ (right).

Finally define, $a_{\Omega_{j}^{\circ}}(v, v)=\Sigma_{\tau \subset \Omega_{j}} a_{\tau}\left(v_{\mid \tau}, v_{\mid \tau}\right)$.

Theorem: GenEO Coarse Space and convergence result

On each subdomain $\Omega_{j}, j=1 \ldots N$, find $p_{j, k} \in V_{h \mid \Omega_{j}}$ and $\lambda_{j, k} \geq 0$:
DOFs that are free in the

$$
\begin{aligned}
a_{\Omega_{j}}\left(p_{j, k}, v\right) & =\lambda_{j, k} a_{\Omega_{j}^{\circ}}\left(\Xi_{j} p_{j, k}, \Xi_{j} v\right) & & \forall v \in V_{h \mid \Omega_{j}} \\
\Leftrightarrow \mathbf{A}_{j} \mathbf{p}_{j, k} & =\lambda_{j, k} \mathbf{X}_{j} \mathbf{A}_{j}^{\circ} \mathbf{X}_{j} \mathbf{p}_{j, k} & & \left(\mathbf{X}_{j} \ldots \text { diagonal }\right)
\end{aligned}
$$

Select the first $m_{j}:=\min \left\{m: \lambda_{m+1}^{j}>\frac{\delta_{j}}{H_{j}}\right\}\left(H_{j} \ldots\right.$ subdomain diameter, δ_{j} overlap width), eigenvectors per subdomain and define the coarse space as $V_{H}=\operatorname{span}\left\{\Xi_{j} p_{j, k}\right\}_{k=1, \ldots, m}^{j=1, \ldots, N}$. Then the condition number of the preconditioned operator is bounded by:
$\kappa\left(\mathbf{M}_{A S, 2}^{-1} \mathbf{A}\right) \leq\left(1+k_{0}\right)\left[2+k_{0}\left(2 k_{0}+1\right) \underset{j=1}{\max _{j=1}^{N}}\left(1+\frac{H_{j}}{\delta_{j}}\right)\right]$ eigenvalue problem for continuous Q^{1}-elements

Both matrices typically singular $\Longrightarrow \lambda_{j . k} \in[0, \infty]$
The proof requires two technical assumptions
Assumption 1: $a_{\Omega_{j}}(\cdot, \cdot)$ SPD on span $\left\{\phi_{k \mid \Omega_{j}}\right\}_{k \in \operatorname{dof} f\left(\Omega_{j}\right) \backslash i d o f\left(\Omega_{j}\right)}$
Assumption 2: $a_{\Omega_{j}^{0}}(\cdot, \cdot)$ SPD on $\operatorname{span}\left\{\phi_{k \mid \Omega_{j}}\right\}_{k \in i d o f\left(\Omega_{j}\right) \backslash i d o f\left(\Omega_{j} \backslash \Omega_{j}^{\circ}\right)}$

Assumptions 1 and 2 hold if certain mixed "boundary" value problems are solvable: (red: free dofs, yellow: fixed dofs)

Stable decomposition

Coarse component: $v_{H}=\Sigma_{j=1}^{N} \Xi_{j} \Pi_{j} v_{\mid \Omega_{j}} \in V_{H}$, and Local components: $v_{j}=\Xi_{j}\left(v-\Pi_{j} v\right) \in V_{j}$, where Π_{j} is the local projector onto $\operatorname{span}\left\{\exists_{j} p_{j, k}\right\}_{k=1, \ldots, m_{j}}$

$$
\text { (1) }\left.\Leftrightarrow \underbrace{\Xi_{j}\left(v-\Pi_{j} v\right)}_{v_{j}}\right|_{a, \Omega_{j}} ^{2} \leq C_{1}|v|_{a, \Omega_{j}}^{2},\left.\Leftrightarrow \Xi_{j}\left(v-\Pi_{j} v\right)\right|_{a, \Omega_{j}} ^{2}+\underbrace{\left|\Xi_{j}\left(v-\Pi_{j} v\right)\right|_{a, \Omega_{j} \mid \Omega_{j}}^{2}}_{=\left|v-\Pi_{j} v\right|_{a, \Omega_{j} \mid \Omega_{j}}^{2} \leq\left.\left|v-\Pi_{j}\right|\right|_{a, \Omega_{j}}} \leq C_{1}|v|_{a, \Omega_{j}}^{2} .
$$

So the only term that we are left to work on is: $\left.\Xi_{j}\left(v-\Pi_{j} v\right)\right|_{a, \Omega_{j}^{2}} ^{2} \stackrel{\text { How? }}{\leq} C_{1}|v|_{a, \Omega_{j}}^{2}$, and the generalized eigenvalue problem bounds just that.

Numerical results
Coefficients

Decompositions

	AS		ZEM			GenEO		
κ_{2}	it	cond	it	cond	dim	it	cond	
1	16	229	11	6.3	8	11	8.4	
10^{2}	27	230	19	22	8	13	8.4	
14								
10^{4}	29	230	23	210	8	15	8.4	
10^{6}	26	230	22	230	8	11	8.4	

Table: 3D Darcy: number of PCG iterations (it), condition number (cond) and coarse space dimension (dim) vs. jump in κ for $\kappa_{1}=1, \ell=1$ added layers, $L=8$ regular subdomains

		AS		ZEM			GenEO		
L	glob DOF	it	cond	it	cond	dim	it	cond	
dim									
4	14520	79	$2.4 \cdot 10^{3}$	54	$2.9 \cdot 10^{2}$	24	16	10	
46									
8	29040	177	$1.3 \cdot 10^{4}$	87	$1.0 \cdot 10^{9}$	48	16	10	
102									
16	58080	378	$1.5 \cdot 10^{5}$	145	$1.4 \cdot 10^{3}$	96	16	10	

Table: 3D Elasticity: number of PCG iterations (it), condition number (cond), and coarse space dimension (dim) vs. number of regular subdomains, for $\ell=1$ added layers, $g=10,\left(E_{1}, \nu_{1}\right)=\left(2 \cdot 10^{11}, 0.3\right)$ and $\left(E_{2}, \nu_{2}\right)=\left(2 \cdot 10^{7}, 0.45\right)$

