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Abstract

We provide a representation result of parabolic semi-linear PDEs, with polynomial

nonlinearity, by branching diffusion processes. We extend the classical representation

for KPP equations, introduced by Skorokhod [25], Watanabe [29] and McKean [20], by

allowing for polynomial nonlinearity in the pair (u,Du), where u is the solution of the

PDE with space gradient Du. Similar to the previous literature, our result requires a

non-explosion condition which restrict to “small maturity” or “small nonlinearity” of

the PDE. Our main ingredient is the Malliavin automatic differentiation technique as

in [17], based on the Malliavin integration by parts, which allows to account for the

nonlinearities in the gradient. As a consequence, the particles of our branching diffu-

sion are marked by the nature of the nonlinearity. This new representation has very

important numerical implications as it is suitable for Monte Carlo simulation. Indeed,

this provides the first numerical method for high dimensional nonlinear PDEs with

error estimate induced by the dimension-free Central limit theorem. The complexity

is also easily seen to be of the order of the squared dimension. The final section of this

paper illustrates the efficiency of the algorithm by some high dimensional numerical

experiments.
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1 Introduction

The objective of the present paper is to provide a probabilistic representation for the

solution of a semilinear parabolic second order partial differential equation (PDE)

which is suitable for a high dimensional Monte Carlo approximating scheme. Our

main results achieve this goal in the context of semilinear PDEs:

−∂tu− Lu = f(u,Du), uT = g, t < T, x ∈ Rd, (1.1)

with polynomial non-linearity ft,x(y, z) in the solution and its gradient, diffusion gen-

erator L, and bounded terminal condition g.

Previous representation results were obtained in the literature by means of back-

ward stochastic differential equations, as introduced by Pardoux and Peng [22]. The

Monte Carlo numerical implications of this representation were introduced by Bally

& Pagès [2], Bouchard & Touzi [6] and Zhang [30], and generated a large stream of

the literature. However, these methods can be viewed as a Monte Carlo version of

the finite elements methods, and as such, are subject to the problem of curse of di-

mensionality. Our primary goal is to avoid this numerical problem so as to be capable

to handle genuinely high-dimensional problems. This however will be achieved at the

cost of some limitations (see in particular Remark 2.1 below).

Our main representation result is obtained by using the branching diffusion trick to

absorb the nonlinearity, as illustrated by Skorokhod [25], Watanabe [29], McKean [20],

etc. in the context of the KPP equation. Its applications to the numerical resolution

of KPP equations has been explored in Rasulov, Raimova & Mascagni [23], Bossy,

Champagnat, Leman, Maire, Violeau & Yvinec [4], etc., see also our previous paper

[16] where the equation is allowed to be path-dependent.

Since the gradient Du is also involved in the nonlinearity, our representation result

is a significant improvement of the classically well-know representation of KPP equa-

tions. We observe that the polynomial nonlinearity naturally induces some restrictions

needed to ensure the non-explosion of the corresponding solution. As a consequence,

our representation holds under technical conditions of small horizon or small nonlin-

earity of the PDE.

The main idea for our representation is to use the Malliavin automatic differenti-

ation technique in addition to the branching diffusion representation. The Malliavin

differentiation was successfully used in the previous literature by Fournié et al. [13],

Bouchard, Ekeland & Touzi [5], Henry-Labordère, Tan & Touzi [17], and Doumbia,

Oudjane & Warin [8], etc. to obtain Monte Carlo method for diffusions. The result-

ing branching diffusion in the representation differs from that of the original founding

papers [25, 29, 20] by introducing marks for the particles born at each branching. The

mark of the particle determines the nature of the differentiation, and thus induces the

corresponding Malliavin automatic differentiation weight.

We next illustrate the main idea behind our representation in the context of the

following extension of the one-dimensional Burgers equation: let u : [0, T ] × Rd → R
be a smooth solution of PDE (1.1) with

Lu :=
1

2
∆u, and f(y, z) =

1

2
(y2 + yz).
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Let W 1 be a Brownian motion, and τ1 an independent random variable with density

ρ > 0 on R+, and denote F (t) :=
∫∞
t ρ(s)ds. We also introduce another independent

random variable I1 which takes the values 0 and 1 with equal probability. Then,

denoting by Et,x the expectation operator conditional on the starting data Wt = x at

time t, we obtain from the Feynman-Kac formula the representation of the solution u

as:

u(0, x) = E0,x

[
F (T )

g(WT )

F (T )
+

∫ T

0

f(u,Du)(t,Wt)

ρ(t)
ρ(t)dt

]
= E0,x

[
φ
(
0, T(1),W

1
T(1)

)]
,

where T(1) := τ1 ∧ T , and

φ(s, t, y) :=
1{t≥T}

F (T − s)
g(y)+

1{t<T}

ρ(t− s)
(uDI1u)(t, y). (1.2)

We next consider the two alternative cases for the value of I1.

• On the event set {I1 = 0}, it follows from the Markov property that:

(uDI1u)(t, y) = u(t, y)2 = Et,y
[
φ(t, (t+ τ1) ∧ T,W 1

(t+τ1)∧T )
]2
.

The tricky branching diffusion representation now pops up naturally by rewriting

the last expression in terms of independent copies (W 1,1, τ1,1) and (W 1,2, τ1,2)

as:

(uDI1u)(t, y) = Et,y
[
φ
(
t, τ1,1

t ,W 1,1

τ1,1t

)]
Et,y

[
φ
(
t, τ1,2

t ,W 1,1

τ1,2t

)]
= Et,y

[
φ
(
t, τ1,1

t ,W 1,1

τ1,1t

)
φ
(
t, τ1,2

t ,W 1,2

τ1,2t

)]
,

where τ1,i
t := (t+ τ1,i)∧ T for i = 1, 2 and Et,y denotes the expectation operator

conditional on W 1,1
t = W 1,2

t = y. Substituting this expression in (1.2) and using

the tower property, we see that the branching mechanism allows to absorb the

nonlinearity.

• On the event set {I1 = 1}, we arrive similarly to the expression

(uDI1u)(t, y) = Et,y
[
φ
(
t, τ1,1

t ,W 1,1

τ1,1t

)]
∂yEt,y

[
φ
(
t, τ1,2

t ,W 1,2

τ1,2t

)]
.

Our main representation is based on the following Malliavin automatic differen-

tiation:

∂yEt,y
[
φ
(
t, τ1,2

t ,W 1,2

τ1,2t

)]
= Et,y

[W 1,2

τ1,2t

−W 1,2
t

τ1,2
t − t

φ
(
t, τ1,2

t ,W 1,2

τ1,2t

)]
,

which is an immediate consequence of the differentiation with respect to the heat

kernel, i.e. the marginal density of the Brownian motion. By the independence

of W 1,1 and W 1,2, this provides:

(uDI1u)(t, y) = Et,y
[W 1,2

τ1,2t

−W 1,2
t

τ1,2
t − t

φ
(
t, τ1,1

t ,W 1,1

τ1,1t

)
φ
(
t, τ1,2

t ,W 1,2

τ1,2t

)]
,

so that the branching mechanism allows again to absorb the nonlinearity by

substituting in (1.2) and using the tower property.
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The two previous cases are covered by denoting T(1,i) := T ∧ (τ1 + τ1,i) for i = 1, 2,

and introducing the random variable:

W1 :=1{I1=0}+1{I1=1}
∆W 1,2

T(1,2)

∆T(1,2)
, with ∆W 1,2

T(1,2)
:=W 1,2

T(1,2)
−W 1,2

T(1)
, ∆T(1,2) :=T(1,2)−T(1),

so that

u(0, x) = E0,x

[
1{T(1)=T}

g(WT )

F (T )
+ 1{T(1)<T}

W1

ρ(T(1))∏2
i=1

(
1{T(1,i)=T}

g(W 1,i
T )

F (∆T(1,i))
+ 1{T(1,i)<T}

(uDI1,iu)
(
T(1,i),W

1,i
T(1,i)

)
ρ(∆T(1,i))

)]
.

Our main representation result is obtained by iterating the last procedure, and solving

the integrability problems which arise because of the singularity introduced by the

random variableW1. The Malliavin automatic differentiation, which is the main addi-

tional ingredient to the branching diffusion representation, is illustrated in the previous

example when the operator L corresponds to the Brownian motion. This extends to

the case of a more general diffusion operator by the so-called Bismuth-Elworthy-Li

formula based on the Malliavin integration by parts formula, see Fournié et al. [13]

for its use in the context of Monte Carlo approximation and the extension to other

sensitivities.

Our main result provides a probabilistic representation of the solution of the semi-

linear PDE, with polynomial nonlinearity, in terms of a branching diffusion. This

requires naturally a technical condition ensuring the existence of a non-exploding so-

lution for the PDE which can be either interpreted as a small horizon or a small non-

linearity condition. This new representation provides a new ingredient for the analysis

of the corresponding PDE as it can be used to argue about existence, uniqueness, and

regularity. We shall indeed prove a C1−regularity result in order to prove the main

Theorem 3.5.

Moreover, our new representation has an important numerical implication as it is

suitable for high dimensional Monte Carlo approximation. This is in fact the first high

dimensional general method for nonlinear PDEs ! The practical performance of the

method is illustrated on a numerical example in dimension d = 20. The convergence of

the numerical method is a direct consequence of the law of large numbers. The rate of

convergence is also a direct consequence of the central limit theorem, and is therefore

dimension-free. The complexity of the method is easily shown to be of the order of d2,

which cannot be avoided by the very nature of the equation whose second order term

involves d× d matrices calculations.

The paper is organized as follows. Section 2 introduces the marked branching

diffusion. The main representation result is stated in Section 3. We next provide

further discussions in Section 4 on the validity of our representation for systems of

semilinear PDEs, and the possible combination with the unbiased simulation technique

of [17, 8]. The Monte Carlo numerical implications of our representation in high

dimension are reported in Section 5 with an illustration by a numerical experiment in

dimension 20. Finally, we provide more numerical examples in Section 6.
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2 The marked branching diffusion

2.1 Semilinear PDE with polynomial nonlinearity

Let d ≥ 1, Md denotes the set of all d× d matrices, and (µ, σ) : [0, T ]×Rd → Rd×Md

the coefficient functions. For a function u : [0, T ]×Rd → R, we denote by Du and D2u

the gradient and the Hessian of the function u(t, x) w.r.t. variable x. Let m ≥ 0 be a

positive integer, we consider a subset L ⊂ Nm+1, and a sequence of functions (c`)`∈L
and (bi)i=1,··· ,m, where c` : [0, T ] × Rd → R and bi : [0, T ] × Rd → Rd. For every ` =

(`0, `1, · · · , `m) ∈ L, denote |`| :=
∑m

i=0 `i. A generator function f : [0, T ]×Rd×R×Rd

is then defined by

f(t, x, y, z) :=
∑

`=(`0,`1,··· ,`m)∈L

c`(t, x) y`0
m∏
i=1

(
bi(t, x) · z

)`i . (2.1)

Given two matrices A,B ∈ Md, denote A : B := Trace(AB>). We will consider the

following semilinear PDE:

∂tu+ µ ·Du+
1

2
σσ> :D2u+ f(·, u,Du) = 0, on [0, T )× Rd, and u(T, .) = g, (2.2)

for some bounded Lipschitz function g : Rd −→ R.

Remark 2.1. The nonlinearity f(t, x, y, z) in (2.1) includes the simplest case of a

source term. Indeed, for ` = (0, 0, · · · , 0), we have c`(t, x)y`0
∏m
i=1

(
bi(t, x) · z

)`i =

c`(t, x). In particular, it covers the case of nonlinearity f(t, x, y) that was studied

in our previous papers [15, 16]. Nevertheless, in the context of [16] where f does not

depend on z, one can also treat the nonMarkovian case in terms of the path-dependent

PDE in [10].

2.2 Age-dependent marked branching process

In preparation of the representation result, let us first introduce a branching process,

characterized by a distribution density function ρ : R+ → R+, a probability mass

function (p`)`∈L (i.e. p` ≥ 0 and
∑

`∈L p` = 1).

Instead of the usual exponential splitting time, we shall consider a branching parti-

cle process with splitting time of distribution density function ρ. At the splitting time,

the particle branches into |`| offsprings with probability p`, among which, `i particles

carry the mark i, i = 0, . . . ,m. Then regardless of its mark, each descendant particle

performs the same but independent branching process as the initial particle.

To construct the above process, we will consider a probability space (Ω,F ,P)

equipped with

• a sequence of i.i.d. positive random variables (τm,n)m,n≥1 of density function ρ,

• a sequence of i.i.d. random elements (Im,n)m,n≥1 with P(Im,n = `) = p`, ` ∈ L.

In addition, the sequences (τm,n)m,n≥1 and (Im,n)m,n≥1 are independent.

We first construct an age-dependent branching process, where every particle is

given a label in form k = (k1, · · · , kn), by the following procedure.
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1. We start from a particle marked by 0, labelled by (1), of generation 1, whose

splitting time is given by T(1) := τ1,1 ∧ T .

2. Given a particle of generation n, labelled by k = (k1, · · · , kn−1, kn) ∈ Nn and

with splitting time Tk < T , we let Ik = In,πn(k), where

πn is an injection from Nn to N.

At the splitting time time Tk, particle k branches into |Ik| offspring particles,

which constitute n + 1-the generation, and are labelled by (k1, · · · , kn, i) for

i = 1, · · · , |Ik|.

3. When Ik = (ˆ̀
0, ˆ̀

1, · · · , ˆ̀
m), we have |ˆ̀| offspring particles, among which we mark

the first ˆ̀
0 particles by 0, the next ˆ̀

1 particles by 1, and so on, so that each

particle has a mark i for i = 0, · · · ,m.

4. For a particle k = (k1, · · · , kn, kn+1) of generation n + 1, we denote by k− :=

(k1, · · · , kn) the “parent” particle of k, and the splitting time of k is given by

Tk :=
(
Tk− + τn+1,πn+1(k)

)
∧ T .

5. In particular, for a particle k = (k1, · · · , kn) of generation n, and Tk− is its birth

time and also the splitting time of k−. Moreover, for the initial particle k = (1),

one has k− = ∅, and T∅ = 0.

The above procedure defines a marked age-dependent branching process. We de-

note further

θk := mark of k, Knt :=

{{
k of generation n s.t. Tk− ≤ t < Tk

}
, when t ∈ [0, T ),

{k of generation n s.t. Tk = T}, when t = T,

and also

Knt := ∪s≤tKns , Kt := ∪n≥1Knt and Kt := ∪n≥1K
n
t .

Clearly, Kt (resp. Knt ) denotes the set of all living particles (resp. of generation n)

in the system at time t, and Kt (resp. Knt ) denotes the set of all particles (resp. of

generation n) which are alive at time t or have been alive before t.

Remark 2.2. Notice that we truncate Tk by T in Step 4, which is not necessary to

define the branching process on [0, T ]. However, the truncation will be useful for later

uses (in particular to unify the definition of Wk in (3.3)).

Example 2.3. Let us consider the case d = 1, with

f(t, x, y, z) := c0,0(t, x) + c1,0(t, x)y + c1,1(t, x)yz.

In this case, m = 1, L = {¯̀1 = (1, 0), ¯̀
2 = (1, 1)}. For the sake of clarity, we present an

typical path of the associated age-dependent process, with graphical illustration below.

The process starts from time 0 with one particle labelled by (1). At terminal time T ,

the number of particles alive is 3, with

KT =
{

(1, 2, 1), (1, 1, 1, 1), (1, 1, 1, 2)
}
,
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• At time T(1), particle (1) branches into two particles (1, 1) and (1, 2).

• At time T(1,1), particle (1, 1) branches into (1, 1, 1) and (1, 1, 2).

• At time T(1,2), particle (1, 2) branches into (1, 2, 1).

• At time T(1,1,2), particle (1, 1, 2) dies out without any offspring particle.

• At time T(1,1,1), particle (1, 1, 1) branches into (1, 1, 1, 1) and (1, 1, 1, 2).

• The particles in blue are marked by 0, and the particles in red are marked by 1.

-
0 T(1) T(1,1) T(1,2) T(1,1,2)T(1,1,1) T

��
�
��

��

H
HHH

HHH
HHHH

!!
!!

!!
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````````````̀
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�

aaaaa

(1)

(1, 2)

(1, 1)

(1, 1, 1)

(1, 1, 2)

(1, 2, 1)

(1, 1, 1, 1)

(1, 1, 1, 2)

Proposition 2.4. Assume that
∑

`∈L |`|p` < ∞. Then the age-dependent branching

process is well defined on [0, T ], i.e. the number of particles in Kt is finite a.s. for all

t ∈ [0, T ].

Proof. See e.g. Harris [14, pp. 138-139].

2.3 The marked branching diffusion

We next equip each particle with a Brownian motion in order to define a branching

Brownian motion.

We consider a sequence of independent d-dimensional Brownian motion (Wm,n)m,n≥1,

which are also independent of (τm,n, Im,n)m,n≥1. Define W
(1)
t = ∆W

(1)
t := W 1,1

t for

all t ∈
[
0, T(1)

]
and then for each k = (k1, · · · , kn) ∈ KT \ {(1)}, define

W k
t := W k−

Tk−
+ ∆W k

t−Tk− , with ∆W k
t−Tk− := W

n,πn(k)
t−Tk− , for all t ∈ [Tk−, Tk]. (2.3)

Then (W k
· )k∈KT

is a branching Brownian motion. For each k ∈ KT , we define an

associated diffusion process (Xk
t )t∈[Tk−,Tk] by means of the following SDE

Xk
t = Xk−

Tk−
+

∫ t

Tk−

µ
(
s,Xk

s

)
ds+

∫ t

Tk−

σ
(
s,Xk

s

)
dW k

s , t ∈ [Tk−, Tk], P-a.s., (2.4)
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where for particle (1), we fix the initial condition X
(1)
0 = x0 for some constant x0 ∈

Rd. The well-posedness of the last SDE is guaranteed by standard conditions on the

coefficients µ, σ contained in Assumption 3.1.

The process (Xk
· )k∈KT

is our main marked branching diffusion process. We finally

introduce the sub-σ-fields

F0 := σ
{
τm,n, Im,n : m,n ≥ 1

}
, Fm := σ

{
W i,n, τ i,n, Ii,n : n ≥ 1, i ≤ m

}
, m ≥ 1. (2.5)

3 The main representation

We shall provide a representation result for a class the semilinear PDEs (2.2) under

general abstract conditions. More explicit sufficient conditions are provided later.

3.1 Branching diffusion representation of semilinear PDEs

We first collect the conditions on the marked branching diffusion which are needed for

our main results.

Assumption 3.1. (i) The probability mass function (p`)`∈L satisfies p` > 0 for all

` ∈ L, and
∑

`∈L |`| p` < ∞. The density function ρ : R+ → R+ is continuous and

strictly positive on [0, T ], and such that F (T ) :=
∫∞
T ρ(t)dt > 0.

(ii) (µ, σ) : [0, T ]× Rd → Rd ×Md are bounded continuous, and Lipschitz in x.

(iii) c` : [0, T ]× Rd → R and bi : [0, T ]× Rd → Rd are bounded continuous.

Our next assumption is the key Malliavin automatic differentiation condition on

the underlying diffusion X
t,x
s defined by

X
t,x
s = x+

∫ s

t
µ
(
r,X

t,x
r

)
dr +

∫ s

t
σ
(
r,X

t,x
r

)
dWr, s ∈ [t, T ], (3.1)

where W is a d-dimensional Brownian motion independent of the branching diffusion.

Assumption 3.2. There is a measurable functional W(t, s, x, (Wr −Wt)r∈[t,s]) sat-

isfying (t, x) 7→ W(t, s, x, (Wr −Wt)r∈[t,s]) is continuous, and for any s ∈ [t, T ] and

bounded measurable function φ : Rd → R, one has

∂xE
[
φ
(
X
t,x
s

)]
= E

[
φ
(
X
t,x
s

)
W(t, s, x, (Wr −Wt)r∈[t,s])

]
.

Remark 3.3. (i) By letting φ(x) ≡ 1, we observe that Assumption 3.2 implies that

E
[
W(t, s, x, (Wr −Wt)r∈[t,s])

]
= 0. (3.2)

(ii) In case (µ, σ) ≡ (µ0, σ0) for some constant (µ0, σ0) ∈ Rd ×Md, where σ0 is not

degenerate, then an example of such Malliavin automatic differentiation function can

be given by

W
(
t, s, x, (Wr −Wt)r∈[t,s]

)
:= (σ>0 )−1Ws −Wt

s− t
.

8



For general coefficient functions (µ, σ) satisfying some regularity and non-degeneracy

conditions, one can find such functional W using Malliavin calculus (see more discus-

sions in Section 3.2).

(iii) More generally, suppose that X
t,x
s has a density function y 7→ γ(x, y), one then

has

∂xE
[
φ
(
X
t,x
s

)]
=

∫
φ(y)

∂xγ(x, y)

γ(x, y)
γ(x, y)dy = E

[
φ
(
X
t,x
s

)∂xγ(x,X
t,x
s )

γ(x,X
t,x
s )

]
,

whenever the random variable in the last term is integrable. Then any random variable

W
(
t, s, x, (Wr −Wt)r∈[t,s]

)
satisfying

E
[
W
(
t, s, x, (Wr −Wt)r∈[t,s]

) ∣∣∣Xt,x
s

]
=

∂xγ(x,X
t,x
s )

γ(x,X
t,x
s )

could be a candidate of the weight function in Assumption 3.2. Nevertheless, to the

best of our knowledge, one relies in practice on the Malliavin calculus to obtain an

explicit expression of such weight functions.

Now, for each particle k ∈ KT , we recall that it is born at time Tk− and dies out at

time Tk, its mark is given by θk and its branching type is given by Ik. Let us denote

Wk := 1{θk=0} + 1{θk 6=0} bθk(Tk−, X
k
Tk−

) · W
(
Tk−, Tk, X

k
Tk−

,∆W k
·
)
. (3.3)

We next introduce for a smooth function u ∈ C1,2([0, T ]× Rd)

ψn :=
[ ∏
k∈∪nj=1K

j
T

g(Xk
T )− g(Xk

Tk−
)1{θk 6=0}

F (∆Tk)
Wk

][ ∏
k∈∪nj=1(Kj

T \K
j
T )

cIk(Tk, X
k
Tk

)

pIk

Wk

ρ(∆Tk)

]
[ ∏
k∈Kn+1

T

(
1{θk=0}u+

m∑
i=1

1{θk=i}bi ·Du
)

(Tk−, X
k
Tk−

)
]
, (3.4)

for all n ≥ 1, and the corresponding limit

ψ :=
[ ∏
k∈KT

g(Xk
T )− g(Xk

Tk−
)1{θk 6=0}

F (∆Tk)
Wk

][ ∏
k∈KT \KT

cIk(Tk, X
k
Tk

)

pIk

Wk

ρ(∆Tk)

]
. (3.5)

In particular, the estimator ψ depends on the coefficients (bi)i=1,··· ,m in terms ofWk de-

fined in (3.3). Further, notice that the above branching diffusion process (Tk, X
k
· )k∈KT

and random variables ψ, ψn are defined with initial condition (0, x0) on interval [0, T ].

By exactly the same way, we can define the system with initial condition (t, x) on

interval [t, T ], let us denote them respectively by (T tk,W
t,k
· , Xt,x,k

· )
k∈Kt

T
, ψt,x, and ψt,xn .

We now provide a first result, under strong regularity conditions, which provides a

better understanding of our representation. We emphasize that our main representa-

tion result in Theorem 3.5 below will be established under more transparent conditions.
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Proposition 3.4. Let Assumptions 3.1 and 3.2 hold true. Suppose that the PDE (2.2)

has a solution u ∈ C1,2([0, T ]×Rd) with E
[ ∫ T

t

∣∣f(·, u,Du)(s,X
t,x
s )
∣∣ds] <∞, for some

(t, x) ∈ [0, T ]× Rd. Assume further that (ψt,xn )n≥1 is uniformly integrable. Then

ψt,x ∈ L1 and u(t, x) = E
[
ψt,x

]
.

Proof. (i) It suffices to consider (t, x) = (0, x0). Since g is bounded, it follows from

the integrability condition on the process f(., u,Du) and the Feynman-Kac formula

that

u(0, x0) = E
[ 1

F (T )
g
(
X

0,x0
T

)
F (T ) +

∫ T

0

1

ρ(s)
f
(
·, u,Du

)(
s,X

0,x0
s

)
ρ(s)ds

]
= E

[ 1

F (T(1))
g
(
X

(1)
T

)
1{T(1)=T} +

1

ρ(T(1))

( cI(1)
pI(1)

uI(1),0
m∏
i=1

(
bi ·Du

)I(1),i)(T(1), X
(1)
T(1)

)
1{T(1)<T}

]
(3.6)

= E[ψ1].

(ii) Next, let b0 ∈ Rd be a constant vector, and assume in addition that the random

variable ψ1

(
b0 · W(0, T(1), x0,∆W

(1)
· )
)

is integrable. Then under Assumptions 3.2,

b0 ·Dxu(0, x0) = E
[
ψ1 b0 · W

(
0, T(1), x0,∆W

(1)
·
)]

= E
[(
ψ1 −

1

F (T(1))
g(x0)1{T(1)=T}

)
b0 · W

(
0, T(1), x0,∆W

(1)
·
)]
, (3.7)

where the first equality follows by Lemma A.3 of [17] and the second equality follows

from the fact that E
[
W
(
0, T, x, (Ws)s∈[0,T ]

)]
= 0.

(iii) For k ∈ K2
T , change the initial condition from (0, x0) to (Tk−, X

k
Tk−

) = (T(1), X
(1)
T(1)

)

in formula (3.6) and (3.7). Then, with F1 defined in (2.5),

u(Tk−, X
k
Tk−

) = E
[
1{k∈K2

T }
g(Xk

T )

F (∆Tk)
+ 1{k∈K2

T \K2
T }

Ψk

∣∣∣F1

]
,

by the Markov property, and by Assumption 3.2,

Du(Tk−, X
k
Tk−

) = E
[(

1{k∈K2
T }
g(Xk

T )− g(Xk
Tk−

)

F (∆Tk)
+ 1{k∈K2

T \K2
T }

Ψk

)
W(Tk−, Tk, X

k
Tk−

,∆W k
· )
∣∣∣F1

]
,

where Ψk := 1
ρ(∆Tk)

cIk (Tk,X
k
Tk

)

pIk

[∏
k′−=k

(
1{θk′=0}u+

∑m
i=1 1{θk′=i}bi·Du

)
(Tk′−, X

k′
Tk′−

)
]
.

Plugging these expressions in the definition of ψ1 in (3.4), it follows from the integra-

bility of ψ2 and the tower property of conditional expectations that u(0, x0) = E
[
ψ2

]
.

(iv) Iterating this procedure, we see that

u(0, x0) = E
[
ψn
]
, for all n ≥ 1, and therefore u(0, x0) = lim

n→∞
E
[
ψn
]

= E
[
ψ
]
,

10



where the last equality follows by the uniform integrability condition of (ψn)n≥1.

We now state our main representation result under abstract conditions on the Malli-

avin automatic differentiation weight function W(·) involving the slight modification

of ψ:

ψ̃ :=
[∏
k∈KT

g(Xk
T )− g(Xk

Tk−
)1{θk 6=0 or k=(1)}

F (∆Tk)
Wk

][ ∏
k∈KT \KT

cIk(Tk, X
k
Tk

)

pIk

Wk

ρ(∆Tk)

]
, (3.8)

with ψ̃t,x defined by an obvious change of origin. Explicit sufficient conditions for the

validity of the next result will be reported in Section 3.2 below.

Theorem 3.5. Let Assumptions 3.1 and 3.2 hold true, and suppose in addition that

for all (t, x) ∈ [0, T ]× Rd, there is some ε > 0 such that

(ψs,y)(s,y)∈Bε(t,x) and
(
ψ̃s,yW(s, T s(1), y,∆W

s,(1)
· )

)
(s,y)∈Bε(t,x)

are uniformly integrable, where Bε(t, x) := {(s, y) ∈ [0, T ]×Rd : |s− t|+ |x− y| ≤ ε}.
Then, the function u(t, x) := E[ψt,x] is a continuous viscosity solution of the semilinear

PDE (2.2). Moreover Du exists and is continuous.

Proof. (i)Notice that the solution of SDE (3.1) is continuous w.r.t. its initial condition

(t, x), and recall that (t, x) 7→ W(t, s, x, (Wr −Wt)r∈[t,s] is also continuous, then under

the uniform integrability condition on (ψt,x), one obtains that u : [0, T ] × Rd → R is

continuous. Similarly, let us define

vi(t, x) := E
[
ψ̃t,xbi(t, x) · W(t, T t(1), x,∆W

t,(1)
· )

]
,

which is also continuous by the uniformly integrability condition. Notice that, by

Remark 3.3 (i), one has E
[
bi(t, x) · W(t, T t(1), x,∆W

t,(1)
· )

]
= 0. Further, ψ̃t,x and ψt,x

are different only and only if KtT = {(1)} and the difference is in fact a deterministic

term g(Xt,x,k
T t
k−

) = g(x) for k = (1). Then

vi(t, x) = E
[
ψ̃t,xbi(t, x) ·W(t, T t(1), x,∆W

t,(1)
· )

]
= E

[
ψt,xbi(t, x) ·W(t, T t(1), x,∆W

t,(1)
· )

]
.

(ii) Let us define φ : [0, T ]× Rd → R by

φ
(
I(1), T(1), X

(1)
T(1)

)
:=

1

F (T(1))
g
(
X

(1)
T

)
1{T(1)=T} (3.9)

+
1

ρ(T(1))

( cI(1)
pI(1)

(
ψ
T(1),X

(1)
T(1)
)I(1),0 m∏

i=1

vi
(
T(1), X

(1)
T(1)

)I(1),i)1{T(1)<T}
= E

[
ψ
∣∣ F1

]
,

where F1 is defined in (2.5). Notice that φ(i, t, x) is continuous in x, then it follows

by Assumption 3.2 and Lemma A.3 of [17] that

Du(0, x0) = E
[
φ
(
I(1), T(1), X

(1)
T(1)

)
W(0, T(1), x0,∆W

(1)
· )
]

= E
[
ψW(0, T(1), x0,∆W

(1)
· )
]
.
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By changing the initial condition from (0, x0) to (t, x) and notice that

E[W(t, T t(1), x,∆W
t,(1)
· )1{T t

(1)
=T}] = 0,

it follows that

Du(t, x) = E
[
ψ̃t,xW(t, T t(1), x,∆W

t,(1)
· )

]
,

and one obtains that Du : [0, T ]×Rd → Rd is continuous from the uniform integrability

of
(
ψ̃t,xW(t, T t(1), x,∆W

t,(1)
· )

)
. Moreover, one has vi(t, x) = bi(t, x) ·Du(t, x).

(iii) Using the expression in (3.9) and the law of I(1) and T(1), and with similar argu-

ments as in (3.6), it follows that

u(t, x) = E[ψt,x] = E
[
g
(
X
t,x
T

)
+

∫ T

t
f
(
·, u,Du

)
(s,X

t,x
s )ds

]
.

Let h > 0, denote hh := (t+h)∧ inf{s > t : |Xt,x
s −x| ≥ 1}, then by the flow property

of X
t,x

, one has

u(t, x) = E
[
u(hh, X

t,x
hh

) +

∫ hh

t
f
(
·, u,Du

)
(s,X

t,x
s )ds

]
,

and we may verify by standard arguments that u is a viscosity solution of PDE (2.2).

3.2 More explicit sufficient conditions

We now provide some explicit sufficient conditions which guarantee the validity of the

conditions of Theorem 3.5. Define |ϕ|∞ := supx∈Rd |ϕ(x)| for any bounded function

ϕ : Rd → R, and |φ|∞ := supdi=1 |φi|∞ for any bounded vector function φ : Rd → Rd.
We first recall the Bismut-Elworthy-Li formula from Malliavin calculus, which was

used by Fournié, Lasry, Lebuchoux, Lions and Touzi [13] as an Malliavin differentiation

tool, see also [5], [6] and [12] for subsequent usefulness of the Malliavin differentiation

in the context of the Monte Carlo approximation of nonlinear PDEs. We emphasize

that such Malliavin automatic differentiation function is not unique (see Remark 3.3).

Assumption 3.6. The coefficients µ, σ are bounded continuous, with bounded contin-

uous partial gradients Dµ,Dσ, and σ is uniformly elliptic.

Notice that (X
t,x
s )s∈[t,T ], as defined by (3.1), is completely determined by (t, x, (Ws−

Wt)s∈[t,T ]). We then introduce the corresponding first variation process Y :

Yt := Id, dYs = Dµ(s,X
t,x
s )Ysds+

d∑
i=1

Dσi(s,X
t,x
s )YsdW

i
s , for s ∈ [t, T ], P-a.s., (3.10)

where Id denotes the d× d identity matrix, and σi(t, x) ∈ Rd denotes the i-th column

of matrix σ(t, x). Then one has the following result (see e.g. Exercise 2.3.5 of Nualart

[21, p.p. 125], or Proposition 3.2. of [13]).
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Proposition 3.7. Let Assumption 3.6 hold true, then Assumption 3.2 holds true with

the choice of Malliavin automatic differentiation function W defined by

W
(
t, s, x, (Wr −Wt)r∈[t,s]

)
:=

1

s− t

∫ s

t

[
σ−1(r,X

t,x
r )Yr

]ᵀ
dWr. (3.11)

Remark 3.8. When µ ≡ 0 and σ(t, x) ≡ σ0 for some non-degenerate constant matrix

σ0 ∈Md, one then has Yt ≡ Id and so that

W
(
t, s, x, (Wr −Wt)r∈[t,s]

)
=
(
σ>0
)−1Ws −Wt

s− t
.

With the above choice of Malliavin automatic differentiation weight function (3.11),

we can now derive some upper bounds for random variables (ψn, n ≥ 1). Recall that

Lg is the Lipschitz constant of g, denote by B∞0 (Lg) := {(x1, · · · , xd) ∈ Rd : |xi| ≤ Lg}
and Wt,x,s := W

(
t, s, x, (Wr −Wt)r∈[t,s]

)
. Then for n ≥ 1, q > 1, we introduce two

constants C1,q and C2,q by

C1,q := |g|q∞ ∨ sup
0≤t<s≤T, x∈Rd, i=1,··· ,m, b0∈B∞0 (Lg)

E
[∣∣∣(b0 · (Xt,x

s − x)
)(
bi(t, x) · Wt,x,s

)∣∣∣q]
and

C2,q := sup
0≤t<s≤T, x∈Rd, i=1,··· ,m

E
[∣∣√s− t bi(t, x) · Wt,x,s

∣∣q],
and then

Ĉ1,q :=
C1,q

F (T )q−1
, Ĉ2,q := C2,q sup

`∈L, t∈(0,T ]

( |c`|∞
p`

t
− q

2(q−1)

ρ(t)

)q−1
.

Remark 3.9. (i) Under Assumption 3.6, the tangent process Y is defined by a linear

SDE, which has finite moment of any order q ≥ 1. Then the two constant C1,q and

C2,q are both finite. And for all k ∈ KT , one has

max
{
|g|q∞, E

[∣∣(Dg ·∆Xk)Wk

∣∣q ∣∣∣F0

]}
≤ C1,q, E

[(√
∆Tk|Wk|

)q∣∣∣F0

]
≤ C2,q, (3.12)

where the sub-σ-field F0 is defined in (2.5).

(ii) Notice that for a random variable N ∼ N(0, 1) and non-negative integer q ≥ 0, one

has E[|N |q] = 2
q
2 Γ
( q+1

2

)
/
√
π. Then if (µ, σ) ≡ (0, σ0), for some constant (µ0, σ0) ∈

Rd ×Md, and W as in Remark 3.8, it follows by direct computation that

C1,q ≤ |g|q∞ ∨
(

sup
b0∈B∞0 (Lg)

(
b>0 σ0σ

>
0 b0
)

+ max
i=1,··· ,m

‖b>i (σ0σ
>
0 )−1bi‖∞

)q
2q−1Γ

(2q + 1

2

)
/
√
π,

and

C2,q = max
i=1,··· ,m

‖b>i
(
σ0σ

>
0

)−1
bi‖

q
2∞ 2

q
2 Γ
(q + 1

2

)
/
√
π.

We are now ready for the main explicit sufficient conditions for the validity of the

representation Theorem 3.5. Notice that the following conditions can be interpreted

either as a small maturity or small nonlinearity restriction.
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Assumption 3.10. For some q > 1, one of the following two items holds true.

(i) Both C1,q

(
1

F (T )

)q
and sup`∈L,t∈(0,T ]C2,q

(
|c`|∞
p`

1√
tρ(t)

)q
are bounded by 1.

(ii) T <
∫∞
Ĉ1,q

(
Ĉ2,q

∑
`∈L |c`|∞ x|`|

)−1
dx.

Remark 3.11. (i) To ensure that sup`∈L,t∈(0,T ]C2,q

(
|c`|∞
p`

1√
tρ(t)

)q
is bounded by 1, it

is necessary to choose (p`)`∈L such that |c`|∞p` is uniformly bounded, and to choose a

density function such that ρ(t) ≥ Ct−1/2 for t ∈ [0, T ] (especially when t→ 0).

(ii) To ensure that Ĉ2,q is finite, one needs to choose the density function ρ such that

ρ(t) ≥ Ct−
q

2(q−1) , and hence it is necessary that q ∈ (2,∞) so that q
2(q−1) ∈ (1

2 , 1).

Theorem 3.12. Consider the Malliavin automatic differentiation function (3.11), and

suppose that Assumptions 3.1, 3.6 and 3.10 hold true.

(i) Then Assumptions 3.2 holds, and
(
ψt,x, ψ̃t,xW(t, T t(1), x,∆W

t
(1))
)

(t,x)∈[0,T ]×Rd is uni-

formly integrable. Consequently, u(t, x) := E[ψt,x] is a viscosity solution of PDE (2.2).

(ii) If Assumption 3.10 holds with some q ≥ 2, then E
[
|ψt,x|2

]
<∞.

Proof. (i) First, using Proposition 3.7, it is clear that Assumption 3.2 holds true with

the choice of Malliavin automatic differentiation function in (3.11).

(ii) Next, for q ≥ 1, let us introduce

χq∞ :=
[∏
k∈KT

C1,q

( 1

F (∆Tk)

)q][ ∏
k∈KT \KT

C2,q

( |cIk |∞
pIk

1√
∆Tkρ(∆Tk)

)q]
.

By conditioning on F0, it follows from (3.12), together with direct computation, that

E[|ψ|q] ≤ E[χq∞] and E
[∣∣ψ̃W(t, T t(1), x,∆W

t
(1))
∣∣q] ≤ CE[χq∞], (3.13)

for some constant depending only on the Lipschitz constant Lg.

(iii) When Assumption 3.10 (i) holds true for some q > 1, then it is clear that E[|ψ|q] ≤
1. Notice that the above argument is independent of the initial condition (0, x0), it

follows that
(
ψt,x, ψ̃t,xW(t, T t(1), x,∆W

t
(1))
)

(t,x)∈[0,T ]×Rd is uniformly integrable.

(iv) When Assumption 3.10 (ii) holds true for some q > 1. Consider the ODE on [0, T ]:

η(T ) = Ĉ1,q, η′(t) +
∑
`∈L

Ĉ2,q ‖c`‖∞ η(t)|`| = 0.

Under Assumption 3.10 (ii), it is clear that the above ODE admits a unique finite

solution on [0, T ]. We next introduce a sequence of random variables

χ̂qn :=
[ ∏
k∈∪nj=1K

j
T

Ĉ1,q

F (∆Tk)

][ ∏
k∈∪nj=1(Kj

T \K
j
T )

Ĉ2,q
|cIk |∞
pIk

1

ρ(∆Tk)

][ ∏
k∈Kn+1

T

η(Tk−)
]
,

and

χ̂q∞ := lim
n→∞

χ̂qn =
[ ∏
k∈KT

Ĉ1,q

F (∆Tk)

][ ∏
k∈KT \KT

Ĉ2,q
|cIk |∞
pIk

1

ρ(∆Tk)

]
.
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Then by the same arguments as in the proof of Proposition 3.4, it is easy to check that

η(0) = η(T ) +

∫ T

0

∑
`∈L

Ĉ2,q |c`|∞ η(t)|`|dt = E
[
χ̂q1
]

= E
[
χ̂qn
]
, ∀n ≥ 1;

and hence by direct computation, it follows that

E
[∣∣ψ∣∣q] ≤ E

[
χq∞
]
≤ E

[
χ̂q∞
]
≤ lim inf

n→∞
E
[
χ̂qn
]

= η(0) < ∞.

Changing the origin from (0, x0) to (t, x), we see that

sup
(t,x)∈[0,T ]×Rd

E
[
|ψt,x|q

]
≤ sup

t∈[0,T ]
η(t) < ∞,

and hence
(
ψt,x

)
(t,x)∈[0,T ]×Rd is uniformly integrable. The same arguments using (3.13)

show that
(
ψ̃t,xW(t, T t(1), x,∆W

t
(1))
)

(t,x)∈[0,T ]×Rd is uniformly integrable.

4 Further discussions

Representation of the PDE system Let us consider a PDE system (vj)j=1,··· ,n,

where for each j, vj : [0, T ]× Rd → R satisfies

∂tvj + µj ·Dvj +
1

2
aj : D2vj + f(·, v1, · · · , vn, Dv1, · · · , Dvn) = 0,

for some diffusion coefficient function (µj , aj) : [0, T ] × Rd −→ Rd × Sd, and some

polynomial function f : [0, T ]×Rd×Rn×(Rd)n −→ R. Our methodology immediately

applies to this context, and provides a stochastic representation for the solution of

the above PDE system, by means of a regime-changed branching diffusions: at every

branching time, the independent offspring particles perform subsequently different

branching diffusion regime.

Representation in view of unbiased simulation With the same idea of proof,

we can also obtain an alternative representation result, with a “frozen coefficient” SDE

(given below by (4.1)) in place of SDE (2.4). When the coefficient function a ≡ a0

for some constant a0 ∈ Sd, this has significant application in terms of Monte Carlo

approximation, as it leads to a representation random variable which can be simulated

exactly, while the branching diffusion process Xk
· in (2.4) needs a time discretization

technique and hence creates some discretization error in the simulation. Let us present

this alternative representation formula in the case of constant diffusion coefficient case,

i.e. a ≡ a0 = σ0σ
ᵀ
0 for some non-degenerate constant matrix σ0 ∈Md.

Let L̂ := L∪{∂}, where ∂ represents an artificial index; p̂ = (p̂`)`∈L be a probability

mass function and (Îm,n)m,n≥1 be a sequence of i.i.d. random variables of distribution

p̂, and independent of the sequences of i.i.d Brownian motion (Ŵm,n)m,n≥1 and i.i.d

positive random variable (T̂m,n)m,n≥1 of density function ρ. Then following exactly

the same procedure in Section 2.2, we can construct another age-dependent branching

process, denoted by (T̂k)
k∈K̂T

with branching type Îk := În,πn(k). Here, when Îk =
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(ˆ̀
0, · · · , ˆ̀

m) ∈ L, it produces |ˆ̀| offspring particles, marked by i = 0, · · · ,m exactly as

in Step 3 in the construction of age-dependent process KT in Section 2.2; when Ik = ∂,

it produces only one offspring particle, marked by m+ 1. Then for every k ∈ K̂T , we

equipped it with an independent Brownian motion Ŵ k
· as in (3.3). Next, let us define

X̂
(1)
0 = x0, and subsequently for every k ∈ K̂T ,

X̂k
T̂k

:= X̂k
T̂k−

+ µ(T̂k−, X̂
k
T̂k−

)∆T̂k + σ0∆Ŵ k
∆T̂k

, with X̂k
T̂k−

:= X̂k−
T̂k−

. (4.1)

For this case, the Malliavin automatic differentiation functions take a particularly

simple formula, which is compatible with the purpose of the unbiased simulation al-

gorithm. Let us introduce

Ŵk := 1{θk=0} + bθk(T̂k−, X̂
k
T̂k−

) · (σ>0 )−1
∆Ŵ k

∆T̂k

∆T̂k
1{θk∈{1,··· ,m}} (4.2)

+
(
µ(T̂k−, X̂

k
T̂k−

)− µ(T̂(k−)−, X̂
k−
T̂(k−)−

)
)
· (σ>0 )−1

∆Ŵ k
∆T̂k

∆T̂k
1{θk=∂}.

Finally, setting c∂ ≡ 1, and replacing (Xk
· ,Wk, pIk) in the definition of ψ and ψ̃ (in

and below (3.5)) by (X̂k
· , Ŵk, p̂Îk), we obtain

ψ̂ :=
[ ∏
k∈K̂T

g(X̂k
T )− g(X̂k

Tk−
)1θk 6=0

F (∆Tk)
Ŵk

][ ∏
k∈K̂T \K̂T

c
Îk

(T̂k, X̂
k
T̂k

)

p̂
Îk

Ŵk

ρ(∆T̂k)

]
, (4.3)

and similarly
˜̂
ψ.

Next, given a constant vector µ0 ∈ Rd, we keep the same branching Brownian

motion (Ŵ k
· )
k∈K̂T

, and then introduce another diffusion process X̂µ0,k
· by

X̂µ0,k

T̂(1)
:= x0 + µ0∆T̂(1) + σ0∆Ŵ

(1)
∆T(1)

,

and the subsequent process X̂µ0,k

T̂k
for k ∈ K̂T \ {(1)} by the same induction relation as

in (4.1). We then introduce Ŵµ0
k as in (4.2) by replacing X̂k by X̂µ0,k, and replacing

µ(T̂(k−)−, X̂
k−
T̂(k−)−

) by µ0 when k = (1). Replacing (X̂k, Ŵk) by (X̂µ0,k, Ŵµ0
k ) in (4.3),

it defines a new random variable ψ̂µ0 . Finally, by changing the initial condition (0, x0)

and time interval [0, T ] to (t, x) and [t, T ], one obtains Ŵ t,k, T̂ tk, ψ̂
t,x,

˜̂
ψ
t,x

, ψ̂µ0,t,x etc.

Proposition 4.1. Suppose that Assumptions 3.1 holds true, and the semilinear PDE

(2.2) has uniqueness for bounded viscosity solution. Suppose in addition that for every

(t, x) ∈ [0, T ]× Rd, and µ0 lies in a neighborhood of µ(t, x), one has

ψ̂µ0,t,x and ψ̂µ0,t,x∆Ŵ
t,(1)

∆T̂ t
(1)

/∆T̂t,(1) is integrable,

and the family of random variables

(ψ̂t,x)(t,x)∈[0,T ]×Rd and
( ˜̂
ψ
t,x

∆Ŵ
t,(1)

∆T̂ t
(1)

/∆T̂t,(1)

)
(t,x)∈[0,T ]×Rd
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are uniformly integrable with uniformly bounded expectation, define û(t, x) := E[ψt,x].

Then the derivative Dû exists, û and Dû are both continuous; and moreover, u is the

unique bounded viscosity solution of semilinear PDE (2.2).

Sketch of proof. (i) First, by the uniform integrability condition, û is bounded

continuous. Let us introduce

ũ(µ0, t, x) := E[ψ̂µ0,t,x] and v̂(t, x) := E
[

˜̂
ψ
t,x

∆Ŵ
t,(1)

∆T̂ t
(1)

/∆T̂t,(1)

]
.

Notice that v̂ is uniformly bounded and continuous. Recall that W is a standard d-

dimensional Brownian motion independent of the branching diffusion process, we also

introduce

X̂t,x
s := x + µ0(s− t) + σ0(Ws −Wt), s ∈ [t, T ],

where µ0 ∈ Rd is a constant vector in a neighborhood of µ(t, x). Then one obtains as

in (3.6) that

ũ(µ0, t, x) = E
[ 1

F (T̂ t(1))
g
(
X̂t,x

T̂ t
(1)

)
1{T̂ t

(1)
=T} +

1{Î(1)=∂}

ρ(T̂ t(1))p̂∂

(
(µ− µ0) · v̂

)(
T̂ t(1), X̂

t,x

T̂ t
(1)

)
+

1{Î(1) 6=∂}

ρ(T̂ t(1))

( c
Î(1)

p̂
Î(1)

ûÎ(1),0
m∏
i=1

(b · v̂)Î(1),i
)(
T̂ t(1), X̂

t,x

T̂ t
(1)

)
1{T̂ t

(1)
<T}

]
= E

[
g
(
X̂t,x
T

)
+

∫ T

t

(
(µ− µ0) · v̂ + f(·, û, v̂)

)(
s, X̂t,x

s

)
ds
]
.

By standard argument, (t, x) 7→ ũ(µ0, t, x) is a viscosity solution of

− ∂tu + µ0 ·Du +
1

2
a0 : D2u + (µ− µ0) · v̂ +

∑
`∈L

c`û
`0

m∏
i=1

(bi · v̂)`i = 0,

with terminal condition g. Since û and v̂ are bounded continuous, the above PDE has

uniqueness for bounded viscosity solution, which induces that ũ(µ0, t, x) is independent

of µ0 and û(t, x) = ũ(µ0, t, x) for µ0 in a neighborhood of µ(t, x).

(ii) We can then compute the derivative Dxũ(µ0, t, x) and then set µ0 := µ(t, x), it

follows that

Dû(t, x) = Dxũ(µ(t, x), t, x) = v̂(t, x),

which is also bounded continuous. This implies that û(t, x) is a viscosity solution

of (2.2), and we hence conclude the proof by uniqueness of the viscosity solution of

(2.2).

Remark 4.2. The integrability and square integrability of ψ̂ can be analyzed in ex-

actly the same way as in Theorem 3.12. We just notice that the above defined random

variables X̂ as well as Ŵ and hence ψ̂ can be simulated exactly from a sequence of

Gaussian random variables, discrete distributed random variables Îm,n and r.v. T̂m,n

of distribution density function ρ. As for the initial estimator ψ in (3.5), the pro-

cess Xk in (2.4) can not be simulated exactly in general and one needs an additional

time discretization scheme to simulate Xk in order to obtain a simulation of ψ. In

particular, the new estimator ψ̂ would be more interesting to serve as a Monte-Carlo

estimator for u(0, x0).
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On the representation of fully nonlinear PDEs Formally, one can also

obtain a representation result for fully nonlinear PDE, using the same Malliavin auto-

matic differentiation functions of order 2. However, this raises a serious integrability

problem which can not be solved by conditions as in Assumption 3.10. To illustrate the

main difficulty, let us consider the following PDE in the one-dimensional case d = 1:

u(T, x) = g(x), ∂tu +
1

2
D2u + f0(D2u) = 0, on [0, T ]× Rd, (4.4)

where f0(γ) = c0γ for some constant c0 > 1
2 . Notice that there is only one term

in function f0, then a natural guess for the representation is to consider a branching

Brownian motion with exactly one offspring particle at every splitting time. This can

be seen as a Brownian motion W equipped with a sequence of random time mark

(Ti)i=1,··· ,NT
, where

Ti := T ∧
i∑

j=1

τ j,1, NT := inf
{
i : Ti ≥ T

}
.

Notice that for any t > 0 and bounded measurable function φ : R→ R, one has

∂2
xxE

[
φ(x+Wt)

]
= E

[
φ(x+Wt)

W 2
t − t
t2

]
.

Then arguing as in Theorem 3.5, we may expect that u(0, x0) = E[ψ̂
]
, with

ψ̂ := g(x+WT )
1

F (T − TNT−1)

NT−1∏
i=1

c0
(WTi+1 −WTi)

2 − (Ti+1 − Ti)
(Ti+1 − Ti)2ρ(Ti − Ti−1)

,

provided that ψ̂ is integrable. However, the integrability of ψ̂ could fail in general. For

simplicity, let g ≡ 1, and notice that F ≤ 1. Then by taking conditional expectation,

one has, for some constant C > 0 and c1 := E
[∣∣c0(W 2

1 − 1)
∣∣], that

E
[
|ψ̂|
]
≥ E

[NT−1∏
i=1

c1

(Ti+1 − Ti)ρ(Ti − Ti−1)

]
≥ E

[ c1

ρ(T1)

c1

(T2 − T1)ρ(T2 − T1)

c1

T3 − T2
1{T1≤T/2,T2−T1<T/2,T3−T2≥T}

]
≥ CE

[ c1

(T2 − T1)ρ(T2 − T1)
1{T2−T1<T/2}

]
= C

∫ T/2

0

1

t
dt = ∞.

Of course, for linear PDEs as in (4.4), one can simulate a Brownian motion with

volatility coefficient 1 + 2c0 whenever 1 + 2c0 > 0 to obtain the solution. But it is not

the case for general fully nonlinear PDEs.

On the representation results by BSDE Another probabilistic representation

of semilinear parabolic PDE is the Backward Stochastic Differential Equation (BSDE)

proposed by Pardoux and Peng [22]. Namely, given a classical solution u of semilinear

PDE (2.2), we define

(Yt, Zt) :=
(
u(t,X

0,x0
t ), σDu(t,X

0,x0)
)
.

18



Then (Y,Z) provides a solution to BSDE

Yt = g(X
0,x0
T ) +

∫ T

t
f
(
s,X

0,x0
s , Ys, σ

−1(s,X
0,x0
s )Zs

)
ds− ZsdWs, t ∈ [0, T ], P-a.s.

Based on the discretization technique on the BSDE, one can then obtain a prob-

abilistic numerical solution for semilinear parabolic PDEs, see e.g. Bouchard and

Touzi [6], and Zhang [30], etc. Generally speaking, these numerical schemes for BSDE

need a (time-consuming) simulation-regression technique to compute the conditional

expectation appearing in the schemes.

Our representation result induces a pure Monte Carlo simulation algorithm, which

avoids the regression procedure in the numerical schemes of BSDEs. Nevertheless, our

numerical method provides only the solution of PDE at a single time point, and it

needs some restrictive conditions on the coefficient functions f such as Assumption

3.10 to obtain a finite variance estimator. We will provide more numerical examples

as well as some variance reduction techniques in Section 5 below.

5 A Monte Carlo algorithm

5.1 The implementation of the numerical algorithm

The above representation result in Theorem 3.5 induces a Monte Carlo algorithm to

compute the solution of PDE (2.2), by simulating the random variable ψ or ψ̂. We

provide here some discussion on the implementation of the numerical algorithm.

The choice of density function ρ As discussed in Remark 3.11, to ensure

Assumption 3.10, a necessary condition is to choose ρ(t) ≥ Ct−1/2 for t ∈ [0, T ]. A

natural candidate as distribution, which is also easy to be simulated, is the gamma

distribution Γ(κ, θ), with κ ≤ 1
2 , whose density function is given by

ρ0(t) =
1

Γ(κ)θκ
tκ−1 exp(−t/θ)1{t>0}, (5.1)

where Γ(κ) :=
∫∞

0 sκ−1e−sds. In particular, one has

F k :=

∫ ∞
∆Tk

ρ0(t)dt = 1− γ(κ,∆Tk/θ)

Γ(κ)
, where γ(κ, t) :=

∫ t

0
sκ−1e−sds.

Complexity The dimension d of the problem, the choice of (p`)`∈L and ρ will of

course influence the complexity of algorithm. First, the complexity is proportional

to the number of particles in the branching process, i.e. #KT , and for each particle,

the complexity of simulation and calculation is of order Cd2. Let us denote n0 :=∑
`∈L p`|`| and m(t) := E

[
#Kt

]
.

Proposition 5.1. (i) The function m(t) is given by

m(t) =

∞∑
k=0

nk0F
∗,k(t), where F ∗,k(t) := P

[
τ1,1 + · · ·+ τ1,k < t

]
. (5.2)
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(ii) Let ρ be given by (5.1), then F ∗,k(t) = 1
Γ(kκ)γ(kκ, x/θ) and hence

m(t) =
∞∑
k=0

γ(kκ, t/θ)nk0
Γ(kκ)

.

Proof. (i) Using Lemma 4.4.3 of Athreya and Ney [1], one has that satisfies the

equation m(t) = 1 + n0

∫ t
0 m(t−s)ρ(s)ds, whose solution is given explicitly by (5.2).

Further, when ρ is the density function of Gamma distribution, the function F ∗,k(t)

can be computed explicitly.

5.2 A high dimensional numerical example

We first focus on a simple numerical example in high dimension. Let (µ, σ) ≡ (0, σ0)

for some constant matrix σ0 = 1√
d
Id, and f(t, x, y, z) = k(t, x) + cy(b · z), where

b := 1
d(1 + 1

d , 1 + 2
d , · · · , 2) and

k(t, x) := cos(x1 + · · ·+ xd)
(
α+

σ2

2
+ c sin(x1 + · · ·+ xd)

3d+ 1

2d
eα(T−t)

)
eα(T−t).

With terminal condition g(x) = cos(x1 + · · · + xd), the explicit solution of semilinear

PDE (2.2) is given by

u(t, x) = cos(x1 + · · ·+ xd)e
α(T−t).

In our numerical experiment, we set α = 0.2, c = 0.15, T = 1, and x0 = 0.51Id, where

1Id stands for the unit vector in Rd for d = 5, 10 and 20. We would like to emphasize

that, to the best of our knowledge, no alternative methods are available for solving

such a high-dimensional semilinear PDE. In Table 1, we report the analytic solution of

the semilinear PDE and that of the corresponding linear PDE by setting c = 0. The

different results indicate that the nonlinearity term has an impact.

Dimension 5 10 20

Linear Solution -1.0436 0.3106 -0.9661

Non linear solution -0.97851 0.34646 -1.0248

Table 1: Analytical solution for the linear PDE (i.e., c = 0) versus analytical solution for

the semilinear PDE in d = 5, 10 and 20.

For numerical implementations, we use gamma distribution (5.1), with κ = 0.5 and

θ = 2.5. On each test, we simulate n i.i.d. copies (ψk)1≤k≤n of the random variable

ψ, and then compute its empirical average value ψn := 1
n

∑n
k=1 ψk. For each n, the

estimation procedure is repeated independently M = 1000 times, so as to obtain M

i.i.d. estimations (ψ
1
n, · · · , ψ

M
n ).

We next compute

• the global estimate by ÊM [ψn] := 1
M

∑M
i=1 ψ̄

i
n,

20



• the standard deviation by σ̂n,M :=
√

1
M−1

∑M
i=1(ψ̄in − ÊM [ψn])2.

In case of convergence, we will expect that σ̂n,M ≈
√

Var[ψ]/n. In Figures 1, 2, 3,

we illustrate some numerical results, and show that it converges easily to our analytic

solution. In Table 2, we report some numerical simulation results: with the number

of simulations n = 96000, the numerical result has a relative error less than 0.1%. All

simulations are implemented on one core of a Laptop core I7 processor 2.2 GHz.

Figure 1: Estimation and standard deviation observed in d = 5 depending on the log of the

number of simulations n

.

Figure 2: Estimation and standard deviation observed in d = 10 depending on the log of

the number of simulations n

.

Dimension 5 10 20

Time 550 717 956

Table 2: Computational time in seconds for 96000 trajectories computed 1000 times on one

core for κ = 0.5, θ = 2.5.
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Figure 3: Estimation and standard deviation in d = 20 depending on the log of the number

of simulations n

.

6 Some extensive tests

This section is devoted to additional tests. Having illustrated previously that our

algorithm is efficient for solving high-dimensional semilinear PDEs, we focus on some

examples from dimension 1 to 3. Note that our results have been benchmarked against

a Finite Difference method in d = 1 and d = 2. Unfortunately, the finite difference

method is not available in d = 3. All our numerical examples share the following

characteristics: µ(t, x) = 1 − x, σ ≡ 0.5Id and x0 = 1I. T is chosen equal to 1,

g(x) = (1
d

∑d
i x(i)−1)+ for x ∈ Rd. Notice that with the above coefficients, SDE (3.1)

is a linear SDE, whose solution can exactly simulated:

X
0,x
t = (1− e−t)1I + e−tx+ σ

√
1− e−2t

2
Z, Z ∼ N(0, Id). (6.1)

The Malliavin weight used in the algorithm can be computed explicitly and is given

by Z/
(
σ
√

e2t−1
2

)
. We will compare numerical results from four different schemes.

• (scheme a) using the representation (3.5) with the explicit solution (6.1) of the

SDE (3.1).

• (scheme b) using the representation (4.3) with freezing coefficient techniques.

• (scheme c) using the representation (4.3), enhanced by the resampling scheme

(see Appendix for more details).

• (scheme d) using the representation (3.5), enhanced by the resampling scheme.

The density function ρ is that of the gamma law with parameters κ and θ. If not

indicated, the parameters of the law are set to κ = 0.5 and θ = 2.5 and the probability

pl are chosen equal. On each test, a calculation is achieved with n simulations (start-

ing with n = 1562 for scheme a and with n = 100000 for schemes b and c). The n

simulation are shared on 96 processors and each processor i calculates an estimation

Ei of the solution with n
96 simulations. Then an estimation E with n simulation is

achieved with E = 1
96

∑
iEi. When importance sampling is used, in order to avoid
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communications that breaks parallelism, it is used on each processor so with n
96 simula-

tions on each processor. The standard deviation of E is estimated with 1000 runs of n

simulations and its log is reported on the different figures below for different values of

n. We expect that by quadrupling the values of n, the standard deviation std divides

by a factor 2 and the plot (log(n), log(std)) should be linear with a slope equal to −1
2 .

The theoretical rate of convergence is also plotted on each figure (as in our previous

example, the solutions are obtained on the average of the 1000 runs).

6.1 Some examples in one space dimension

• For d = 1, we take f(t, x, y, z) := 0.2y2 + 0.3y3. Results on Figure 4 show

that the method converges. Scheme a is far more effective than scheme b and

that the importance sampling of scheme c is effective. The log of the standard

deviation decreases for all schemes linearly with the log of the particle number

as predicted by the theory. Note that the computational cost for 1000 runs with

25000 simulations on one core is equal to 490 seconds for scheme a, 200 seconds

with scheme b and 260 seconds with scheme c.

Figure 4: Estimation and standard deviation obtained in d = 1 for f(t, x, y, z) := 0.2y2 +

0.3y3

• As a second example in d = 1, we take a Burgers type nonlinearity f(t, x, y, z) =

0.15yz. Results on Figure 5 show that all the schemes converge to our numerical

finite difference solution. Note that the computational cost for 1000 runs with

25000 simulations on one core is roughly equal to 200 seconds for scheme a, 100

seconds for scheme b, 300 seconds for scheme c.

• As a third example in d = 1, we keep the same nonlinearity with f(t, x, y, z) =

0.3yz. We expect that the variance of the results will be higher than in the

previous case. This is observed in Figure 6. Scheme a still converges. Scheme

b converges slowly and Importance Sampling of scheme c permits to get faster

convergence and to recover the good rate in the log of the standard deviation

decay. The computational times are the same as in our previous test.

• As a fourth example in d = 1, we take a nonlinearity with f(t, x, y, z) = 0.08z2.

Results are shown in Figure 7. The importance sampling of scheme c is required
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Figure 5: Estimation and standard deviation obtained in d = 1 for f(t, x, y, z) = 0.15yz.

Figure 6: Estimation and standard deviation obtained in d = 1 for f(t, x, y, z) = 0.3yz.

to achieve proper convergence. Scheme a converges quickly. Computational times

are the same as before (same type of branching).

Figure 7: Estimation and standard deviation obtained in d = 1 for f(t, x, y, z) = 0.08z2.

• As a last example in d = 1, we keep the same type of nonlinearity f(t, x, y, z) =

0.2z2. Schemes b and c don’t converge anymore. We only test scheme a using

different values for the parameters κ and θ (see Figure 8). The change in θ does

not seem to change convergence properties. The change in κ (from 0.5 to 0.4)

does not seem to modify our results. However, some tests, not reported here,
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Figure 8: Estimation and standard deviation obtained in d = 1 for f(t, x, y, z) = 0.2z2.

Different values for κ and θ are used.

show that the variance can increase a lot using κ around 0.25. Then, as the

average jump size is proportional to θ, it is more efficient to take some quite high

values for θ in order to reduce the computational time. For the same reason, it

is optimal to choose a κ equal to 0.5. In Table 3, we report the computational

time, associated to different choices of (κ, θ), as a multiplicative factor of the

computational effort with benchmark parameters κ = 0.5, θ = 2.5.

Table 3: Computational time, associated to different choices of (κ, θ), as a multiplicative

factor of the computational effort with benchmark parameters κ = 0.5, θ = 2.5

κ 0.5 0.5 0.5 0.4 0.4

θ 1 2.5 5 2.5 5.

Time 6.63 1 0.49 2.85 1.02

We notice that for all the parameters, the decay in the variance is far from the expected

theoretical one (see Figure 8). We then use our benchmark parameters and compare

the results obtained using scheme a and scheme d (importance sampling is used here).

Results are reported on Figure 9. They illustrate that the importance sampling method

allows to improve the convergence rate.

6.2 Some examples in two space dimensions

Although the efficiency of our algorithm was illustrated on our previous experiments,

this Monte-Carlo method cannot compete a PDE deterministic methods in d = 1. In

this section, we focus on d = 2, where advantages of PDE implementation remain but

are not so obvious.

• For the first example in d = 2, we take f(t, x, y, z) := 0.15y1I.z. On Figure 10,

we give the results obtained using our three schemes showing that Importance

Sampling is needed. Note that the computation cost for 1000 runs with 25000
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Figure 9: Estimation and standard deviation obtained in d = 1 for f(t, x, y, z) = 0.2z2 with

and with out importance sampling.

simulations on one core is roughly equal to 230 seconds for scheme a, 90 seconds

for scheme b, 580 seconds for scheme c.

Figure 10: Estimation and standard deviation obtained in d = 2 for f(t, x, y, z) := 0.15y1I.z.

• For the second example in d = 2, we take f(t, x, y, z) := 0.04(z.1I)2. The conver-

gence of Scheme a is easily achieved while Scheme b converge poorly as shown

in Figure 11. Importance sampling method improve the convergence. Computa-

tional costs are the same as in our first d = 2 tests.

• For the third example, we test the influence of the coefficients on Scheme a

for a non linearity f(t, x, y, z) := K(z.1I)2 with K = 0.05, K = 0.1, K = 0.2.

Using Scheme b and c, we cannot get proper convergence due to high variances

observed. On Figure 12, we give the convergence obtained with the different K

values and on Figure 13 the standard deviation associated. As the coefficients

grow, the variance of the results gets higher preventing the method from converge

when K = 0.2.

• At last we test the influence of the function g. The representation of the solu-

tion involves the product of g functions so we expect that the variance of the

result is highly sensitive to the scaling of this function. Here we choose to keep

f(t, x, r, p) := 0.05(Du.1I)2 and take different values for the g function. On figure
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Figure 11: Estimation and standard deviation obtained in d = 2 for f(t, x, y, z) :=

0.04(z.1I)2.

Figure 12: Convergence of scheme a for different K values.

Figure 13: Standard deviation of the scheme a for different K values.

14 we take g(x) = 2(1
d

∑d
i x(i)− 1)+ and give the convergence of schemes a and

b and the standard deviation associated. Comparing to figure 13 (K = 0.05), we

see a net increase in the variance of the result for scheme a. When importance

sampling is used (scheme d) the decay in term of variance is more regular. In-

creasing the function g such that g(x) = 3(1
d

∑d
i x(i) − 1)+, we give the results

obtained on figure 15. Here importance sampling is really necessary to recover a

good rate of convergence.

6.3 An example in three space dimensions

We take f(t, x, y, z) := 0.15(z.1I)2. Results are given on Figure 16, still showing that

importance sampling is necessary while using discretization of the scheme and that the

exact scheme has a lower variance.
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Figure 14: Estimation and standard deviation observed in dimension 2 for case 4, g(x) =

2(1
d

∑d
i x(i)− 1)+.

Figure 15: Estimation and standard deviation observed in dimension 2 for case 4, g(x) =

3(1
d

∑d
i x(i)− 1)+.

Figure 16: Estimation and standard deviation observed in dimension 3 for case 1.

A Resampling scheme for branching processes

Notice that our estimator (3.5) and (4.3) are provided as a product of some random

variables. Then similar to Doumbia, Oudjane and Warin [8], one can use the re-

sampling scheme (or interacting particle systems), see Del Moral [7]. Intuitively, this

scheme replaces the expectation of a product by a product of expectations, which
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potentially stabilizes the Monte-Carlo estimator.

Let us first introduce the Markov chain (Xn)n≥1, taking values in ∪p≥1([0, T ]2 ×
R2d×{0, · · · ,m}×L)p such that X1 = (0, 0, x0, x0, 0, I0) with I0 = (1, 0, · · · 0) ∈ Nm+1

and for any n ≥ 1, one defines

Xn+1 :=
(
Xn, (Tk− , Tk, Xk

Tk−
, Xk

Tk
, θk, Ik)k∈∪np=1K

p
T

)
.

Notice that this Markov chain has an absorbing state since for any ω ∈ Ω there is

a generation n(ω) for which all branches have died (either having no offspring before

reaching T or having reached T ) implying Kn+1
T (ω) = ∅ and consequently Xn+1(ω) =

Xn(ω). Then (Xn)n≥0 is a Markov chain. We next introduce

Gn(Xn) :=
[∏
k∈Kn

T

g(Xk
T )− g(Xk

Tk−
)1{θk 6=0}

F (∆Tk)
Wk

][ ∏
k∈(Kn

T \Kn
T )

cIk(Tk, X
k
Tk

)

pIk

Wk

ρ(∆Tk)

]
, (A.1)

so that

ψ =
∞∏
n=1

Gn(Xn).

Notice that the above representation consists of a product from contributions from

each generation n ≥ 1. Since the number of generation prior to the maturity T is

finite a.s., the last product only involves finite number of terms, a.s. We also observe

that except for the trivial case of constant function g, E[|Gn(Xn)|] 6= 0. By iteration,

it is easy to see that

EP0 [ψ] =
( ∞∏
n=1

EPn−1
[∣∣Gn(Xn)

∣∣]) EP∞
[ ∞∏
n=1

sgn(Gn(Xn))
]
,

where given P0, one defines Pn by dPn
dPn−1

:= |Gn(Xn)|
EPn−1 [|Gn(Xn)|]

, for n ≥ 1.

The particle algorithm consists in simulating the dynamics of an interacting particle

system of size N , (ξ1,N
p , · · · ξN,Np ), on ∪p≥1([0, T ]2×R2d×{0, · · · ,m}×L)p, from step

n = 1 to n = ∞ and then to approximate each expectation EPn−1
[∣∣Gn(Xn)

∣∣] by the

empirical mean value of the simulation. The algorithm can be given as an iteration of

the following two steps, initiated by n = 1,

Selection step Given N copies of simulation (ξi,Nn )i=1,··· ,N of Xn, one draws ran-

domly and independently N simulations among the current particle system with

a probability
|Gp(ξi,Np )|∑N
j=1 |Gp(ξi,Np |)

;

Evolution step Each new selected particle evolves randomly and independently ac-

cording to the transition of the Markov chain (Xn) between n and n+ 1.

Finally u(0, x0) is approximated as a product of empirical averages:

∞∏
n=1

( 1

N

N∑
i=1

|Gn(ξi,Nn )|
)( 1

N

N∑
i=1

∞∏
n=1

sgn
(
Gn(ξi,Nn )

))
. (A.2)

Notice again that, for every simulation (ξi,N ), the maturity T is attained for some

finite generation, then the above product
∏∞
n=1 can be restricted to the a finite product∏nN

n=1, where nN := inf{n ≥ 1 | ξi,Nn has reached T for all i = 1, · · ·N}.
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