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UNBIASED SIMULATION OF STOCHASTIC
DIFFERENTIAL EQUATIONS

BY PIERRE HENRY-LABORDÈRE, XIAOLU TAN1 AND NIZAR TOUZI1

Société Générale, University of Paris-Dauphine and École Polytechnique Paris

We propose an unbiased Monte 3 estimator for E[g(Xt1 , . . . ,Xtn)],
where X is a diffusion process defined by a multidimensional stochastic dif-
ferential equation (SDE). The main idea is to start instead from a well-chosen
simulatable SDE whose coefficients are updated at independent exponential
times. Such a simulatable process can be viewed as a regime-switching SDE,
or as a branching diffusion process with one single living particle at all times.
In order to compensate for the change of the coefficients of the SDE, our main
representation result relies on the automatic differentiation technique induced
by the Bismut–Elworthy–Li formula from Malliavin calculus, as exploited by
Fournié et al. [Finance Stoch. 3 (1999) 391–412] for the simulation of the
Greeks in financial applications. In particular, this algorithm can be consid-
ered as a variation of the (infinite variance) estimator obtained in Bally and
Kohatsu-Higa [Ann. Appl. Probab. 25 (2015) 3095–3138, Section 6.1] as an
application of the parametrix method.

1. Introduction. Let d ≥ 1, T > 0 and W be a d-dimensional Brownian mo-
tion, μ : [0, T ] × R

d → R
d and σ : [0, T ] × R

d → M
d be the drift and diffusion

coefficients, where M
d denotes the collection of all d × d dimensional matrices.

Under standard assumptions on these coefficients, we consider the process X de-
fined as the unique strong solution of the multidimensional SDE

(1.1) X0 = x0 and dXt = μ(t,Xt) dt + σ(t,Xt) dWt .

Our main focus in this paper is on the Monte Carlo approximation of the expecta-
tion:

(1.2) V0 := E
[
g(Xt1, . . . ,Xtn)

]
,

for some function g : Rd×n → R and discrete time grid 0 < t1 < · · · < tn = T .
When n = 1, the analytic formulation of the problem is obtained by the well-
known representation V0 = u(0,X0), where u is the solution of the linear PDE

(1.3) ∂tu + μ(t, x) · Du + 1

2
σσ�(t, x) : D2u = 0, uT = g.
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Here, A : B := Tr(AB�) for any two d × d dimensional matrices A,B ∈ M
d . In

practice, the Monte Carlo method consists in simulating N independent copies of
a discrete-time approximation of X, and then estimating V0 by the empirical mean
value of the simulations. The corresponding error analysis consists of a statistical
error induced by the central limit theorem, and a discretization error which induces
a biased Monte Carlo approximation. Under some smoothness conditions, Talay
and Tubaro [21] proved that the discretization error for the Euler scheme is con-
trolled by a rate C�t , where �t denotes the time step discretization. Since then,
many works focused on the analysis of the discretization error under various dis-
cretization techniques; see, for example, Kloeden and Platen [19], and Graham and

Talay [13] for an overview. However, the statistical error estimate N− 1
2 is lost in

all cases, as its combination with the discretization error leads to an overall error
estimate of the order N− 1

2 +ε for some ε > 0.
In the context of one-dimensional homogeneous SDEs with constant volatil-

ity coefficient, Beskos and Roberts [6] developed an exact simulation technique
for X by using the Girsanov change measure together with a rejection algorithm;
see also Beskos, Papaspiliopoulos and Roberts [4], Jourdain and Sbai [17], etc.
This technique also applies to more general SDEs by using of the so-called Lam-
perti transformation which reduces the approximation problem to the unit diffu-
sion case. We also refer to the subsequent active literature of exact simulation of
an L

∞-approximation of X; see, for example, Blanchet, Chen and Dong [7].
An alternative approximation method for V0 was induced by the multilevel

Monte Carlo (MLMC) algorithm introduced by Giles [11], which generalizes the
statistical Romberg method of Kebaier [18]. One of the main advantages of the
MLMC algorithm is to control the global error (sum of discretization error and
statistical error) with a much better rate w.r.t. the computation complexity. We re-
fer to Giles and Szpruch [12], Alaya and Kebaier [3], Rhee and Glynn [20] for
further developments. In particular, Rhee and Glynn [20] proposed a random level
technique in the MLMC algorithm and obtained a simulatable random with expec-
tation V0, thus inducing an unbiased simulation method.

The unbiased simulation of a functional of a SDE has been investigated by many
people. Wagner [22, 23] provided an unbiased estimator for a class of functionals
of a R

d -valued Markov process Z with known transition function, where a key
step is to expand an exponential term in a power series. Using similar expansion
techniques, Beskos, Papaspiliopoulos, Roberts and Fearnhead [5] obtained an un-
biased method for a larger class of functionals of solution of the SDE. More re-
cently, Bally and Kohatsu-Higa [2] provided a probabilistic interpretation of the
parametrix method for PDEs. In particular, when n = 1, they obtained a represen-
tation formula for V0 of the form

(1.4) E
[
g(X̂T )WT

]
,

where X̂ is defined by a Euler scheme of X on a random discrete-time grid (the
time step follows an independent exponential distribution), and WT is a corrective
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weight function depending on X̂. The above representation is formally similar to
the stochastic finite element method proposed by Bompis and Gobet [8], where one
replaces X by its Euler scheme solution in (1.2) and then corrects partially the error
by some well-chosen weight functions. Notice that in the above representation of
Bally and Kohatsu-Higa [2], the process X̂ can be exactly simulated, and hence it
may provide an unbiased estimator for V0. Nevertheless, the weight function WT

has infinite variance, and hence the corresponding Monte Carlo estimator loses
the standard central limit error estimate. A recent improvement, to obtain a finite
variance estimator, is provided by Andersson and Kohatsu-Higa [1].

In this paper, we provide a representation of V0 in the spirit of (1.4), but with an
alternative weight function for the representation. Our results follow from similar
but different arguments. More importantly, our unbiased approximation of V0 has
finite variance, and applies for a large class of SDEs.

Our main idea is to consider the Euler scheme solution X̂ as solution to a
regime-switching SDE with some well-chosen coefficients. In order to compen-
sate for the change of the coefficients of the SDE, we introduce some weight func-
tions obtained by the automatic differentiation technique induced by the Bismut–
Elworthy–Li formula from Malliavin calculus, as exploited by Fournié et al. [10]
for the simulation of the Greeks in financial applications.

The technique introduced in the present paper is inspired by the numerical al-
gorithm introduced in [14, 16], for semilinear PDEs of the form

∂tu + 1

2
�u + F0(t, x, u) = 0, uT = g,

for some nonlinearity F0. The main idea in [14, 16] is to use an approximation
by a branching diffusion representation induced by approximating the nonlinear-
ity F0 by a polynomial in u. Namely, given the nature of the linear operator, the
representation is obtained by means of a Brownian motion with branching driven
by the polynomial approximation of F0.

Loosely speaking, the method developed in the present paper follows by reading
the PDE part of (1.3) in the following equivalent form:

∂tu + 1

2
�u + F1

(
t, x,Du,D2u

) = 0,

where

F1(t, x, z, γ ) := b(t, x) · z + 1

2

(
σσ�(t, x) − I

) : γ.

However, in contrast with the nonlinearity F0, the above function F1 involves the
gradient and the Hessian of the solution u. Consequently, the last PDE cannot be
handled by the existing literature on branching diffusion representation of PDEs.
The automatic differentiation technique introduced in the present paper is an im-
portant new idea which allows to convert Du and D2u in F1 into u. Since no
powers of u are involved in the equation, this leads to a representation by means
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of a Brownian motion with exactly one descendent of two different possible types
revealed by the weight function corresponding to the order of differentiation.

We believe that the automatic differentiation trick introduced here has very im-
portant consequences, beyond the particular application of the present paper. In-
deed, in our paper [15], we provide a significant extension of the branching diffu-
sion representation to a general class of semilinear PDEs.

The paper is organized as follows. In Section 2, we consider the SDE with a
constant diffusion coefficient, and propose an unbiased estimator for V0 for the
Markovian and path-dependent case. In Section 3, we consider the SDE with a
general diffusion coefficient function, and obtain a similar representation formula
for V0, which is integrable but of infinite variance. Section 4 reports some nu-
merical examples. Finally, we complete some technical proofs in Section 5. In
particular, an easy example is studied in Section 5.1 to illustrate the main idea of
the technical proofs.

2. Unbiased simulation of the SDE with constant diffusion coefficient. In
this section, we will restrict to the constant diffusion coefficient case, and propose
an unbiased estimator for V0 with finite variance.

2.1. The Markovian case. Let us start by the Markovian case, where the dif-
fusion process X is defined by

(2.1) X0 = x0, dXt = μ(t,Xt) dt + σ0 dWt,

for some matrix σ0 ∈M
d , and our objective is to compute

(2.2) V0 = E
[
g(XT )

]
,

for some function g :Rd →R. We impose the following conditions on μ and σ0.

ASSUMPTION 2.1. The diffusion coefficient σ0 is nondegenerate, the drift
function μ(t, x) is bounded and continuous in (t, x), uniformly 1

2 -Hölder in t and
uniformly Lipschitz in x, that is, for some constant L > 0,∣∣μ(t, x) − μ(s, y)

∣∣
≤ L

(√|t − s| + |x − y|) ∀(s, x), (t, y) ∈ [0, T ] ×R
d .

(2.3)

2.1.1. The unbiased simulation algorithm. To introduce our unbiased simula-
tion algorithm, let us first introduce a random discrete time grid. Let β > 0 be a
fixed positive constant, (τi)i>0 be a sequence of i.i.d. E(β)-exponential random
variables. We define

(2.4) Tk :=
(

k∑
i=1

τi

)
∧ T , k ≥ 0, and Nt := max{k : Tk < t}.
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Then (Nt)0≤t≤T is a Poisson process with intensity β and arrival times (Tk)k>0.
We denote also T0 := 0 and �Tk+1 := Tk+1 − Tk .

Let W be a d-dimensional Brownian motion independent of (τi)i>0, we intro-
duce

�WTk
:= WTk

− WTk−1, k > 0,

and a process X̂ as the Euler scheme of X on the random discrete grid (Tk)k≥0,
that is, X̂0 = x0 and

(2.5) X̂Tk+1 := X̂Tk
+ μ(Tk, X̂Tk

)�Tk+1 + σ0�WTk+1, k = 0,1, . . . ,NT .

Then our estimator is given by

(2.6) ψ̂ := eβT [g(X̂T ) − g(X̂TNT
)1{NT >0}

]
β−NT

NT∏
k=1

W1
k,

with

(2.7) W1
k := (μ(Tk, X̂Tk

) − μ(Tk−1, X̂Tk−1)) · (σ�
0 )−1�WTk+1

�Tk+1
.

THEOREM 2.2. Suppose that Assumption 2.1 holds true, and g is globally
Lipschitz. Then

E
[
ψ̂2] < ∞ and V0 = E[ψ̂].

PROOF. (i) We first show that E[ψ̂2] < ∞. For simplicity, we denote �X̂Tk
:=

X̂Tk
− X̂Tk−1 for k > 0. Let Lg be the Lipschitz constant of the function g, and set

L0 := |(σ0σ
�
0 )−1| > 0 by the nondegeneracy of σ0. Notice that TNT +1 = T from

its definition in (2.4), then using Assumption 2.1, it follows by direct computation
that∣∣e−βT ψ̂

∣∣ ≤ (∣∣g(x0)
∣∣+ Lg|�X̂T1 |

)
1{NT =0}

+ Lg|�X̂TNT +1 |
NT∏
k=1

L(
√

�Tk + |�X̂Tk
|)

β�Tk+1

∣∣(σ�
0
)−1

�WTk+1

∣∣1{NT >0}

≤ Lg

( |g(x0)|
Lg

+√
�T1 + |�X̂T1 |

)

×
NT∏
k=1

L(
√

�Tk+1 + |�X̂Tk+1 |)
β�Tk+1

∣∣(σ�
0
)−1

�WTk+1

∣∣.
Then denoting ÊTk

:= E[·|X̂Tk
,�Tk+1], we have

ÊTk

[∣∣∣∣
√

�Tk+1 + |�X̂Tk+1 |
�Tk+1

(
σ�

0
)−1

�WTk+1

∣∣∣∣2]
≤ E

[(
1 + |μ|∞

√
T + |σ0Z|)2∣∣(σ�

0
)−1

Z
∣∣2],
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where |μ|∞ :=
√∑d

i=1 |μi |2∞, |μi |∞ := supt,x |μi(t, x)|, and Z is a standard cen-

tered normal distribution in R
d . This provides

ÊTk

[∣∣∣∣
√

�Tk+1 + |�X̂Tk+1 |
�Tk+1

(
σ�

0
)−1

�WTk+1

∣∣∣∣2]
≤ 2

(
1 + |μ|∞

√
T
)2
E
[∣∣(σ�

0
)−1

Z
∣∣2]+ 2E

[|σ0Z|2∣∣(σ�
0
)−1

Z
∣∣2]

= 2
(
1 + |μ|∞

√
T
)2 Tr

((
σ0σ

�
0
)−1)+ 2

(
3d + d(d − 1)

) =: γ.

We therefore get the following upper bound:

E
[
ψ̂2] ≤ Ce2βT e

−βT + γL2T
β

where C := L2
gE

[( |g(0)|
Lg

+√
�T1 + |�X̂T1 |

)2]
.

(2.8)

(ii) The equality V0 = E[ψ̂] will be proved in Section 5, with illustration of the
main idea in Section 5.1. �

2.1.2. On the choice of β . Notice that the random variable ψ̂ in (2.6) can
be exactly simulated from a sequence of Gaussian N (0,1) and exponential E(β)

random variables. Then the integrability and representation results in Theorem 2.2
induce an unbiased simulation Monte Carlo method to approximate V0, with error
induced by the standard central limit theorem.

We next observe that the constant β > 0 may be chosen so as to minimize the
approximation error and the computational effort:

• By the central limit theorem, the error induced by the Monte Carlo estima-
tor based on the representation ψ̂ is characterized by the variance of ψ̂ . For
tractability reasons, we shall instead replace it by the bound (2.8).

• The computation effort is proportional to the number NT of arrivals of the Pois-
son process before the maturity T , and is thus given by C′

E[NT ] = C′βT .

In view of this, we shall choose β by minimizing the product of the variance bound
(2.8) and the mean computational effort. This minimization problem is obviously
independent of the constants C,C′, and reduces to

min
β>0

f (β) where f (β) := βT exp
(
T

(
β + γL2

β

))
.

Direct computation shows that the equation f ′(β) = 0 has a unique solution on
(0,∞) given by

β∗ :=
√

γL2T + 1

4T 2 − 1

2T
.
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As limβ↘0 f (β) = limβ→∞ f (β) = ∞, this shows that β∗ is the minimizer of the
above defined criterion, and will be taken as our “best sub-optimal” choice of β

for the unbiased estimator ψ̂ .

2.2. The path-dependent case. We next provide an extension of the above esti-
mator ψ̂ in (2.6) to the path-dependent case. In particular, the present setting covers
the setting of delayed SDEs. Let n > 0, 0 = t0 < t1 < · · · < tn = T , σ0 ∈ M

d be a
nondegenerate matrix, and μ : [0, T ]×R

d×n →R
d be a continuous function, Lip-

schitz in the space variable. Let X be the unique solution of the SDE, with initial
condition X0 = x0,

(2.9) dXt = μ(t,Xt1∧t , . . . ,Xtn∧t ) dt + σ0 dWt ;
and the objective is to compute the value,

(2.10) Ṽ0 := E
[
g(Xt1, . . . ,Xtn)

]
,

for some Lipschitz function g : Rd×n →R.

REMARK 2.3. It is clear that the value Ṽ0 defined above can be characterized
by a parabolic PDE system. Namely, for every k = 1, . . . , n and (x1, . . . , xk−1) ∈
R

d×(k−1), we define

(2.11) μk(t, x) := μ(t, x1, . . . , xk−1, x, . . . , x) ∀(t, x) ∈ [tk−1, tk] ×R
d .

Suppose that (uk)k=1,...,n is a family of functions such that uk is defined on
[tk−1, tk] × R

d×k and x �→ uk(t, x1, . . . , xk−1, x) is a solution (at least in the vis-
cosity sense) of

(2.12) ∂tuk + 1

2
σ0σ

�
0 : D2uk + μk · Duk = 0,

with terminal conditions

uk(tk, x1, . . . , xk) = uk+1(tk, x1, . . . , xk, xk) for k = 1, . . . , n − 1,

and un(tn, x1, . . . , xn) = g(x1, . . . , xn). Then we have Ṽ0 = u1(0, x0).

2.2.1. The algorithm. The unbiased simulation algorithm of Ṽ0 can be ob-
tained by an iteration of the estimator (2.6) on each time interval [tk, tk+1]. One
should just be careful about the integrability issue. Let us first introduce the algo-
rithm.

Recall that W be a standard d-dimensional Brownian motion, (τi)i>0 is a se-
quence of i.i.d. E(β)-exponential random variables independent of W . Then N =
(Ns)0≤s≤t and (Ti)i>0 are defined in (2.4). Define further for every k = 1, . . . , n,
Ñk := Ntk − Ntk−1 the number of jump arrivals on [tk−1, tk), and T̃ k

0 := tk−1 and
T̃ k

j := tk ∧ TNtk−1+j ,

�T̃ k
j := T̃ k

j − T̃ k
j−1, W̃ k

j := W
T̃ k

j
,

�W̃k
j := W̃ k

j − W̃ k
j−1 ∀j = 1, . . . , Ñk + 1.
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EXAMPLE 2.4. Let us illustrate the last notation in the case n = 2 in a context
of Ñ1 = 2 jump arrivals on [0, t1), and Ñ2 = 1 jump arrivals on [t1, t2). The total
number of jump arrivals is NT = 3.

For k = 1, we have T̃ 1
0 = 0, T̃ 1

1 = T1, T̃ 1
2 = T2 and T̃ 1

3 = t1; W̃ 1
0 = 0, W̃ 1

1 = WT1 ,
W̃ 1

2 = WT2 and W̃ 1
3 = Wt1 . For k = 2, we have T̃ 2

0 = t1, T̃ 2
1 = T3, T̃ 2

2 = t2, and

W̃ 2
0 = Wt1 , W̃ 2

1 = WT3 and W̃ 2
2 = Wt2 .

�
0 T1 T2 t1 T3 t2

We next introduce a process (X̃
k,x
j ), ∀j = 0,1, . . . ,Nk +1, for each k = 1, . . . , n

and initial condition x = (x0, x1, . . . , xk−1) ∈ R
d×k by X̃

k,x
0 := xk−1 and

(2.13) X̃
k,x
j+1 := X̃

k,x
j + μk

(
T̃ k

j , X̃
k,x
j

)
�T̃ k

j+1 + σ0�W̃k
j+1.

Similarly, for every j = 1, . . . , Ñk , we define an automatic differentiation weight,
with μk defined by (2.11),

(2.14) W̃k,x
j := (μk(T̃

k
j , X̃

k,x
j ) − μk(T̃

k
j−1, X̃

k,x
j−1)) · (σ�

0 )−1�W̃k
j+1

�T̃ k
j+1

.

We now introduce the algorithm for the path-dependent case, in a recursive
way. First, for x = (x0, x1, . . . , xn) ∈ R

d×(n+1), set ψ̃x
n+1 := g(x1, . . . , xn). Next,

for k = 1, . . . , n, denote

Xk,x := (
x0, x1, . . . , xk−1, X̃

k,x
Ñk+1

)
and

Xk,x,0 := (
x0, x1, . . . , xk−1, X̃

k,x
Ñk

1{Ñk>0}
)
.

Then given ψ̃ ·
k+1, we define

(2.15) ψ̃x
k := eβ(tk−tk−1)

(
ψ̃Xk,x

k+1 − ψ̃Xk,x,0

k+1 1{Ñk>0}
)
β−Ñk

Ñk∏
j=1

W̃k,x
j .

We finally obtain the numerical algorithm of the path-dependent case:

(2.16) ψ̃ := ψ̃
x0
1 .

EXAMPLE 2.5. In the context of Example 2.4:

• On [0, t1], we simulate the Brownian motion W on the discrete grid 0 < T1 <

T2 < t1 and let W̃ 1
0 = W0 = 0, W̃ 1

1 := WT1 , W̃ 1
2 := WT2 , W̃ 1

3 := Wt1 . We next

define (X̃
1,x0
j )0≤j≤3 on 0 < T1 < T2 < t1 by (2.13), and obtain two variables

W̃1,x0
1 and W̃1,x0

2 by (2.14).
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• On [t1, t2], given the initial value Wt1 , we simulate the Brownian motion W on
the discrete grid t1 < T3 < t2 and let W̃ 2

0 = Wt1 , W̃ 2
1 := WT3 , W̃ 2

2 := Wt2 . We

next define two processes (X̃
2,X̃1

2
j )0≤j≤2 and (X̃

2,X̃1
3

j )0≤j≤2 by (2.13) with two

different initial conditions: X̃
2,X̃1

2
0 := X̃1

2 and X̃
2,X̃1

3
0 := X̃1

3. Moreover, the two

different processes induce two different variables W̃2,X̃1
2

1 and W̃2,X̃1
3

1 by (2.14).
• The two different processes on [t1, t2] induce two different variables:

ψ̃
X̃1

3
2 := eβ(t2−t1)

(
g
(
X̃1

2, X̃
2,X̃1

3
2

)− g
(
X̃1

2, X̃
2,X̃1

3
1

))
β−1W̃2,X̃1

3
1

and

ψ̃
X̃1

2
2 := eβ(t2−t1)

(
g
(
X̃1

2, X̃
2,X̃1

2
2

)− g
(
X̃1

2, X̃
2,X̃1

2
1

))
β−1W̃2,X̃1

2
1 .

• With ψ̃
X̃1

2
2 , ψ̃

X̃1
3

2 and the variables on [0, t1], we obtain the variable

ψ̃ := ψ̃
x0
1 = eβt1

(
ψ̃

X̃1
3

2 − ψ̃
X̃1

2
2

)
β−2W̃1,x0

1 W̃1,x0
2 .

2.2.2. The integrability and representation result. We notice that the algo-
rithm in the path-dependent case is nothing else than an iterative algorithm of
the Markovian case, as suggested by the PDEs (2.12) in Remark 2.3. When the
random variable ψ̃ in (2.16) is integrable, it is not surprising to obtain the repre-
sentation Ṽ0 = E[ψ̃] as a consequence of Theorem 2.2. However, because of the
renormalization term (ψ̃Xk,x

k+1 − ψ̃Xk,x,0

k+1 1{Ñk>0}) in (2.15), the variance analysis is

less obvious. We provide here a sufficient condition to ensure that ψ̃ has finite
variance.

THEOREM 2.6. Suppose that μ : [0, T ]×R
d×n →R

d and g : Rd×n →R are
differentiable up to the order n, with bounded derivatives. Then

E
[
ψ̃2] < ∞ and Ṽ0 := E[ψ̃].

We will prove the integrability result here, and defer the proof of the represen-
tation result Ṽ0 := E[ψ̃] to Section 5. As preparation, we start with two technical
lemmas. Let π = (0 = s0 < s1 < · · · < sm = T ) be an arbitrary partition of the
interval [0, T ], μ̄ : [0, T ] × R

d → R
d a R

d−valued function. We define Xπ,x by
X

π,x
0 := x and

(2.17) X
π,x
k+1 := X

π,x
k + μ̄

(
sk,X

π,x
k

)
�sk+1 + Wsk+1 − Wsk .

Further, let ϕ : Rd → R be a smooth function, � > 0 and i = (i1, . . . , i�) ∈
{1, . . . , d}�, we denote ∂�

x,iϕ(x) := ∂�
xi1 ···xi�

ϕ(x).
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LEMMA 2.7. Suppose that x �→ μ̄(t, x) is differentiable up to order n with
uniformly bounded derivatives, and let Xπ,x be defined by (2.17) with initial con-
dition X

π,x
0 = x. Then x �→ X

π,x
k is differentiable up to order n and there is a

constant C independent of the partition π such that

max
1≤�≤n

max
i∈{1,...,d}�

max
0≤k≤m

∣∣∂�
x,iX

π,x
k

∣∣ ≤ C.

PROOF. For simplicity, we consider the one-dimensional d = 1 case, the mul-
tidimensional can follows from the same arguments. First, for � = 1, we have

∂xX
π,x
k+1 = ∂xX

π,x
k + ∂xμ̄

(
sk,X

π,x
k

)
∂xX

π,x
k �sk+1,

which implies that

∂xX
π,x
k+1 =

k+1∏
j=1

(
1 + ∂xμ̄

(
sk,X

π,x
k

)
�sk+1

)
.

Since ∂xμ̄(t, x) is uniformly bounded, it follows that ∂xX
π,x
k is bounded by some

constant C1 independent of 1 ≤ k ≤ m and the partition π . Denote by ∂i
xX

π,x
k the

ith derivative of x �→ X
π,x
k . By induction, it is easy to deduce that for � = 2, . . . , n,

∂�
xX

π,x
k+1 = ∂�

xX
π,x
k + P�

(
∂i
xμ̄

(
sk,X

π,x
k

)
, ∂i

xX
π,x
k , i = 1, . . . , � − 1

)
�sk+1,

where P� is a polynomial. By induction, it then follows that ∂�
xX

π,x
k is also bounded

by some constant C� independent of k = 1, . . . ,m and the partition π . �

LEMMA 2.8. Let (ψ̃x
k )1≤k≤n+1 be defined by (2.15). Then for every k =

2, . . . , n + 1, and every x = (x0, x1, . . . , xk−1) ∈ R
d×k , the map xk−1 �→ ψ̃x

k has
derivatives up to order k − 1 and

(2.18) max
1≤�≤k−1

∣∣∂�
xk−1

ψ̃x
k

∣∣ ≤ C

n∏
j=k

(
Ñj + 1

)j−1
.

PROOF. We proceed by induction. First, for k = n + 1, we have ψ̃x
n+1 :=

g(x, x1, . . . , xn) and hence |∂�
xn

ψ̃x| ≤ C for some constant C and for every � =
1, . . . , n.

Next, suppose that (2.18) holds true for ψ̃x
k+1, we know from (2.15) that

ψ̃x
k := (

ψ̃Xk,x

k+1 − ψ̃Xk,x,0

k+1 1{Ñk>0}
) Ñk∏
j=1

μk(T̃
k
j , X̃

k,x
j ) − μk(T̃

k
j−1, X̃

k,x
j−1)

β�T̃ k
j+1

· (σ�
0
)−1

�W̃k
j+1.

Then using the estimation in Lemma 2.7 we see that (2.18) is also true for ψ̃x
k .
�



UNBIASED SIMULATION OF SDE 11

PROOF OF THEOREM 2.6 (I). By Lemma 2.8, we know that x �→ ψ̃
x,x
2 is

differentiable and in particular uniformly Lipschitz with coefficient bounded by
2C

∏n
j=2(Ñ

j + 1)j−1. Then the definition of ψ̃
x0
1 falls into the Markovian case

n = 1, but with terminal condition x �→ ψ̃
x,x
2 . Notice that Ñk ≤ NT has a Poisson

distribution: P(NT = m) = e−βT (βT )m

m! . It follows that, for some constant C > 0,

E
[∣∣ψ̃x0

1

∣∣2] ≤ E

[
CÑk

4C2
n∏

j=2

(
Ñj + 1

)2(j−1)

]

≤ E
[
4C2CNT (NT + 1)n(n−1)] < ∞,

which implies that ψ̃ has finite variance. �

3. Unbiased simulation of general SDEs. Let us now consider the SDE (1.1)
with general diffusion coefficient function, that is, with drift and diffusion coeffi-
cients μ : [0, T ] ×R

d →R
d and σ : [0, T ] ×R

d →M
d :

X0 = x0, and dXt = μ(t,Xt) dt + σ(t,Xt ) dWt .

Our objective of study in this section is

V0 = E
[
g(XT )

]
for some function g : Rd →R.

We will provide a representation result of V0 in the same spirit of that in Section 2.

REMARK 3.1 (Lamperti’s transformation). In some cases, the SDE (1.1) may
be reduced to the constant diffusion coefficient case (2.1), by the so-called the
Lamperti transformation.

(i) When d = 1 and σ is positive an C1, the function h(t, x) := ∫ x
0

1
σ(t,y)

dy,
(t, x) ∈ [0, T ] × R is C1,2 and strictly increasing in x, with inverse function de-
noted h−1(t, ·). By Itô’s formula, it follows that Yt := h(t,Xt) satisfies the SDE

dYt =
(
∂th

(
t, h−1(t, Yt )

)+ μ(t, h−1(t, Yt ))

σ (t, h−1(t, Yt ))
− 1

2
∂xσ

(
t, h−1(t, Yt )

))
dt + dWt,

whose diffusion coefficient is a constant as in the SDE (2.1).
(ii) When d > 1, the last transformation is also possible when the diffusion field

σ is positive and its inverse σ−1 = Dh for some C1,2([0, T ]×R
d,Rd)-function h.

In particular, this requires that ∂xj
(σ−1)k,i = ∂xi

(σ−1)k,j for all k, i, j = 1, . . . , d .
Then it follows from an immediate application of Itô’s formula that Y := h(·,X)

is a Markov diffusion with unit diffusion.

3.1. An estimator with infinite variance for general SDEs. Let us impose the
following conditions on coefficient functions μ and σ .
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ASSUMPTION 3.2. The functions (μ,σ ) : [0, T ] × R
d → R

d × M
d and

a := 1
2σσ� : [0, T ]×R

d →M
d are uniformly bounded, and are uniformly Hölder

in the time variable, uniformly Lipschitz in the space variable, that is, for some
constant L,

(3.1)
∣∣(μ,σ, a)(t, x) − (μ,σ, a)(s, y)

∣∣ ≤ L
(√|t − s| + |x − y|),

for all (t, x), (s, y) ∈ [0, T ] × R
d ; moreover σ(t, x) is uniformly elliptic, that is,

for some constant ε0 > 0,

a(t, x) := 1

2
σσ�(t, x) ≥ ε0Id for all (t, x) ∈ [0, T ] ×R

d .

Recall that (Tk)k≥0 are defined by (2.4) with a sequence of i.i.d. E(β)-
exponential random variables, and W is a Brownian motion; the increment of the
Brownian motion are defined by �Wtk := Wtk − Wtk−1 , and �Tk := Tk − Tk−1.
As in (2.5), we introduce X̂ as solution of the Euler scheme on discrete grid by
X̂0 := x0 and

X̂Tk+1 := X̂Tk
+ μ(Tk, X̂Tk

)�Tk+1

+ σ(Tk, X̂Tk
)�WTk+1, k = 0, . . . ,NT .

(3.2)

We then introduce a representation formula by

(3.3) ψ̂ := eβT [g(X̂T ) − g(X̂TNT
)1{NT >0}

]
β−NT

NT∏
k=1

(
W1

k +W2
k

)
,

where, for each k = 1, . . . ,NT ,

W1
k := [

μ(Tk, X̂Tk
) − μ(Tk−1, X̂Tk−1)

] · (σ�(Tk, X̂Tk
))−1�WTk+1

�Tk+1

and

W2
k := [

a(Tk, X̂Tk
) − a(Tk−1, X̂Tk−1)

]
:
[(

σ�(Tk, X̂Tk
)
)−1 �WTk+1�W�

Tk+1
− �Tk+1Id

�T 2
k+1

σ(Tk, X̂Tk
)−1

]
.

(3.4)

THEOREM 3.3. Suppose that Assumption 3.2 holds true, and g is Lipschitz.
Then

E
[|ψ̂ |] < ∞ and V0 = E[ψ̂].

PROOF. (i) The random vectors ξ1
k := �WTk√

�Tk
and ξ2

k := �WTk
�W�

Tk
−�TkId

�Tk
, k =

1, . . . ,NT + 1, are independent of �Tk conditional on {�Tk > 0} = {NT ≥ k − 1},
and have finite second-order moment. Notice that μ(t, x) and a(t, x) are uniformly
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bounded, and 1/2-Hölder-continuous in t and Lipschitz in x, and σ is uniformly
bounded from below above zero. Then, for each k = 1, . . . ,NT ,∣∣W1

k

∣∣ ≤ C
(√

�Tk + |X̂Tk
− X̂Tk−1 |

)∣∣∣∣�WTk+1

�Tk+1

∣∣∣∣
≤ C

(
1 +√

�Tk + ∣∣ξ1
k

∣∣)∣∣ξ1
k+1

∣∣√ �Tk

�Tk+1
,

where the constant C > 0 may vary from term by term but is uniformly bounded
for all k. Similarly, one obtains that

∣∣W2
k

∣∣ ≤ C
(
1 +√

�Tk + ∣∣ξ1
k

∣∣)∣∣ξ2
k+1

∣∣√ �Tk

�Tk+1

1√
�Tk+1

.

As �Tk ≤ T , it follows that

∣∣W1
k

∣∣+ ∣∣W2
k

∣∣ ≤ C
(
1 + ∣∣ξ1

k

∣∣)(∣∣ξ1
k+1

∣∣+ ∣∣ξ2
k+1

∣∣)√ �Tk

�Tk+1

1√
�Tk+1

,

for some constant C > 0 independent of k. In addition, we have by the Lipschitz
condition on g that

E
[∣∣g(X̂T ) − g(X̂TNT

)
∣∣∣∣�TNT +1

]
< C

√
�TNT +1.

Then it follows from the expression of ψ̂ in (3.3) that

E
[|ψ̂ |] ≤ CE

[
NT∏
k=1

C√
�Tk+1

1{NT ≥1}
]

+ CE
[∣∣g(X̂T )

∣∣1{NT =0}
]

≤ CE

[
NT∏
k=1

C√
�Tk+1

]
+ CE

[∣∣g(x0 + μ(0, x0)T + σ(0, x0)WT

)∣∣]
for some constant C > 0, where we have also used the independence of the ξ i

k’s
and the boundedness of their second-order moments. The integrability of ψ̂ is now
a direct consequence of Lemma A.1.

(ii) The proof of the equality V0 = E[ψ̂] will be completed in Section 5. �

To conclude, we notice that the variable ψ̂ is of order
∏NT

k=1 1/
√

�Tk+1 in gen-
eral cases, and the latter is integrable but has infinite variance. Therefore, the rep-
resentation result through ψ̂ does not induce the standard dimension-free rate of
convergence of the classical central limit theorem. Nevertheless, we believe that it
is still interesting as an alternative to the representation of Bally and Kohatsu-Higa
[2], Section 6.1.
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3.2. An estimator for one-dimensional driftless SDE. To overcome the prob-
lem of variance explosion of the estimator (3.3), we will consider a higher order
approximation X̂ of X, and obtain an estimator of finite variance for the one-
dimensional (d = 1) driftless SDE of the form

(3.5) X0 = x0, dXt = σ(t,Xt) dWt .

Our objective is to compute

V0 := E
[
g(XT )

]
for some function g :R→R.

Recall (Tk)k≥0 has been introduced in (2.4) from a sequence of i.i.d. exponential
random variables, independent of the Brownian motion W . We next define X̂ by
X̂0 = x0,

(3.6) dX̂t = (
σ(Tk, X̂Tk

) + ∂xσ (Tk, X̂Tk
)(X̂t − X̂Tk

)
)
dWt on [Tk, Tk+1],

for k = 0,1, . . . ,NT . Denoting

(3.7) ck
1 := σ(Tk, X̂Tk

) − ∂xσ (Tk, X̂Tk
)X̂Tk

and ck
2 := ∂xσ (Tk, X̂Tk

),

we write the solution of the above linear SDE (3.6) as

(3.8) X̂Tk+1 = X̂Tk
+ σ(Tk, X̂Tk

)�WTk+1 if ck
2 = 0

and

X̂Tk+1 = − ck
1

ck
2

+ ck
1

ck
2

exp
(
−(ck

2)
2

2
�Tk+1 + ck

2�WTk+1

)

+ X̂Tk
exp

(
−(ck

2)
2

2
�Tk+1 + ck

2�WTk+1

)
if ck

2 �= 0.

(3.9)

We then define ψ̂ by

(3.10) ψ̂ := eβT [g(X̂T ) − g(X̂TNT
)1{NT >0}

]
β−NT

NT∏
k=1

W2
k,

where the automatic differentiation weight is given by (see Lemma 5.8 below)

(3.11) W2
k := a(Tk, X̂Tk

) − ãk

2a(Tk, X̂Tk
)

(
−∂xσ (Tk, X̂Tk

)
�WTk+1

�Tk+1
+ �W 2

Tk+1
− �Tk+1

�T 2
k+1

)
,

with a(·) := 1
2σ 2(·), ãk := 1

2 σ̃ 2
k and σ̃k := σ(Tk−1, X̂Tk−1) + ∂xσ (Tk−1, X̂Tk−1) ×

(X̂Tk
− X̂Tk−1).

Similar to the discussion at the end of Section 3.1 (see also Remark 5.7 below),
the variable ψ̂ in (3.10) is integrable but has infinite variance in general. In order
to bypass this problem, we introduce antithetic variable X̂−

T of X̂T defined by

X̂−
T := X̂TNT

− σ(TNT
, X̂TNT

)�WTNT
if c

NT

2 = 0
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and

X̂−
T = −c

NT

1

c
NT

2

+ c
NT

1

c
NT

2

exp
(
−(c

NT

2 )2

2
�TNT +1 − c

NT

2 �WTNT +1

)

+ X̂TNT
exp

(
−(c

NT

2 )2

2
�TNT +1 − c

NT

2 �WTNT +1

)
if c

NT

2 �= 0.

Denote W−
k := W2

k for k = 1, . . . ,NT − 1 and

W−
NT

:= a(TNT
, X̂NT

) − ãNT

2a(TNT
, X̂NT

)

×
(
∂xσ (TNT

, X̂NT
)
�WTNT +1

�TNT +1
+

�W 2
TNT +1

− �TNT +1

�T 2
NT +1

)
.

We then introduce

(3.12)

ψ := ψ̂ + ψ̂−

2

with ψ̂− := eβT [g(X̂−
T

)− g(X̂TNT
)1{NT >0}

]
β−NT

NT∏
k=1

W−
k .

Notice that the Brownian motion is symmetric, thus ψ̂− has exactly the same dis-
tribution as ψ̂ , and it serves as an antithetic variable.

ASSUMPTION 3.4. The diffusion coefficient σ(·) satisfies σ(t, x) ≥ ε > 0 for
all (t, x) ∈ [0, T ] × R, σ(t, x) is bounded and Lipschitz in (t, x), ∂xσ (t, x) is
bounded and continuous in (t, x) and uniformly Lipschitz in x. Further, the termi-
nal condition function g(·) ∈ C2

b(R).

THEOREM 3.5. Suppose that Assumption 3.4 holds true. Then

(3.13) E
[|ψ̂ |]+E

[|ψ |2] < ∞; and V0 = E[ψ̂] = E[ψ].

The proof is reported in Section 5.4.

REMARK 3.6. (i) As ψ has finite variance, we may use the representation of
Theorem 3.5 to built an unbiased Monte Carlo estimator of V0. However, given the
assumed regularity conditions, and the restriction to the one-dimensional setting,
such a Monte Carlo approximation is not competitive with the corresponding PDE
based approximation methods. However, we believe that the present methodology
is open to potential improvements, and we hope to improve our results in some
future work so as to address the higher dimensions.



16 P. HENRY-LABORDÈRE, X. TAN AND N. TOUZI

(ii) For a general SDE with drift function and/or d ≥ 1, we can also consider a
similar choice of (μ̂, σ̂ ), which leads to μ̂(t, x) = c1 + c2x and σ̂ (t, x) = c3 + c4x

and a linear SDE

(3.14) dX̂t = (c1 + c2X̂t ) dt + (c3 + c4X̂t ) dWt ,

where c1 ∈ R
d , c2, c3 ∈ M

d and c4 is linear operator from R
d to M

d . However,
to the best of our knowledge, the exact simulation of a linear SDE (3.14) in high
dimensional case, as well as the associated automatic differentiation (Malliavin)
weight as in (3.11) (see also Lemma 5.8 below), is still an open question.

4. Numerical examples. Notice that our estimator ψ̂ given by (2.6) [resp.,
ψ̃ given by (2.15) and (2.16)] is an unbiased estimator for V0 in (2.2) [resp., Ṽ0
in (2.10)]. Then the error analysis of the Monte Carlo approximation reduces to
the statistical error. Hence, the computation cost to achieve the accuracy O(ε)

for the approximation of V0 (resp., Ṽ0) is of order O(ε−2), thus avoiding of the
dependence on the discretization error.

By combining different levels of simulations, the MultiLevel Monte Carlo
(MLMC) method proposed by Giles [11] achieves a computation cost of order
O(ε−2(log ε)2) or O(ε−2) depending on the strong discretization error rate. In
particular, by considering a randomization of the level, Rhee and Glynn [20] ob-
tained an unbiased estimator. In the following, we provide some numerical results
and comparisons between our unbiased simulation method with the Euler based
MLMC method proposed by [11].

4.1. Two one-dimensional SDEs. Let W be a one-dimensional standard Brow-
nian motion, we consider the SDE

S0 = 1, dSt = 0.1(
√

M ∧ St − 1)St dt + 1

2
St dWt,

where M is a large constant introduced in order to guarantee the Lipschitz property
of the drift coefficient (in our numerical implementation, we have observed that
the value of M is not relevant for large M , and that the numerical finding are not
changed by taking M = ∞; this hints that our results may be extended beyond the
case of Lipschitz coefficients). Applying Lemperti’s transformation Xt := log(St ),
we reduce the above SDE to the constant diffusion coefficient case, in form of
(2.1),

(4.1) X0 = 0, dXt = (
0.1

(√
M ∧ eXt − 1

)− 1/8
)
dt + 1

2
dWt .

We implement our unbiased simulation method for the two following expectations:

(4.2) V0 := E
[
(ST − K)+

]
and Ṽ0 := E

[(
1

n

n∑
k=1

Stk − K

)
+

]
,
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where we choose K = 1, T = 1, n = 10 and tk := k
n
T . Notice that the path-

dependent example does not satisfy the differentiability sufficient condition in The-
orem 2.6. However, our numerical findings do not show any numerical difficulty
in the present setting.

Using different numbers N of simulations, we obtain the standard deviation
as (statistical) error of our estimator. Next, using the errors obtained by our un-
biased simulation method, we implement the MLMC algorithm in Section 5 of
Giles [11], and we compare the computation time (in seconds) of the two meth-
ods. More precisely, the statistical error of the unbiased simulation method is given

by
√

Var[ψ̂]/N , where Var[ψ̂] denotes the estimated variance of ψ̂ . For the imple-

mentation of MLMC, we choose M = 4, NL = 104 and use equation (10) in [11]
as criteria to stop the loop in MLMC (see more details in Section 5 of [11] for the
meaning of M and NL).

The numerical results are given in Tables 1 and 2. We observe that with the same
Monte Carlo error, both methods have very close performance. In the present par-
ticular example, the computational time of our methods is slightly smaller. How-
ever, the conclusion may change depending on the nature of the example. Let us
consider the problem

(4.3) V0 := E
[
sin(XT )

]
,

where X is defined by the SDE, for some constant μ0 ∈ R,

X0 = 0, dXt = μ0 cos(Xt) dt + 1

2
dWt .

We implement the MLMC algorithm and our unbiased simulation method with
different value of β , but with a given fixed error ε = 0.0002. The two methods
provide very close estimation of value V0, so we give a comparison on the compu-
tation time in Figure 1. We can observe that β in the unbiased simulation method

TABLE 1
Numerical results for V0 in (4.2) (case d = 1), US denotes our unbiased simulation algorithm with

β = 0.1, the computation times are expressed in seconds

Mean value Statistical error Computation time

US (N = 105) 0.204864 0.00140709 0.016814
MLMC 0.204993 0.000949166 0.032017

US (N = 106) 0.205396 0.000444462 0.171835
MLMC 0.205602 0.000308634 0.234526

US (N = 107) 0.20552 0.000142554 1.63013
MLMC 0.205648 0.0001 1.96197

US (N = 108) 0.205641 4.52282e−05 16.2189
MLMC 0.205638 3.18855e−05 18.3833
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TABLE 2
Numerical results for Ṽ0 in (4.2) (case d = 1), US denotes our unbiased simulation algorithm with

β = 0.05, the computation times are expressed in seconds

Mean value Statistical error Computation time

US (N = 105) 0.127032 0.000762635 0.144998
MLMC 0.127053 0.000536248 0.323337

US (N = 106) 0.126363 0.000241231 1.40843
MLMC 0.126747 0.000169842 1.8194

US (N = 107) 0.126703 7.6418e−05 13.9005
MLMC 0.126643 5.37691e−05 16.7499

should not be too big nor too small, to minimize the computation effort. When
μ0 = 0.2, the computation time of MLMC method is slightly longer than the US
method with β ≈ 0.05. However, when μ0 = 0.5, the computation time MLMC
method is always smaller than the US method for any choice of β > 0. This shows
that, in the context of the present example, the performance of our unbiased simu-
lation method is of the order of that of the multilevel Monte Carlo method.

FIG. 1. Comparison of the computation time of MLMC method and unbiased simulation method
for problem (4.3), with the same given error.
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4.2. A multidimensional SDE. Let W = (W 1, . . . ,W 4)� be a 4-dimensional
standard Brownian motion, and σ0 the 4 × 4 be the lower triangular matrix such
that

σ0σ
�
0 =

⎛⎜⎜⎝
1 1/2 1/2 1/2

1/2 1 1/2 1/2
1/2 1/2 1 1/2
1/2 1/2 1/2 1

⎞⎟⎟⎠ .

We consider the SDE

dXt = μ(t,Xt) dt + σ0 dWt, Xi
0 = 0, i = 1, . . . ,4,

with drift function μ(t, x) = (μi(t, x), i = 1, . . . ,4) be given by μi(t, x1, . . . ,

x4) = 0.1(
√

M ∧ (3
4 exp(xi) + 1

4exp(x)) − 1) − 1
8 , where exp(x) := (ex1 + · · · +

ex4)/4. We then consider two problems:

(4.4)

V0 := E

[(
1

4

4∑
i=1

eM∧Xi
T − K

)
+

]
and

Ṽ0 := E

[(
1

4n

n∑
k=1

4∑
i=1

e
M∧Xi

tk − K

)
+

]
,

where we choose K = 1, T = 1, n = 10 and tk := k
n
T and M is a large num-

ber so as to ensure that the terminal condition is Lipschitz. As in the one-
dimensional case, we implement our unbiased simulation method using different
sample sizes N . Then we use the errors, obtained from our unbiased simulation
method, in the MLMC algorithm in Section 5 of Giles [11], and we compare the
computation time (in seconds) of the two methods.

The numerical results are given in Tables 3 and 4. We observe that both meth-
ods have very similar performance, with a slightly small advantage for our method.
However, similar to the one-dimensional case, the MLMC algorithm could be bet-
ter in other examples.

TABLE 3
Numerical results for V0 in (4.4) (case d = 4), US denotes our unbiased simulation algorithm with

β = 0.5, the computation times are expressed in seconds

Mean value Statistical error Computation time

US (N = 105) 0.739374 0.00921078 0.109151
MLMC 0.732707 0.00568921 0.136884

US (N = 106) 0.735745 0.00239613 1.06639
MLMC 0.733539 0.00176862 1.15886

US (N = 107) 0.73659 0.000831597 10.6957
MLMC 0.737087 0.000578058 12.171
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TABLE 4
Numerical results for Ṽ0 in (4.4) (case d = 4), US denotes our unbiased simulation algorithm with

β = 0.05, the computation times are expressed in seconds

Mean value Statistical error Computation time

US (N = 105) 0.382186 0.00247547 0.769847
MLMC 0.381071 0.00167112 2.07589

US (N = 106) 0.382846 0.000762393 7.65796
MLMC 0.383107 0.000535905 10.8444

US (N = 107) 0.383282 0.000244861 85.0265
MLMC 0.383653 0.00017245 104.223

4.3. A one-dimensional driftless SDE. Finally, we provide an example of a
one-dimensional driftless SDE. We recall that under the assumed regularity in The-
orem 3.5, we are not expecting our method to be competitive with the PDE based
approximations. Instead, our objective is to study numerically the performance of
the estimator (3.12). Let

(4.5) V0 = E
[
(XT − K)+

]
with X0 = 1, dXt = 2σ

1 + X2
t

dWt .

We perform the following three implementations:

– the standard Euler scheme with time step �t = 1/10 and simulation number
N = 106,

– the unbiased simulation method (3.12) with β = 0.1 and simulation number
N = 106,

– the MLMC scheme using the statistical error obtained from the unbiased simu-
lation method.

The results displayed in Table 5 show that all three methods provide very similar
estimation of V0. In particular, the unbiased simulation method has a significant
advantage.

TABLE 5
Numerical results for V0 in (4.5) (case d = 1), US denotes the unbiased simulation algorithm (3.12)

with β = 0.1, the computation times are expressed in second. Notice also that the unbiased
algorithm (3.12) contains implicitly an antithetic variance reduction, which makes its statistical

error even smaller than that of the Euler scheme

Mean value Statistical error Computation time

Euler scheme 0.161483 0.000196733 0.570541
US 0.160362 9.34729e−05 0.201904
MLMC 0.16057 6.61696e−05 6.65799
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5. Proofs.

5.1. A toy example. Before completing the technical part of the proofs for
Theorems 2.2, 2.6 and 3.3, we would like to illustrate the main idea by studying
a simplified example in the one-dimensional case with unit diffusion. Consider
the processes X defined by the drift coefficients μ : R+ × R −→ R, and X̂ with
constant drift function b ∈ R:

Xt = x0 +
∫ t

0
μ(s,Xs) ds + Wt, and X̂t := x0 + bt + Wt, t ≥ 0.

For β > 0, let (τk)k≥1 be a sequence of i.i.d. random variable with distribution
E(β), define (Tk)k≥1 by (2.4), �Tk+1 := Tk+1 − Tk , �Wk+1 := WTk+1 − WTk

, and
let

(5.1) ψ = eβT g(X̂T )

NT∏
k=1

(μ(Tk, X̂Tk
) − b)�WTk+1

β�Tk+1
.

PROPOSITION 5.1. Let μ(·, ·) and g(·) be bounded smooth functions in C2
b .

Then for all constants b ∈ R and β > 0:

E
[|ψ |] < ∞ and E

[
g(XT )

] = E[ψ].
PROOF. Since μ and g are uniformly bounded, and for some constant C > 0,

the conditional expectation E�Tk+1[|�WTk+1 |] ≤ C/
√

�Tk+1, the integrability of
ψ follows from Lemma A.1. In order to prove that E[g(XT )] = E[ψ], we intro-
duce

ψn = eβTn+1

NT ∧n∏
k=1

(μ(Tk, X̂Tk
) − b)�WTk+1

β�Tk+1

×
(
g(X̂T )1{NT ≤n} +

(
μ − b

β
∂xu

)
(Tn+1, X̂Tn+1)1{NT >n}

)
,

for all n ≥ 0, with the convention
∏0

k=1 ≡ 1. It is clear that (ψn)n≥0 are all inte-
grable by Lemma A.1.

(i) Since μ and g are smooth functions, it follows from the Feynman–Kac for-
mula that E[g(XT )] = u(0, x0), where u ∈ C∞

b ([0, T ] × R) is a solution of the
PDE

∂tu(t, x) + 1

2
∂2
xxu(t, x) + μ(t, x)∂xu(t, x) = 0 for all (t, x) ∈ [0, T ) ×R,

with terminal condition u(T , x) = g(x). Rewriting the above PDE in the following
equivalent way:

−∂tu(t, x) − b∂xu(t, x) − 1

2
∂2
xxu(t, x) = (

μ(t, x) − b
)
∂xu(t, x),
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we may also obtain the Feynman–Kac representation formula

u(0, x0) = E

[
g(X̂T ) +

∫ T

0

(
μ(t, X̂t ) − b

)
∂xu(t, X̂t ) dt

]
= E

[
eβT g(X̂T )1{T1≥T }

+ eβT1

β

(
μ(T1, X̂T1) − b

)
∂xu(T1, X̂T1)1{T1<T }

]
= E[ψ0],

(5.2)

where the second equality follows from the fact that T1 = T ∧ τ1, and τ1 is a
random variable independent of X̂, with density function βe−βt1{t≥0}.

(ii) For bounded and continuous function φ0, and t > 0, we obtain by direct
differentiation of the gaussian marginal density function of the Brownian motion
that

(5.3) ∂xE
[
φ0(x + bt + Wt)

] = E

[
φ0(x + bt + Wt)

Wt

t

]
.

Notice also that �WT1 = WT1 , �T1 = T1 and X̂T1 := x0 + bT1 + WT1 . It follows
by Lemma A.2 that

∂xu(0, x0) = E

[
eβ�T1

�WT1

�T1

(
g(X̂T )1{T ≤T1}

+ μ − b

β
∂xu(T1, X̂T1)1{T1<T }

)]
.

(5.4)

Changing the initial condition (0, x0) to (T1, X̂T1), one obtains that, whenever T1 <

T ,

∂xu(T1, X̂T1) = E

[
eβ�T2

�WT2

�T2

(
g(X̂T )1{T ≤T2}

+ μ − b

β
∂xu(T2, X̂T2)1{T2<T }

)∣∣∣T1, X̂T1

]
.

Plugging the above expression of ∂xu(T1, X̂T1) into the right-hand side of (5.2),
and using the fact that T ≤ T2 is equivalent to NT − ≤ 1, and P[{NT − ≤ 1} \ {NT ≤
1}] = 0, it follows that u(0, x0) = E[ψ1].

(iii) Next, changing the initial condition in (5.4) from (0, x0) to (T2, X̂T2) when
T2 < T , and then plugging the corresponding expression of ∂xu(T2, X̂T2) into ψ1,
it follows that u(0, x0) = E[ψ2]. Repeating the procedure, we have for all n ≥ 0,

E
[
g(XT )

] = u(0, x0) = E[ψn].
Finally sending n → ∞, and using Lemma A.1 together with the dominated con-
vergence theorem, it follows that E[g(XT )] = E[limn→∞ ψn] = E[ψ]. �
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REMARK 5.2. We may also interpret formally the representation ψ in (5.1)
as the expansion of the diffusion process X around a Brownian motion. Let b = 0
and μ(t, x) ≡ μ0 for some constant μ0 ∈ R, so that X̂t = Wt and Xt = μ0t + Wt .

Using the fact that P(NT = k) = e−βT (βT )k

k! , ∀k ≥ 0, it follows formally that

(5.5)

E
[
g(XT )

] = E

[ ∞∑
k=0

(μ0T )k

k! g(k)(WT )

]

= E

[
eβT g(WT )

NT∏
k=1

(
μ0�Wk+1

β�Tk+1

)]
,

where the second equality follows by the fact that

P[NT = k] = eβT (βT )k

k! , and

E

[
g(k)

(
k∑

i=0

�Wi+1

)]
= E

[
g

(
k∑

i=0

�Wi+1

)
k∏

i=1

�Wi+1

�Ti+1

]
.

In particular, the right-hand side of (5.5) is exactly E[ψ] defined by (5.1) in this
case.

Notice that ψ in (5.1) is integrable, but has infinite variance in general. In the
next subsection, we exploit the arbitrariness of the constant b, choosing it adap-
tively at each time Tk , so as to restore square integrability of the modified estimator.

5.2. A regime switching diffusion representation. For d ≥ 1, T > 0, let
(μ,σ ) : [0, T ] ×R

d →R
d ×M

d be bounded and continuous functions satisfying∣∣μ(t, x) − μ(t, y)
∣∣+ ∣∣σ(t, x) − σ(t, y)

∣∣
≤ L|x − y|; (t, x, y) ∈ [0, T ] ×R

d ×R
d,

(5.6)

for some constant L > 0. We start by considering a linear parabolic PDE

(5.7) ∂tu + μ · Du + a : D2u = 0 on [0, T ) ×R
d,

with terminal condition u(T , x) = g(x), where a(·) := 1
2σσ�(·), A : B :=

Tr(AB�) for any two d × d dimensional matrices A,B ∈ M
d , and D, D2 denote

the gradient and Hessian operators with respect to the space variable x. Next, let
us consider the diffusion process (X

0,x0
s )s∈[0,T ] defined as unique strong solution

of the SDE

(5.8) X0 = x0, and dXs = μ(s,Xs) ds + σ(s,Xs) dWs, s ∈ [0, T ].
Recall that for β > 0, (τi)i>0 is a sequence of i.i.d. E(β)-exponential random
variables, which is independent of the Brownian motion W . We define

Tk :=
(

k∑
i=1

τi

)
∧ T , k ≥ 0, and Nt := max{k : Tk < t}.
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Then (Nt)0≤t≤T is a Poisson process with intensity β and arrival times (Tk)k>0,
and T0 = 0. We also introduce, for all k > 0, �Wk

t := W(Tk−1+t)∧Tk
− WTk−1 . It is

clear that the sequence of processes (�Wk· )k>0 are mutually independent.
Let (μ̂, σ̂ ) : (s, y, t, x) ∈ [0, T ]×R

d ×[0, T ]×R
d −→R

d ×M
d be uniformly

bounded, and continuous in t , Lipschitz in x, we define X̂ by

(5.9) X̂0 := x0 and dX̂t = μ̂(�t , t, X̂t ) dt + σ̂ (�t , t, X̂t ) dWt ,

with �t := (TNt , X̂TNt
). In other words, the process X̂ is defined recursively by

X̂0 = x0, and for all k ≥ 0,

X̂Tk+1 = X̂Tk
+

∫ Tk+1

Tk

μ̂(Tk, X̂Tk
, s, X̂s) ds +

∫ Tk+1

Tk

σ̂ (Tk, X̂Tk
, s, X̂s) dWs.

EXAMPLE 5.3. (i) Let (μ̂, σ̂ )(s, y, t, x) = (μ,σ )(s, y), then X̂ is defined as a
Euler scheme as in (3.2), that is, X̂0 = x0, and

X̂Tk+1 = X̂Tk
+ μ(Tk, X̂Tk

)�Tk+1 + σ(Tk, X̂Tk
)�WTk+1 .

(ii) When μ̂(·) ≡ 0 and σ̂ (s, y, t, x) = σ(s, y)+∂xσ (s, y)(x −y), then the SDE
(5.9) turns to be a linear SDE, whose solution is given explicitly in (3.8).

We first formulate an assumption on the existence of automatic differentiation
weights associated to the SDE (5.9). Let θ ∈ [0, T ) ×R

d and (t, x) ∈ [0, T ] ×R
d ,

the process (X̃t,x,θ
s )s∈[t,T ] is defined by the SDE

(5.10) X̃
t,x,θ
t := x, dX̃t,x,θ

s = μ̂
(
θ, s, X̃t,x,θ

s

)
ds + σ̂

(
θ, s, X̃t,x,θ

s

)
dWs,

ASSUMPTION 5.4. There is a pair of measurable functions (Ŵ1
θ (·),Ŵ2

θ (·)),
called automatic differentiation weights, taking values in R

d ×M
d , such that:

• Ŵ i
θ (t, x, s − t, (Wr − Wt)r∈[t,s]) is integrable, for all θ ∈ [0, T ) × R

d , (t, x) ∈
[0, T ) ×R

d , s > t , i = 1,2,
• and for all bounded and continuous functions φ :Rd →R,

Di
E
[
φ
(
X̃t,x,θ

s

)] = E
[
φ
(
X̃t,x,θ

s

)
Ŵ i

θ

(
t, x, s − t, (Wr − Wt)r∈[t,s]

)]
, i = 1,2,

where D,D2 denote the gradient and Hessian operators with respect to the vari-
able x.

Let a(·) := 1
2σσ�(·), â(·) := 1

2 σ̂ σ̂�(·), �̂0 = (t, x), and �̂k = (Tk, X̂Tk
),

�fk := (
(μ, a) − (μ̂, â)(�̂k−1, .)

)
(Tk, X̂Tk

) and

Ŵk−1 := (
Ŵ1

�̂k−1
,Ŵ2

�̂k−1

)(
Tk−1, X̂Tk−1, Tk,�Wk·

) ∈ R
d ×M

d,
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for k ≥ 1. We next define

(5.11) ψ̂ := eβT (g(X̂T ) − g(X̂TNT
)1{NT >0}

)
β−NT

NT∏
k=1

(�fk • Ŵk),

where (p,P ) • (q,Q) := p · q + P : Q for all p,q ∈ R
d,P,Q ∈ M

d . Here, we
use the convention

∏0
k=1 = 1. Finally, for all n ≥ 1, we also introduce

ψ̂n = eβTn+1

(
NT ∧n∏
k=1

(
β−1�fk • Ŵk

))

× [(
g(X̂T ) − g(X̂TNT

)1{NT >0}
)
1{NT ≤n}

+ β−1(�fn+1 • (
Du,D2u

)
(Tn+1, X̂Tn+1)

)
1{NT >n}

]
.

(5.12)

ASSUMPTION 5.5. (i) The sequence (ψn)n≥0 is uniformly integrable.
(ii) Let (ei)i=1,...,d denote the canonical basis of Rd . There is some ε0 > 0, such

that for all (t, x) ∈ [0, T ) × R
d and θ ∈ [0, T ) × R

d , n ≥ 0 and i = 1, . . . , d , all
the following random vectors is integrable:

Ŵ1
θ

(
t, x, τ1 ∧ (T − t), (Wr − Wt)r∈[t,(t+τ1)∧T ]

)
,

sup
ε∈(0,ε0]

1

ε

[
Ŵ1

θ

(
t, x + εei, τ1 ∧ (T − t), (W· − Wt)

)
− Ŵ1

θ

(
t, x, τ1 ∧ (T − t), (W· − Wt)

)]
and

�fn+1 • (
Du,D2u

)
(Tn+1, X̂Tn+1)Ŵn.

THEOREM 5.6. Suppose that the PDE (5.7) has a classical solution u ∈
C

1,3
b ([0, T ] × R

d), suppose in addition that Assumptions 5.4 and 5.5 hold true.
Then ψ̂ is integrable and u(0, x0) = E[ψ̂].

REMARK 5.7. (i) The condition that u ∈ C
1,3
b ([0, T ] × R

d) may be relaxed
in the concrete applications of Theorem 5.6. This will be indeed performed in
Section 3.3 by exploiting the integrability of the automatic differentiation weights
(Ŵ1

θ ,Ŵ2
θ ) of Assumption 5.4.

(ii) By definition, the automatic differentiation weight satisfies E[Ŵk] = 0, then
ψ̂ in (5.11) has the same expectation than the estimator

eβT g(X̂T )β−NT

NT∏
k=1

(�fk • Ŵk).
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However, as we will see in the following, Ŵk is generally of order 1
�Tk+1

=
1

Tk+1−Tk
, where conditioning on NT = n, (T1, . . . , TNT

) follows the law of statis-
tic order of uniform distribution on [0, T ] and, therefore, E[1/�TNT +1] = ∞.
Consequently, the weight function Ŵk is typically of infinity variance, or even
not integrable, in general. In the definition of ψ̂ in (5.11), the additional term
−g(X̂TNT

)1{NT >0} can be seen as a control variate so as to guarantee the inte-
grability of ψ̂ .

(iii) As a consequence of the integrability problems raised in (ii), Assump-
tion 5.5 is in fact implicitly a restriction on the choice of the coefficients μ̂ and
σ̂ , and we cannot expect a representation for u(t, x) with arbitrary μ̂ and σ̂ ; see
Section 5.3 below.

PROOF OF THEOREM 5.6. (i) Recall that u ∈ C
1,3
b ([0, T ] ×R

d) is a classical
solution of PDE (5.7). Denote (μ̂θ , âθ )(·) = (μ̂, â)(θ, ·), one can rewrite (5.7) in
the following equivalent way:

(5.13) −∂tu − μ̂θ · Du − âθ : D2u − (
(μ − μ̂θ ) · Du + (a − âθ ) : D2u

) = 0.

Using the Feynmann–Kac formula, it follows that

u(0, x0) = E

[
g
(
X̃

0,x0,θ
T

)
+

∫ T

0

(
(μ − μ̂θ ) · Du + (a − âθ ) : D2u

)(
s, X̃0,x0,θ

s

)
ds

]
,

(5.14)

where X̃0,x0,θ is defined by (5.10), which coincides with X̂ in (5.9) on [0, T1]
whenever θ = (0, x0).

Recall that T1 = τ1 ∧ T , where τ1 is a random variable of density βe−βs1{s≥0}
independent of the Brownian motion W . Fixing θ = (0, x0), it follows that

u(0, x0) = E
[
eβT1

(
g(X̂T )1{NT =0} + β−1�f1 • (

Du,D2u
)
(T1, X̂T1)1{NT >0}

)]
= E[ψ̂0].

(ii) Let us now go back to the expression (5.14), and derive an expression for the
derivatives Du(0, x0) and D2u(0, x0). First, for Du(0, x0), we use the integrability
condition in Assumption 5.5 with Lemma A.2, and also the fact that Du(·) is
continuous, it follows that

Du(0, x0) = E

[
g
(
X̃

0,x0,θ
T

)
Ŵ1

θ (x0, T )

+
∫ T

0

(
(μ − μ̂θ ) · Du + (a − âθ ) : D2u

)(
s, X̃0,x0,θ

s

)
Ŵ1

θ (x0, s)ds

]
,

where we simplify the notation Ŵ1
θ (0, x0, s, (Wr − Wt)r∈[0,s]) to Ŵ1

θ (x0, s). Then
by the independence of τ1 to the Brownian motion W , and setting θ = (0, x0), it
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follows that

(5.15) Du(0, x0) = E
[
ψ̂0Ŵ1

(0,x0)

(
0, x0, T1,�W 1·

)]
.

Next, for D2u(0, x0), we use again Lemma A.2 together with the integrability
condition in Assumption 5.5 and Lipschitz property of x �→ ((μ − μ̂) · Du + (a −
âθ ) : D2u)(s, x), and the continuity of D2u(·) that

D2u(0, x0) = D2
x0
E
[
g
(
X̃

0,x0,θ
T

)]
+

∫ T

0
D2

x0
E
[(

(μ − μ̂θ ) · Du + (a − âθ ) : D2u
)(

s, X̃0,x0,θ
s

)]
ds.

Setting θ = (0, x0), it follows from Assumption 5.4, we see that

D2u(0, x0) = E
[
ψ̂0Ŵ2

(0,x0)

(
0, x0, T1,�W 1·

)]
= E

[(
ψ̂0 − eβT g(x0)1{NT =0}

)
Ŵ2

(0,x0)

(
0, x0, T1,�W 1·

)]
,

(5.16)

as E[Ŵ2
(0,x0)

(0, x0, T ,�W·)] = 0.
Changing the initial condition (0, x0) in (5.15) and (5.16) by (T1, X̂1) (recall

that ψ̂0 dependent also on the initial condition (0, x0)), then plugging the expres-
sion of D1u(T1, X̂1) and D2u(T1, X̂1) into the definition of ψ̂0 in (5.12), we see
that

u(0, x0) = E[ψ1].
(iii) Repeating the arguments by substituting (Tn+1, X̂n+1) to the initial condi-

tion (0, x0) in (5.15) and (5.16), and then plugging the corresponding expression
into the definition of ψn, we obtain that u(0, x0) = E[ψ̂n] for all n ≥ 0. Then send-
ing n −→ ∞, we obtain

u(0, x0) = lim
n→∞E[ψ̂n] = E

[
lim

n→∞ ψ̂n

]
= E[ψ̂],

which concludes the proof. �

5.3. Proof of the representation results in Theorems 2.2, 2.6 and 3.3. Using
the results in Theorem 5.6, we can easily complete the proof of the representation
results in Theorems 2.2, 2.6 and 3.3.

PROOF OF THEOREMS 2.2(ii) AND 3.3(ii). (i) In the context of Theorems
2.2 and 3.3, the increment X̂Tk+1 − X̂Tk

, conditional on (Tk, X̂Tk
), is Gaussian.

And the estimator ψ̂ corresponds to the estimator in Theorem 5.6 with automatic
differentiation weights function

Ŵ1
θ (·, δt, δw) := (

σ�
0
)−1 δw

δt
and

Ŵ2
θ (·, δt, δw) := (

σ�
0
)−1 δwδw� − δtId

δt2 σ−1
0 .

(5.17)
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In particular, it is clear that Assumption 5.4 holds true with the above choice of
automatic differentiation weight functions in (5.17).

(ii) The uniform integrability conditions and integrability conditions in Assump-
tion 5.5 can be easily obtained following the lines in the first part of the proof of
Theorems 2.2 and 3.3 using Lemma A.1.

(iii) Now, suppose in addition that μ, σ and g are bounded smooth functions
with bounded and continuous derivatives, so that u ∈ C

1,3
b ([0, T ]×R

d). It follows
by Theorem 5.6 that V0 = E[ψ̂].

(iv) Finally, when μ(·) and σ(·) satisfy the Lipschitz condition (3.1) and g is
Lipschitz, we can find a sequence of bounded smooth functions (με(·), σε(·), gε(·))
which converges locally uniformly to (μ(·), σ (·), g(·)) as ε → 0. Let Xε be the
solution of

dXε
t = με

(
t,Xε

t

)
dt + σε

(
t,Xε

t

)
dWt .

Then by the stability of SDEs together with dominated convergence theorem, it
follows that

V ε
0 := E

[
gε

(
Xε

T

)] −→ V0 := E
[
g(XT )

]
as ε → 0.

By Lemma A.1 together with the dominated convergence theorem, it follows that
E[ψ̂ε] → E[ψ̂] as ε → 0, where ψ̂ε denotes the estimator of the algorithm (3.3)
associated to the coefficient (με, σε, gε). We then conclude the proof. �

PROOF OF THEOREM 2.6(ii). For the path-dependent case, it is enough to use
the same arguments as in Theorem 2.2, together with the PDE system (2.12) in
Remark 2.3. �

5.4. Proof of Theorem 3.5. To introduce the algorithm in the context of Theo-
rem 5.6, we propose to choose

μ̂(·) ≡ 0 and σ̂ (s, y, t, x) = σ(s, y) + ∂xσ (s, y)(x − y).

Before providing the proof of Theorem 3.5, we first give a lemma which justifies

our choice of the automatic differentiation weight function W2
k in (3.11), as well

as some related estimations. Let c1, c2, x ∈ R be constants such that c1 + c2x �= 0,
we denote by X

0,x
solution of the SDE

(5.18) X0 = x, dXt = (c1 + c2Xt) dWt,

whose solution is given explicitly by

(5.19) X
0,x

t =
⎧⎪⎨⎪⎩−c1

c2
+

(
c1

c2
+ x

)
exp

(
−c2

2

2
t + c2Wt

)
if c2 �= 0,

x + c1Wt if c2 = 0.
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Consider also its antithetic variable X̃x
t defined by

X̃
0,x
t =

⎧⎪⎨⎪⎩−c1

c2
+

(
c1

c2
+ x

)
exp

(
−c2

2

2
t − c2Wt

)
if c2 �= 0,

x − c1Wt if c2 = 0.

LEMMA 5.8. Let x ∈ R, (c1, c2) ∈ R
2 be two constants such that c1 +c2x �= 0,

φ :R→R a bounded and continuous function.

(i) Then for all t ∈ (0, T ],

(5.20) ∂2
xxE

[
φ
(
X

0,x

t

)] = E

[
φ
(
X

0,x

t

) 1

(c1 + c2x)2

(
−c2

Wt

t
+ W 2

t − t

t2

)]
.

(ii) Suppose in addition that φ(·) ∈ C2
b(R). Then there is some constant C in-

dependent of (t, x) such that, for all (t, x) ∈ [0, T ] ×R
d ,

E

[(
φ
(
X

0,x

t

)− φ(x)
)2
(

Wt

t

)2]

+E

[(
φ
(
X

0,x

t

)− 2φ(x) + φ
(
X̃

0,x
t

))2
(

W 2
t − t

t2

)2]
≤ C(c1 + c2x)2.

PROOF. (i) For c2 = 0, the result reduces to the Gaussian case; see, for ex-
ample, Lemma 2.1 of Fahim, Touzi and Warin [9]. Next, when c2 �= 0, denote

v(x) := E[φ(X
0,x

t )], then with the expression of X
0,x

t in (5.19), it follows that

v(x) =
∫
R

φ

(
−c1

c2
+

(
c1

c2
+ x

)
e−c2

2t/2+c2
√

ty

)
1√
2π

e−y2/2 dy.

Suppose that φ(·) ∈ C2
b(R), then using integration by parts, it follows that

v′(x) =
∫
R

φ′
(
−c1

c2
+

(
c1

c2
+ x

)
e−c2

2t/2+c2
√

ty

)
e−c2

2t/2+c2
√

ty 1√
2π

e−y2/2 dy

=
∫
R

φ

(
−c1

c2
+

(
c1

c2
+ x

)
e−c2

2t/2+c2
√

ty

)
1

c1 + c2x

y√
t

1√
2π

e−y2/2 dy

= E

[
φ
(
X

0,x

t

) 1

c1 + c2x

Wt

t

]
.

We compute similarly that

v′′(x) = E

[
φ
(
X

0,x

t

) 1

(c1 + c2x)2

(
−c2

Wt

t
+ W 2

t − t

t2

)]
.



30 P. HENRY-LABORDÈRE, X. TAN AND N. TOUZI

When φ(·) is only a bounded and continuous function, one can approximate φ(·)
by a sequence of smooth function φε(·) which converges to φ(·) uniformly, and φ′

ε

and φ′′
ε are bounded and continuous. We then obtain

vε(x) := E
[
φε

(
X

0,x

t

)] → v(x).

Moreover, the limit limε→0 v′
ε(x), limε→0 v′′

ε (x) exist, thus v′′(x) also exists and

v′′(x) = lim
ε→0

v′′
ε (x) = E

[
φ
(
X

0,x

t

) 1

(c1 + c2x)2

(
−c2

Wt

t
+ W 2

t − t

t2

)]
.

(ii) Since φ′ and φ′′ are uniformly bounded, we only focus of the nontrivial case
c2 �= 0. Denoting |φ′|∞ := supx |φ′(x)|, we obtain by direct computation that

E

[(
φ
(
X

0,x

t

)− φ(x)
)2
(

Wt

t

)2]

≤ ∣∣φ′∣∣∞E

[(
X

0,x − x
)2 W 2

t

t2

]

= ∣∣φ′∣∣∞E

[
(c1 + c2x)2

(
e−c2

2t/2+c2Wt − 1

c2Wt − c2
2t/2

)2 W 2
t (c2Wt − c2

2t/2)2

t2

]
,

which is clearly uniformly bounded by C(c1 + c2x)2 for some constant C inde-
pendent of (t, x) ∈ [0, T ] ×R

d .
Next, denote �(y) := (x + c1

c2
)(e−c2

2t/2+c2y −1), and define ϕ(y) := φ(x +�(y)).
Then

ϕ′′(y) = φ′′(x + �(y)
)
(c2 + c1x)2e−c2

2t+2c2y

+ φ′(x + �(y)
)
(c2 + c1x)c2e

−c2
2t/2+c2y.

(5.21)

It follows by the definition of ϕ as well as its derivative, together with direct com-
putation, that

E

[(
φ
(
X

0,x

t

)− 2φ(x) + φ
(
X̃

0,x
t

))2
(

W 2
t − t

t2

)2]

= E

[(
ϕ(Wt) + ϕ(−Wt) − 2ϕ(0)

)2
(

W 2
t − t

t2

)2]

+E

[
2
(
ϕ(0) − φ(x)

)2
(

W 2
t − t

t2

)2]

≤ E

[(
W 2

t (W 2
t − t)

t2

)2
sup

|z|≤|Wt |
ϕ′′(z)

]

+E

[
2
(
φ

(
x + c1 + c2x

c2

(
e−c2

2t/2 − 1
))− φ(x)

)2(W 2
t − t

t2

)2]
,

which is also uniformly bounded by C(c1 + c2x)2 for some constant C > 0. �
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PROOF OF THEOREM 3.5. (i) Let us first prove that E[ψ2] < ∞ for ψ defined
by (3.12). First, we notice that Ŵ−

k = Ŵ2
k for all k = 1, . . . ,NT − 1, g ∈ C2

b(R),
and with the choice of ck

1 and ck
2 in (3.7), one has ck

1 + ck
2X̂Tk

= σ(Tk, X̂Tk
),

which is uniformly bounded. By considering the conditional expectation over
(X̂TNT

,�TNT +1) using items (ii) of Lemma 5.8, we have E[|ψ |2] is bounded by

CE

[
β−2NT

NT∏
k=2

{
a(Tk, X̂Tk

) − ãk

2a(Tk, X̂Tk
)

(
−∂xσ (Tk, X̂Tk

)
�WTk

�Tk

+ �W 2
Tk

− �Tk

�T 2
k

)}2
]
,

for some constant C. Further, by denoting �X̂Tk
:= X̂Tk

− X̂Tk−1 , one has∣∣a(Tk, X̂Tk
) − ãk

∣∣ ≤ (|σ |∞ + ∣∣∂xσ (Tk−1, X̂Tk−1)�X̂Tk

∣∣/2
)

× (|∂tσ |∞�Tk + ∣∣∂2
xxσ

∣∣∞(�X̂Tk
)2),

where |σ |∞ := supt,x |σ(t, x)|. Notice that σ ≥ ε > 0, σ and ∂xσ are uniformly
bounded, then to prove that ψ has finite variance, it is enough to prove that, for
some C > 0 large enough, the expectation of

(5.22)

NT∏
k=2

[
C
(
C + ∣∣∂xσ (Tk−1, X̂Tk−1)�X̂Tk

∣∣)2
(
C + �X̂2

Tk

�Tk

)2

×
(
C|�WTk

| + �W 2
Tk

�Tk

+ 1
)2]

is finite. Similar to the computation in item (ii) of Lemma 5.8, we have

�X̂Tk
= X̂Tk

− X̂Tk−1

= σ(Tk−1, X̂Tk−1)

× exp(−∂xσ (Tk−1, X̂Tk−1)
2�Tk/2 + ∂xσ (Tk−1, X̂Tk−1)�WTk

) − 1

∂xσ (Tk−1, X̂k−1)
.

Notice again that σ(·) and ∂xσ (·) are uniformly bounded, it follows that

E

{[(
C + |∂xσ (Tk−1, X̂Tk−1)�X̂Tk

|)(C + �X̂2
Tk

�Tk

)(
C|�WTk

| + �W 2
Tk

�Tk

+ 1
)]2∣∣∣

X̂Tk−1, Tk−1,�Tk

}
≤ C′,

for some constant C′ > 0 independent of X̂Tk−1 , Tk−1, �Tk . Then the variance of
(5.22) is bounded by CE[(C′)NT ] < ∞, and hence ψ in (3.12) has finite variance.

(ii) Let us now consider the estimator ψ̂ . By the same computation, we obtain
that

E[ψ̂ |NT ,�T1, . . . ,�TNT +1] ≤ CNT
1√

�TNT +1
for some C > 0,
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where the right-hand side is integrable but has infinite variance (see Lemma A.1).
Similarly, it is easy to check the uniform integrability condition in Assumption 5.5
for ψ̂ in (3.10).

(iii) Finally, using Lemma 5.8(i), it follows that Assumption 5.4 holds true.
Moreover, the regularity conditions on σ(t, x) and g in Assumption 3.4 guarantee
that u ∈ C

1,3
b (R). We then deduce from Theorem 5.6 that u(0, x0) = E[ψ̂] = E[ψ].

�

APPENDIX

In this section, we denote

St
0 = 0, St

i := t ∧
(

i∑
j=1

τj

)
and

�St
i := St

i − St
i−1 for i ≥ 1 and t ≥ 0.

In particular, for all i ≥ 1, we have ST = Ti as defined in (2.4).

LEMMA A.1. Let 0 = t0 < t1 < · · · < tn = T < ∞. Then, for all constants
p ∈ (0,1)and C > 0, we have

E

[
CNT

NT∏
k=1

(
�ST

i+1
)−p

]
≤ E

[
CNT

n∏
k=1

Ntk∏
i=Ntk−1+1

(
�S

tk
i+1

)−p

]
< ∞.

PROOF. Notice that �ST
i ≥ �S

tk
i for all i ≥ 1, k = 1, . . . , n. Then

E

[
CNT

NT∏
k=1

(
�ST

i+1
)−p

]
≤ E

[
n∏

k=1

Ntk∏
i=1+Ntk−1

C
(
�S

tk
i+1

)−p

]

=
n∏

k=1

E

[ Ntk∏
i=1+Ntk−1

C
(
�S

tk
i+1

)−p

]

=
n∏

k=1

E

[N�tk∏
i=1

C
(
�S

�tk
i+1

)−p

]
,

(A.1)

where �tk := tk − tk−1, and the two last equalities follow from the independence
and the stationarity of the increments of the Poisson process.

We next use the property that, conditional on Nt = m, the distribution of (St
i , i =

1, . . . ,m) is distributed as the order statistics of the uniform distribution on [0, t]m
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with density t−mm!1{0≤s1≤···≤sm≤t}. Then

E

[N�tk∏
i=1

C
(
�S

�tk
i+1

)−p

]
= ∑

m≥1

P[N�tk = m](�tk)
−mpCmGm,p

= e−β�tk
∑
m≥1

Gm,p

m!
[
βC(�tk)

1−p]m,

(A.2)

where

Gm,p := E

[
m∏

i=1

�S1
i+1

∣∣∣N1 = m

]

= m!
∫ 1

0
· · ·

∫ 1

um−1

[
u1 · · · (um − um−1)

]−p
du1 · · · dum

= m!
∫ 1

0
· · ·

∫ 1

um−2

[
u1 · · · (um−1 − um−2)

]−p

× (1 − um−1)
1−p

1 − p
du1 · · · dum−1

≤ m

1 − p
Gm−1,p ≤ · · · ≤ m!

(1 − p)m
.

In view of the first inequality in (A.1), we can assume, without loss of gener-
ality, that the grid mesh maxk≤n �tk is sufficiently small so that λ := βC

1−p
×

(maxk≤n �tk)
1−p < 1, and the last estimate guarantees that the summation in (A.2)

is finite. Then plugging into (A.1), we obtain our final estimate:

E

[
CNT

NT∏
k=1

(
�ST

i+1
)−p

]
≤ E

[
n∏

k=1

Ntk∏
i=1+Ntk−1

C
(
�S

tk
i+1

)−p

]

≤ e−βT (1 − λ)−n. �

Let Xx be the solution of the SDE

Xx
0 = x, dXx

t = μ
(
t,Xx

t

)
dt + σ

(
t,Xx

t

)
dWt,

where (μ,σ ) : [0, T ] × R
d → R

d × M
d is continuous and in addition Lipschitz

continuous in x.

LEMMA A.2. Suppose that for all bounded and continuous functions φ̂ :
[0, T ] ×R

d →R, the partial derivatives(
∂xi

E
[
φ̂
(
t,Xx

t

)]
, ∂2

xi,xj
E
[
φ̂
(
t,Xx

t

)])
i,j=1,...,d
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exist, and there are some measurable R
d -valued function Ŵ1(x, t, (Ws)s∈[0,t])

such that

∂xi
E
[
φ̂
(
t,Xx

t

)] = E
[
φ̂
(
t,Xx

t

)
Ŵ1

i

(
x, t, (Ws)s∈[0,t]

)]
, i = 1, . . . , d, t ∈ (0, T ].

(i) Let F(dt) be a probability measure on (0, T ] such that, for each x ∈ R
d ,

i = 1, . . . , d , ∫ T

0
E
[∣∣Ŵ1

i

(
x, t, (Ws)s∈[0,t]

)∣∣]F(dt) < ∞,

and φ : [0, T ]×R
d →R be a continuous (possibly unbounded) function satisfying∫ T

0
E
[∣∣φ(t,Xx

t

)
Ŵ1

i

(
x, t, (Ws)s∈[0,t]

)∣∣]F(dt) < ∞.

Then

(A.3) ∂xi

∫ T

0
E
[
φ
(
t,Xx

t

)]
F(dt) =

∫ T

0
E
[
φ
(
t,Xx

t

)
Ŵ1

i

(
x, t, (Ws)s∈[0,t]

)]
F(dt).

(ii) Suppose in addition that φ(t, x) is bounded and continuous in (t, x), and
uniformly Lipschitz in x, and for each x ∈ R

d , i, j = 1, . . . d ,∫ T

0

√
E
[∣∣Ŵ1

i

(
x, t, (Ws)s∈[0,t]

)∣∣2]F(dt) < ∞

and ∫ T

0
sup

ε∈[0,ε0]

∣∣∣∣1εE[Ŵ1
i

(
x + εej , t, (Ws)s∈[0,t]

)− Ŵ1
i

(
x, t, (Ws)s∈[0,t]

)]∣∣∣∣F(dt)

< ∞,

(A.4)

for some ε0 > 0, where (ej )j=1,...,d denotes the canonical basis of Rd . Then

(A.5) ∂2
xixj

∫ T

0
E
[
φ
(
t,Xx

t

)]
F(dt) =

∫ T

0
∂2
xixj

E
[
φ
(
t,Xx

t

)]
F(dt),

where, in particular, the partial derivative at the left-hand side and the integration
at the right-hand side are well defined.

PROOF. (i) First, let us notice that (t, x) �→ (μ,σ )(t, x) is Lipschitz in x, then
by standard analysis (see, e.g., Chapter 7.8 of [13]), there is some constant C

independent of ε > 0 and i = 1, . . . d , such that

(A.6) E

[∣∣∣∣Xx+εei
t − Xx

t

ε

∣∣∣∣2] ≤ C
(
1 + eCt ).
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(ii) Suppose that φ(t, x) is bounded and continuous, and Lipschitz in x. It fol-
lows that

lim
ε→0

∫ T

0

1

ε
E
[(

φ
(
t,X

x+εei
t

)− φ
(
t,Xx

t

))]
F(dt)

=
∫ T

0
lim
ε→0

1

ε
E
[(

φ
(
t,X

x+εei
t

)− φ
(
t,Xx

t

))]
F(dt)

= E

[∫ T

0
φ
(
t,Xx

t

)
Ŵ1

i

(
x, t, (Ws)s∈[0,t]

)
F(dt)

]
,

where the first equality follows by the Lipschitz property of x �→ φ(t, x) and (A.6).
We hence proved (A.3) when x �→ φ(t, x) is Lipschitz.

(iii) When φ is only continuous, it is enough to approximate it by a sequence
(φn)n≥1 which are all bounded, and Lipschitz in x. Then by the integrability
of Ŵ1

i (x, t, (Ws)s∈[0,t]) as well as that of φ(t,Xx
t )Ŵ1

i (x, t, (Ws)s∈[0,t]) under
P(dω) × F(dt), it follows that (A.3) holds true for continuous function φ.

(iv) To prove (A.5), let us use (A.3) and obtain that

lim
ε→0

1

ε

[
∂xj

∫ T

0
E
[
φ
(
t,X

x+εei
t

)]
F(dt) − ∂xj

∫ T

0
E
[
φ
(
t,Xx

t

)]
F(dt)

]

= lim
ε→0

∫ T

0

1

ε
E
[
φ
(
t,X

x+εei
t

)
Ŵ1

j (x + εei, t, ·) − φ
(
t,Xx

t

)
Ŵ1

j (x, t, ·)]
× F(dt)

=
∫ T

0
lim
ε→0

1

ε
E
[
φ
(
t,X

x+εei
t

)
Ŵ1

j (x + εei, t, ·) − φ
(
t,Xx

t

)
Ŵ1

j (x, t, ·)]
× F(dt),

(A.7)

where the first equality follows by the Lipschitz property of x �→ φ(t, x) and the
estimation (A.6) together with (A.4), and in particular, the integrable in the last
term of (A.7) is well defined, and hence the limit of the first term of (A.7) exists.

�
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