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Abstract

Coarse spaces are instrumental in obtaining scalability
for domain decomposition methods for partial differen-
tial equations (PDEs). However, it is known that most
popular choices of coarse spaces perform rather weakly in
the presence of heterogeneities in the PDE coefficients,
especially for systems of PDEs. Here, we introduce in a
variational setting a new coarse space that is robust even
when there are such heterogeneities. We achieve this by
solving local generalized eigenvalue problems in the over-
laps of subdomains that isolate the terms responsible for
slow convergence. We have proved a general theoretical
result that rigorously establishes the robustness of the new
coarse space and we give some numerical examples on two
and three dimensional heterogeneous PDEs and systems
of PDEs that confirm this.

Problems we solve

Let V h be a finite element space of functions in Ω based
on a mesh T h = {τ} of domain Ω.
Given f ∈ (V h)∗ find u ∈ V h

a(u, v) = 〈f, v〉 ∀v ∈ V h

⇐⇒ A u = f
Assumptions:
1 A symmetric positive definite
2 A is given as a set of element stiffness matrices

+ connectivity (list of DOF per element)
and verifies the assembling property:

a(v, w) = ∑
τ
aτ(v|τ , w|τ)

where aτ(·, ·) symmetric positive semi-definite
3 The finite element basis {φk}nk=1 of V h verifies a
unisolvence property on each element τ .

4 Two more technical assumptions on a(·, ·) later!
Examples:
• Darcy a(u, v) = ∫

Ωκ∇u · ∇v dx
• Elasticity a(u, v) = ∫

ΩC ε(u) : ε(v) dx
• Eddy current
a(u, v) = ∫

Ω ν curlu · curlv + σu · v dx
with heterogeneities, high contrast in parameters

General Setting: Additive Schwarz

The following is done using only the connectivity informa-
tion and a graph partitioner such as Metis.
1 Build a non overlapping partition of Ω.
2 Add one layer of elements to each subdomain
j = 1, . . . , N to get a partition into overlapping
subdomains Ωj.

Adding one layer of overlap to the green subdomain.
3 Define the local finite element spaces:
Vj := span

φk : supp(φk) ⊂ Ωj

. Then denote by
R>j : Vj → V h the natural local/global embedding and
by aΩj

(u, v) := ∑
τ⊂Ωj

aτ(u|τ , v|τ) the local bilinear form.
4 Define a coarse space VH and denote by

R>H : VH → V h the natural coarse/global embedding.

Two level additive Schwarz

M−1
AS,2 := R>HA−1

H RH + N∑
j=1

R>j A−1
j Rj

where Aj = R>j ARj and AH = R>HARH.

If we prove the existence of a C0-stable decomposition
(as defined next) for each v ∈ Vh then the general
Schwarz theory tells us that the condition number of
the preconditioned operator is bounded by

κ(M−1
AS,2A) ≤ C0

2(k0 + 1),
where each point belongs to at most k0 subdomains.

Definition (C0-Stable decomposition)

Given a coarse space VH ⊂ Vh, local subspaces {Vj}1≤j≤N
and a constant C0, a C0-stable decomposition of v ∈ Vh
is a family of functions,

(vH, v1, . . . , vN) ∈ VH × V1 × . . .× VN ,
which satisfies

v = vH + N∑
j=1

vj,

and
a(vH, vH) + N∑

j=1
aΩj

(vj, vj) ≤ C2
0a(v, v).

A sufficient condition for this last inequality is: there
exists a constant C1 such that
aΩj

(vj, vj) ≤ C1 aΩj
(v|Ωj

, v|Ωj
) for all j = 1, . . . , N. (1)

Then the decomposition is C0-stable with
C2

0 = 2 + C1k0(2k0 + 1).
Objective: define the coarse space in such a way that
there exists a decomposition of any v ∈ V h which fulfills
(1) for a C1 which is independant of the heterogeneities
and the decomposition. Then the bound on the
condition number and hence on the convergence rate will
also be independant of these quantities leading to a
robust method.
In order to do this we need to introduce partition of
unity operators which will allow us to define the coarse
space and the local components.

Definition (‘Discrete’ partition of unity)

For any j = 1, . . . N , let
dof (Ωj) :=

k : supp(φk) ∩ Ωj 6= ∅


denote the space of all degrees of freedom in Ωj, and
idof (Ωj) :=

k : supp(φk) ⊂ Ωj


denote the space of internal degrees of freedom in Ωj.
Notice that: (V h)|Ωj

= span{φk}k∈dof (Ωj) 6⊂ V h.
and Vj = span{φk}k∈idof (Ωj) ⊂ V h.
Then for any v = ∑n

k=1 vkφk ∈ V h define the partition of
unity operator as:

Ξj(v) := ∑
k∈idof (Ωj)

1
#

j : k ∈ idof (Ωj)

vk φk ∈ Vj.

It is indeed a partition of unity: ∑N
j=1 Ξjv = v .

Definition (Ω◦j)

Let Ω◦j denote the part of Ωj that is over-
lapped (left), then (Ξjv)|Ωj\Ω◦j = vΩj\Ω◦j (right).

IsoValue
0
0.5
1

Finally define, aΩ◦j(v, v) = ∑
τ⊂Ω◦j aτ(v|τ , v|τ).

Theorem: GenEO Coarse Space and convergence result

On each subdomain Ωj, j = 1 . . . N , find pj,k ∈ Vh|Ωj
and λj,k ≥ 0:

aΩj
(pj,k, v) = λj,k aΩ◦

j
(Ξjpj,k, Ξjv) ∀v ∈ Vh|Ωj

⇔ Ajpj,k = λj,k XjA◦
jXj pj,k (Xj . . . diagonal)

Select the first mj := min
m : λjm+1 >

δj
Hj

 (Hj . . . subdomain diameter, δj overlap

width), eigenvectors per subdomain and define the coarse space as
VH = span

Ξjpj,k

j=1,...,N
k=1,...,mj

. Then the condition number of the
preconditioned operator is bounded by:

κ(M−1
AS,2A) ≤ (1 + k0)

2 + k0 (2k0 + 1) Nmax
j=1

1 + Hj

δj




DOFs that are free in the
eigenvalue problem
for continuous Q1-elements

Both matrices typically singular =⇒ λj,k ∈ [0, ∞]
The proof requires two technical assumptions.
Assumption 1: aΩj

(·, ·) SPD on span{φk|Ωj
}k∈dof (Ωj)\idof (Ωj)

Assumption 2: aΩ◦
j
(·, ·) SPD on span{φk|Ωj

}k∈idof (Ωj)\idof (Ωj\Ω◦
j )

Assumptions 1 and 2 hold if certain mixed
“boundary” value problems are solvable:
(red: free dofs, yellow: fixed dofs)

Stable decomposition

Coarse component: vH = ∑N
j=1 ΞjΠjv|Ωj

∈ VH, and Local components: vj = Ξj(v − Πjv) ∈ Vj,
where Πj is the local projector onto span

Ξjpj,k
k=1,...,mj

.

(1)⇔ Ξj(v − Πjv)︸ ︷︷ ︸
vj

|2a,Ωj
≤ C1|v|2a,Ωj

,⇔ Ξj(v − Πjv)|2a,Ω◦j + |Ξj(v − Πjv)|2a,Ωj\Ω◦j︸ ︷︷ ︸
=|v−Πjv|2a,Ωj\Ω◦j≤|v−Πjv|2a,Ωj

≤ C1|v|2a,Ωj
.

So the only term that we are left to work on is: Ξj(v − Πjv)|2a,Ω◦j
HOW?
≤ C1|v|2a,Ωj

, and the generalized eigenvalue problem
bounds just that.

Numerical results

Coefficients

Decompositions

AS ZEM GenEO
κ2 it cond it cond dim it cond dim
1 16 229 11 6.3 8 11 8.4 7

102 27 230 19 22 8 13 8.4 14
104 29 230 23 210 8 15 8.4 14
106 26 230 22 230 8 11 8.4 14

Table: 3D Darcy: number of PCG iterations (it), condition number (cond) and
coarse space dimension (dim) vs. jump in κ for κ1 = 1, ` = 1 added
layers, L = 8 regular subdomains

AS ZEM GenEO
L glob DOF it cond it cond dim it cond dim
4 14520 79 2 .4 · 10 3 54 2 .9 · 10 2 24 16 10 46
8 29040 177 1 .3 · 10 4 87 1 .0 · 10 3 48 16 10 102
16 58080 378 1 .5 · 10 5 145 1 .4 · 10 3 96 16 10 214

Table: 3D Elasticity: number of PCG iterations (it), condition number (cond), and
coarse space dimension (dim) vs. number of regular subdomains, for ` = 1 added
layers, g = 10, (E1, ν1) = (2 · 1011, 0.3) and (E2, ν2) = (2 · 107, 0.45).


