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Abstract

We consider an exchange who wishes to set suitable make-take fees to attract liquidity on its
platform. Using a principal-agent approach, we are able to describe in quasi-explicit form
the optimal contract to propose to a market maker. This contract depends essentially on
the market maker inventory trajectory and on the volatility of the asset. We also provide
the optimal quotes that should be displayed by the market maker. The simplicity of our
formulas allows us to analyze in details the effects of optimal contracting with an exchange,
compared to a situation without contract. We show in particular that it leads to higher
quality liquidity and lower trading costs for investors.

Keywords: Make-take fees, market making, financial regulation, high-frequency trading, principal-
agent problem, stochastic control.

1 Introduction

With the fragmentation of financial markets, exchanges are nowadays in competition. Indeed
the traditional international exchanges are now challenged by alternative trading venues, see
[16]. Consequently, they have to find innovative ways to attract liquidity on their platforms.
One solution is to use a make-taker fees system, that is a rule enabling them to charge in an
asymmetric way liquidity provision and liquidity consumption. The most classical setting, used
by many exchanges (such as Nasdaq, Euronext, BATS Chi-X...), is of course to subsidize the
former while taxing the latter. In practice, this means associating a fee rebate to executed limit
orders and applying a transaction cost for market orders.

In the recent years, the topic of make-take fees has been quite controversial. Indeed make-take
fees policies are seen as a major facilitating factor to the emergence of a new type of market
makers aiming at collecting fee rebates: the high frequency traders. As stated by the Securities
and Exchanges commission in [26]: “Highly automated exchange systems and liquidity rebates
have helped establish a business model for a new type of professional liquidity provider that is
distinct from the more traditional exchange specialist and over-the-counter market maker.” The
concern with high frequency traders becoming the new liquidity providers is two-fold. First,
their presence implies that slower traders no longer have access to the limit order book, or only
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in unfavorable situations when high frequency traders do not wish to support liquidity. This
leads to the second classical criticism against high frequency market makers: they tend to leave
the market in time of stress, see [3, 20, 21, 24] for detailed investigations about high frequency
market making activity.

From an academic viewpoint, studies of make-take fees structures and their impact on the wel-
fare of the markets have been mostly empirical, or carried out in rather stylized models. An
interesting theory, suggested in [1] and developed in [5] is that make-take fees have actually no
impact on trading costs in the sense that the cum fee bid-ask spread should not depend on the
make-take fees policy. This result is consistent with the empirical findings in [17, 19]. Neverthe-
less, it is clearly shown in these works that many important trading parameters such as depths,
volumes or price impact do depend on the make-take fees structure, see also [12]. Furthermore,
the idea of the neutrality of the make-take fees schedule is also tempered in [10] where the au-
thors show theoretically that make-take fees may increase welfare of markets provided the tick
size is not equal to zero, see also [4].

In this work, our aim is to provide a quantitative and operational answer to the question of
relevant make-take fees. To do so, we take the position of an exchange (or of the regulator)
wishing to attract liquidity. The exchange is looking for the best make-take fees policy to offer
to market makers in order to maximize its utility. In other words, it aims at designing an optimal
contract with the market marker to create an incentive to increase liquidity. For simplicity, we
consider a single market maker in a non-fragmented market.

Incentive theory has emerged in the 1970s in economics to model how an financial agent can
delegate the management of an output process to another agent. Let us recall the formalism
of principal-agent problems from the seminal works of Mirrlees [22] and Holmström [13]. A
principal aims at contracting with an agent who provides efforts to manage an output process
impacting the wealth of the principal. The principal is not able to control directly the output
process since he cannot decide the efforts made by the agent. In our case, the principal is the
exchange, the agent is the market maker, the efforts correspond to the quality of the liquidity
provided by the market maker (essentially the size of the bid-ask spread proposed by the mar-
ket maker) and the output process is the transactions flow on the platform. Several economics
papers have investigated this kind of problems by identifying it with a Stackelberg equilibrium
between the two parties. More precisely, since the principal cannot control the work of the agent,
he anticipates his best-reaction effort for a given compensation. Knowing that, the principal
aims at finding the best contract.

In our work, we deal with a continuous-time principal-agent problem. Indeed, the exchange
monitors the spread set by the market maker around a Brownian-type efficient price and the
transactions flow in continuous-time. Our paper follows the stream of literature initiated in [14].
Then in [25], the author recasts such issue into a stochastic control problem which has been
further developed using backward stochastic differential equation theory in [7]. See also [8] for
related literature.

In this paper, although we work in a quite general and realistic setting, we are able to solve our
principal-agent problem. More precisely, we provide a quasi-explicit expression for the optimal
contract the exchange should propose to the market maker, and also for the quotes the market
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maker should set. The optimal contract depends essentially on the market maker inventory tra-
jectory and on the volatility of the market. These simple formulas enable us to analyze in details
the effects for the welfare of the market of optimal contracting with an exchange, compared to
a situation without contract as in [2, 11]. We notably show that using such contracts leads to
reduced spreads and lower trading costs for investors.

The paper is organized as follows. Our modeling approach is presented in Section 2. In par-
ticular, we define the market maker’s as well as the exchange’s optimization frameworks. In
Section 3, we compute the optimal reaction of the market maker for a given contract. Optimal
contracts are designed in Section 4 where we solve the exchange’s problem. Then, in Section 5,
we assess the benefits for market quality of the presence of an exchange contracting optimally
with a market maker. Finally, useful technical results are gathered in an appendix.

2 The model

The framework considered throughout this paper is inspired by the seminal work [2] where
the authors consider the problem of optimal market making, but without the intervention of
an exchange. Let T > 0 be a final horizon time and (Ω,F) be a measurable space such that
Ω = Ωc×(Ωd)

2 with Ωc the set of continuous functions from [0, T ] into R, Ωd the set of piecewise
constant càdlàg functions from [0, T ] into N and F the Borel algebra on Ω. We consider the
following canonical process (χt)t∈[0,T ] = (St, N

a
t , N

b
t )t∈[0,T ]

∀ω = (s, na, nb) ∈ Ω St(ω) = s(t), Na
t (ω) = na(t), N b

t (ω) = nb(t).

We endow the space (Ω,F) with F = (Ft)t∈[0,T ] = (Fct ⊗ (Fdt )⊗2)t∈[0,T ] where (Fct )t∈[0,T ] and

(Fdt )t∈[0,T ] are the right-continuous completed filtrations associated with the components of
(χt)t∈[0,T ].

We consider a market where there is only one market maker. This market maker has a view on
the efficient price of the asset given by St. We assume that

St = S0 + σWt, (1)

with S0 > 0, W a Brownian motion and σ > 0 the volatility of the price1. The market maker
fixes the bid and ask prices

P bt = St − δbt , and P at = St + δat .

We assume that the arrival of ask (resp. bid) market orders is modeled by a point process
(Na

t )t∈[0,T ] (resp. (N b
t )t∈[0,T ]) with intensity (λat )t∈[0,T ] (resp. (λbt)t∈[0,T ]). We also suppose that

the volume of market orders is constant and equal to unity. Hence, the inventory process of the
market maker is given by

Qt = N b
t −Na

t , t ≥ 0. (2)

As in [11], we impose a critical absolute inventory q̄ ∈ N above which the market maker stops
quoting on the ask or bid side, i.e.

λat = λat 1I{Qt>−q̄}, and λbt = λbt1I{Qt<q̄}.

1In practice, the efficient price can be thought of as the mid-price of the asset.
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Moreover, we recall that from classical financial economics results, see [9, 18, 28], the average
number of trades per unit of time is essentially a decreasing function of the ratio between the
spread and the volatility. Hence, we assume that

λat = λ(δat )1{Qt>−q̄}, and λbt = λ(δbt )1I{Qt<q̄}, with λ(x) = Ae−k
x
σ , (3)

for fixed positive constants A and k.

2.1 Admissible controls and market maker’s problem

We work with the following set A of admissible controls (δt)t∈[0,T ] = (δat , δ
b
t )t∈[0,T ] such that δ is

predictable and for any t ∈ [0, T ]

|δat | ∨ |δbt | ≤ δ∞,

for some positive constant δ∞ which will be fixed later to a sufficiently large value. For each
control process δ = (δa, δb) of the market maker, we denote by Pδ the associated probability
measure under which S follows (1) and

Ñ δ,a
t = Na

t −
∫ t

0
λ(δar )1{Qr>−q̄}dr, Ñ δ,b

t = N b
t −

∫ t

0
λ(δbr)1{Qr<q̄}dr, (4)

are martingales. In that case, the profit and loss process of the market maker is defined by

PLδt = Xδ
t +QtSt, where Xδ

t =

∫ t

0
P ar dN

a
r −

∫ t

0
P br dN

b
r , t ∈ [0, T ]. (5)

Here, Xδ is the cash flow process, and QS represents the inventory risk process2.
Next, we introduce the Doléans-Dade exponential

Lδt = exp
(∫ t

0
log

(
λ(δar )

A

)
1I{Qr−>−q̄}dN

a
r + log

(
λ(δbr)

A

)
1I{Qr−<q̄}dN

b
r

−(λ(δar )−A)1Qr>−q̄dr − (λ(δar )−A)1Qr<q̄dr
)
, (6)

which is a P0−local martingale as it can be verified by direct application of Itô’s formula:

dLδt = Lδt−

(
λ(δat )−A

A
1I{Qt−>−q̄}dÑ

0,a
t +

λ(δbt )−A
A

1I{Qt<q̄}dÑ
0,b
t

)
,

Since δa and δb are uniformly bounded, this local martingale satisfies the Novikov-type criterion
in [27] and thus is a martingale. From Theorem III.3.11 in [15], it follows that

dPδ

dP0

∣∣∣
Ft

= Lδt . (7)

In particular, all the probability measures Pδ indexed by δ ∈ A are equivalent. We therefore
use the notation a.s for almost surely without ambiguity. We shall write Eδt for the conditional
expectation with respect to Ft with probability measure Pδ.

2As in [2], for sake of simplicity, we assume that the market maker estimates his inventory risk using the
efficient price S.
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We consider that the exchange is compensated for each market order arrival and so aims at
keeping the market liquid. Thus, we assume that it proposes to the market maker a contract,
defined by an FT -measurable random variable ξ, and representing a compensation for the market
making activity as part of the market flow. In addition to the realized profit and loss (5) on
[0, T ], the market maker receives a compensation ξ from the exchange at the final time T , thus
leading to the maximization problem:

VMM(ξ) = sup
δ∈A

JMM(δ, ξ) where JMM(δ, ξ) = Eδ
[
− e−γ(ξ+PLδT−PLδ0)

]
(8)

= Eδ
[
− e−γ(ξ+

∫ T
0 δat dN

a
t +δbtdN

b
t+QtdSt)

]
.

Here, γ > 0 is the absolute risk aversion parameter of the CARA market maker. For each
compensation ξ, we show that there exists a unique best reaction control δ̂(ξ) = (δ̂a(ξ), δ̂b(ξ))
of the market marker.

Remark 2.1. The case ξ = 0 corresponds to the problem without exchange intervention treated
in [2, 11].

2.2 The exchange optimal contracting problem

We assume that the exchange is compensated by a fixed amount c > 0 for each market order that
occurs in the market. In practice, some exchanges add to this fixed fee a component which is
proportional to the traded amount in currency value. However, since we are anyway working on
a short time interval, we take c independent of the price of the asset. Note that the fee schedule
considered here for the taker side is simple. Indeed, in practice, complex fee policies are rather
dedicated to market makers. Furthermore, we will in fact see that when acting optimally, the
exchange is somehow indifferent to the value of c, see Section 4.3.
The exchange aims at maximizing the total number of market orders Na

T + N b
T , whose arrival

intensities are controlled exclusively by the market maker. The role of the contract ξ proposed
by the exchange to the market maker is to encourage the latter to increase the liquidity of the
market. In this case, the profit and loss of the exchange is given by

c(Na
T +N b

T )− ξ.

Thus the exchange optimally chooses the contract to maximize its CARA utility function with
absolute risk aversion parameter η > 0:

V E
0 = sup

ξ∈C
Eδ̂(ξ)

[
− e−η(c(Na

T+Nb
T )−ξ)

]
. (9)

We now define the set of admissible contracts C. Concerning the problem of the exchange, we

need to ensure that Eδ̂(ξ)
[
− e−η(c(Na

T+Nb
T )−ξ)

]
is not degenerated. The natural condition that

we need is then to assume that

sup
δ∈A

Eδ
[
eη
′ξ
]
< +∞, for some η′ > η. (10)

Since Na and N b are point processes with bounded intensities, this condition together with an
Hölder inequality ensure that the problem of the exchange (9) is well defined. In the same way,
we will assume that

sup
δ∈A

Eδ
[
e−γ

′ξ
]
< +∞, for some γ′ > γ, (11)
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to ensure that Eδ[−e−γ(ξ+∈T0 δat dNa
t +δbtdN

b
t+QtdSt)] is not degenarate and hence the well-definition

of the market maker problem (8). We will also assume that the latter only accepts contracts ξ
such that the maximal utility VMM (ξ) is above a threshold value R < 0.
Hence, we denote by C the space of admissible contracts defined by

C =
{
ξ FT -measurable such that VMM(ξ) ≥ R and (10) and (11) are satisfied

}
.

We will take −R large enough so that C contains the zero contract ξ = 0 and thus is nonempty.

3 Solving the market maker’s problem

We start by solving the problem (8) of the market maker faced to an arbitrary contract ξ ∈ C
proposed by the exchange.

3.1 Market maker’s optimal response

For (δ, z, q) ∈ [−δ∞, δ∞]2 × R3 × Z, with δ = (δa, δb) and z = (zS , za, zb), we define

h(δ, z, q) =
1− e−γ(za+δa)

γ
λ(δa)1I{q>−q̄} +

1− e−γ(zb+δb)

γ
λ(δb)1{q<q̄},

and

H(z, q) = sup
|δa|∨|δb|≤δ∞

h(δ, z, q),

For arbitrary constant Y0 ∈ R, and predictable processes Z = (ZS , Za, Zb), with
∫ T

0 |Z
S |2dt <

∞, and (Za, Zb) locally bounded, a.s., we introduce the process

Y Y0,Z
t = Y0 +

∫ t

0
Zar dN

a
r + ZbrdN

b
r + ZSr dSr +

(1

2
γσ2(ZSr +Qr)

2 −H(Zr, Qr)
)
dr, (12)

and we denote by Z the collection of all such processes Z satisfying in addition Condition (10)
with ξ = Y 0,Z

T and

sup
δ∈A

sup
t∈[0,T ]

Eδ[e−γ
′Y 0,Z
t ] <∞. (13)

Clearly, Z 6= ∅ as it contains all bounded predictable processes and

C ⊃ Ξ =
{
Y Y0,Z
T : Y0 ∈ R, Z ∈ Z, and VMM(Y Y0,Z

T ) ≥ R
}
. (14)

The next result shows that these sets are in fact equal, and identifies the market maker utility
value and the corresponding optimal response. To prove equality of these sets, we are reduced
to the problem of representing any contract ξ ∈ C as ξ = Y Y0,Z

T for some (Y0, Z) ∈ R×Z, which
is known in the literature as a problem of backward stochastic differential equation. We refrain
from using this terminology, as our analysis does not require any result from this literature.

Theorem 3.1. (i) Any contract ξ ∈ C has a unique representation as ξ = Y Y0,Z
T , for some

(Y0, Z) ∈ R×Z. In particular, C = Ξ.
(ii) Under this representation, the market maker utility value is

VMM

(
ξ
)

= −e−γY0 , so that Ξ =
{
Y Y0,Z
T : Z ∈ Z, and Y0 ≥

−1

γ
log (−R)

}
,
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with optimal bid-ask policy:

δ̂at (ξ) = ∆(Zat ), δ̂bt (ξ) = ∆(Zbt ), where ∆(z) = (−δ∞) ∨
{
− z +

1

γ
log
(

1 +
σγ

k

)}
∧ δ∞. (15)

The proof of Part (i) of the previous result will be reported in Section A.2. This representation
is obtained by using the dynamic continuation utility process of the market maker, following
the approach of Sannikov [25]. In the present case, we shall prove that the continuation util-
ity process satisfies the dynamic programming principle, so that the required representation
follows from the Doob-Meyer decomposition of supermartingales together with the martingale
representation theorem.

Proof of Theorem 3.1 (ii) Let ξ = Y Y0,Z
T with (Y0, Z) ∈ R × Z. We first prove that for an

arbitrary bid-ask policy δ ∈ A, we have JMM(ξ, δ) ≤ −e−γY0 . Denote Y t = Y Y0,Z
t +

∫ t
0 δ

a
t dN

a
t +

δbtdN
b
t +QtdSt, t ∈ [0, T ]. By direct application of Itô’s formula, we see that

de−γY t = γe−γY t
[
− (Qt + ZSt )dSt −

1

γ
(1− e−γ(Zat +δat ))dÑ δ,a

t −
1

γ
(1− e−γ(Zbt+δat ))dÑ δ,b

t

+
(
H(Zt, Qt)− h(δt, Zt, Qt)

)
dt
]
.

Hence e−γȲ is a Pδ− local submartingale. Thanks to Condition (13), the uniform boundedness
of the intensities of Na and N b and the Hölder inequality, (e−γȲt)t∈[0,T ] is uniformly integrable
and hence is a true submartingale. By Doob-Meyer decomposition theorem, we conclude that∫ ·

0
γe−γY t

(
− (Qt + ZSt )dSt −

1

γ
(1− e−γ(Zat +δat ))dÑ δ,a

t −
1

γ
(1− e−γ(Zbt+δat ))dÑ δ,b

t

)
,

is a true martingale. It follows that

JMM(ξ, δ) = Eδ
[
− e−γY T

]
= −e−γY0 − Eδ

[ ∫ T

0
γe−γY t

(
H(Zt, Qt)− h(δt, Zt, Qt)

)
dt
]
≤ −e−γY0 .

On the other hand, equality holds in the last inequality if and only if δ is chosen as the maximizer
of the Hamiltonian H (dt × dP−a.e.), thus leading to the unique maximizer δ̂(ξ), which then
induces JMM(ξ, δ̂(ξ)) = −e−γY0 . This completes the proof that VMM(ξ) = −e−γY0 with optimal
response δ̂(Z).

4 Designing the optimal contract

Denote Ŷ0 = − 1
γ log(−R). By Theorem 3.1, the exchange problem (9) reduces to the control

problem

V E
0 = sup

Y0≥Ŷ0
sup
Z∈Z

Eδ̂(Y
Z
T )
[
− e−η

(
c(Na

T+Nb
T )−Y Y0,ZT

)]
, (16)

where the continuation utility process of the market maker Y Y0,Z is given by (12). In the present
context, the objective function in (16) is clearly decreasing in Y0, implying that the maximization
under the participation constraint is achieved at Ŷ0. Hence

V E
0 = eηŶ0 sup

Z∈Z
Eδ̂(Y

Z
T )
[
− e−η

(
c(Na

T+Nb
T )−Y 0,Z

T

)]
. (17)

We will denote by Ñ δ̂,b and Ñ δ̂,a the Pδ̂(Y ZT )−compensated Poissons processes of Na and N b.
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4.1 The HJB equation for the reduced exchange problem

In this section, we study the HJB equation corresponding to the stochastic control problem

vE0 = sup
Z∈Z

Eδ̂(Y
Z
T )
[
− e−η

(
c(Na

T+Nb
T )−Y 0,Z

T

)]
. (18)

Our approach is to derive a solution v of the corresponding HJB equation, and to proceed by
the standard verification argument in stochastic control to prove that the proposed solution v
coincides with the value function vE .
Applying the standard dynamic programming approach (formally) to the last control problem,
we are led to the HJB equation{

∂tv(t, q) +HE

(
q, v(t, q), v(t, q + 1), v(t, q − 1)

)
= 0, q ∈ {−q̄, · · · q̄}, t ∈ (0, T ],

v(T, q) = −1,
(19)

where the Hamiltonian HE : [−q̄, q̄]× (−∞, 0]3 → R is given by

HE(q, y, y+, y−) = H1
E(q) + 1I{q>−q̄}H

0
E(y, y−) + 1I{q<q̄}H

0
E(y, y+), (20)

with

H1
E(q, y) = sup

zs∈R
h1
E(q, y, zs), and h1

E(q, y, zs) =
ησ2

2
y
(
γ(zs + q)2 + ηz2

s

)
,

H0
E(y, y′) = sup

ζ∈R
h0
E(y, y′, ζ) and h0

E(y, y′, ζ) = λ
(
∆(ζ)

)[
y′eη(ζ−c) − y

(
1 + η

1− e−γ(ζ+∆(ζ))

γ

)]
.

A direct calculation reported in Lemma A.1 below reveals that the maximizers ẑ = (ẑs, ẑa, ẑs)
of HE are

ẑs(t, q) = − γ

γ + η
q, ẑa(t, q) = ζ̂

(
v(t, q), v(t, q − 1)

)
, and ẑb(t, q) = ζ̂

(
v(t, q), v(t, q + 1)

)
, (21)

where

ζ̂(y, y′) = ζ0 +
1

η
log
( y
y′

)
, ζ0 = c+

1

η
log
(

1− σ2γη

(k + σγ)(k + ση)

)
. (22)

Here, we assume that δ∞ is large enough so that the Condition (34) of Lemma A.1 is always
met, namely

δ∞ ≥ C∞ +
1

η
sup
t∈[0,T ]

sup
q∈[−q̄,q̄]

∣∣∣∣log

(
v(t, q)

v(t, q + 1)

)∣∣∣∣ (23)

with the hope that our candidate solution of the HJB equation will verify it. This will be checked
in our verification argument. Recall from Lemma A.1 that C∞ = |c| + ( 1

η + 1
γ ) log(1 + σγ

k ) −
1
η log

(
1− σ2γη

(k+σγ)(k+ση)

)
.

Using again the calculation reported in Lemma A.1, we rewrite the HJB equation (19) as∂tv(t, q) + γη2σ2

2(γ+η)q
2v(t, q)− Cv(t, q)

[
1I{q>−q̄}

( v(t,q)
v(t,q−1)

) k
ση + 1I{q<q̄}

( v(t,q)
v(t,q+1)

) k
ση

]
= 0,

v(T, q) = −1,
(24)
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where the constant C is given by

C = A
ση

k
exp

(kc
σ
− k

σγ
log(1 +

σγ

k
) + (1 +

k

ση
) log

(
1− σ2γη

(k + σγ)(k + ση)

))
.

We now make the key observation that this equation can be reduced to a linear equation by in-

troducing u = (−v)
− k
ση . Indeed, by direct substitution, we obtain the following linear differential

equation:{
∂tu(t, q)− C1q

2u(t, q) + C2

(
u(t, q + 1)1I{q<q̄} + u(t, q − 1)1I{q>−q̄}

)
= 0,

u(T, q) = 1,
(25)

with

C1 =
kγησ

2(γ + η)
and C2 = C

k

ση
.

This equation can be written in terms of the R2q̄+1−valued function u(t) =
(
u(t, q)

)
q∈{−q̄,...,q̄},

of the variable t only, as the linear ordinary differential equation:

∂tu = −Bu, where B =


−C1q̄

2 C2

. . .
. . .

. . .

C2 −C1q
2 C2

. . .
. . .

. . .

C2 −C1q̄
2

← q − th line,

is a tri-diagonal matrix with lines labelled −q̄, . . . , q̄. Denote by bq the vector of R2q̄+1 with zeros
everywhere except at the position q, i.e. bq,i = 1I{i=q} for i∈ {−q̄, . . . , q̄}, and 1 =

∑q̄
q=−q̄ bq.

Then, this ODE has a unique solution

u(t) = e(T−t)B1, so that u(t, q) = bq ·e(T−t)B1, and v(t, q) = −
(
bq ·e(T−t)B1

)−k
ση . (26)

In the next section, we shall prove that this solution v of the HJB equation (19) coincides with
the value function of the reduced exchange problem (18), with optimal controls ẑ(t, q) given in

(21), thus inducing the optimal contract Y Ŷ0,Ẑ
T with Ẑt = ẑ(t, Qt).

We conclude this section by an alternative representation of the function u.

Proposition 4.1. The function u is C1,1 and can be represented as

u(t, q) = E
[
e
∫ T
t (−C1(Qt,qs )2+λs+λs)ds

]
,

where Qt,qs = q +
∫ s
t d(N s −N s), and (N,N) is a two-dimensional point process with intensity

(λs, λs) = C2(1I{Qs−<q̄, 1I{Qs−>−q̄}). In particular, we have the following bounds for the function
u:

e−C1q̄2T ≤ u ≤ e2C2T .

Moreover, Condition (23) is verified when

δ∞ ≥ ∆∞ = C∞ +
σ

k
(2C2 + C1q̄

2)T. (27)

9



Proof. The regularity of u follows from the explicit expression in (26). Denote f(q) = −C1q
2 +

C2(1I{q>−q̄} + 1I{q<q̄}), and Ms = e
∫ s
t f(Qt,xs )dsu(t, Qt,xs ), t ≤ s ≤ T . We now show that M is a

martingale, so that u(t, q) = Mt = E[MT ] = E
[
e−

∫ T
t f(Qt,xs )ds

]
, as u(T, .) = 1. To see that M is

a martingale, we compute by Itô’s formula that

dMs =
[
u(s,Qt,xs )f(Qt,xs ) + ∂tu(s,Qt,xs )

]
ds

+C2

[
u(s,Qt,x

s− + 1)− u(s,Qt,x
s−)
]
dN s + C2

[
u(s,Qt,x

s− − 1)− u(s,Qt,x
s−)
]
dN s.

Since u is solution of (25), we get

dMs = C2

[
u(s,Qt,x

s− + 1)− u(s,Qt,x
s−)
]
dM s + C2

[
u(s,Qt,x

s− − 1)− u(s,Qt,x
s−)
]
dM s,

where (M,M) = (N −
∫ ·

0 λsds,N −
∫ ·

0 λsds) is a martingale. The martingale property of M now
follows from the boundedness of u as it can be verified from the expression (26).
Finally, the bound |Qt,xs | ≤ q̄ induces directly the announced bounds on u, which in turn imply
Condition (23) when (27) is satisfied because v = −u−

ση
k

4.2 The main result

We are now ready to verify that the function v introduced in the previous section is the value
function of the exchange, with optimal feedback controls (ẑs, ẑa, ẑb) as given in (21), thus iden-
tifying a unique optimal contract to be proposed by the exchange to the market maker. Recall
that δ∞ denotes the bound on the market maker bid and ask spreads. Our main explicit solution
requires δ∞ to be larger that the constant ∆∞ introduced in (27).

Theorem 4.1. Assume that δ∞ ≥ ∆∞. Then the optimal contract for the problem of the
exchange (9) is given by

ξ̂ = Ŷ0 +

∫ T

0
Ẑar dN

a
r + ẐbrdN

b
r + ẐSr dSr +

(1

2
γσ2

(
ẐSr +Qr

)2 −H(Ẑr, Qr))dr, (28)

with ẐSr = ẑs(r,Qr), Ẑ
a
r = ẑa(r,Qr), and Ẑbr = ẑb(r,Qr) as defined in (21). The market maker’s

optimal effort is given by

δ̂at = δ̂at (ξ̂) = −Ẑat +
1

γ
log(1 +

σγ

k
), δ̂bt = δ̂bt (ξ̂) = −Ẑbt +

1

γ
log(1 +

σγ

k
). (29)

Proof. In order to prove this result, we verify that the function v introduced in (26) coincides at
(0, Q0) with the value function of the reduced exchange problem (18), with maximum achieved
at the optimal control Ẑ.
By Proposition 4.1, the function v is negative, C1,1, bounded, and has bounded gradient. More-
over, since δ∞ ≥ ∆∞, it follows that v is a solution of the HJB equation (19) of the exchange
reduced problem. For Z ∈ Z, denote

KZ
t = e−η

(
c(Na

t +Nb
t )−Y 0,Z

t

)
, t ∈ [0, T ].

By direct application of Itô’s formula, and substitution of ∂tv from the HJB equation satisfied
by v, we see that

d
[
v(t, Qt)K

Z
t

]
=KZ

t−

(
(hZt −Ht)dt+ηv(t, Qt)Z

s
t dSt+

∑
i=a,b

[
v(t, Qt−+∆Qt)e

−η(c−Zit)−v(t, Qt−)
]
dÑ δ̂,i

t

)
,

10



where, using the notations of (20) and the subsequent equations,

Ht = HE

(
Qt, v(t, Qt), v(t, Qt + 1), v(t, Qt − 1)

)
,

and

hZt = h1
E

(
Qt, Z

S
t ) + 1I{Qt>−q̄}h

0
E

(
v(t, Qt), v(t, Qt − 1)

)
+ 1I{Qt<q̄}h

0
E

(
v(t, Qt), v(t, Qt + 1)

)
.

Exploiting the fact that v is bounded and that KZ is uniformly integrable (see Lemma A.4), we
get that

v(0, Q0) = Eδ̂(Y
Z
T )
[
v(T,QT )KZ

T +

∫ T

0
KZ
t (Ht − hZt )dt

]
≥ Eδ̂(Y

Z
T )
[
v(T,QT )KZ

T

]
= Eδ̂(Y

Z
T )
[
−KZ

T ],

by the boundary condition v(T, .) = −1. By arbitrariness of Z ∈ Z, this provides the inequality

v(0, Q0) ≥ supZ∈Z Eδ̂(Y ZT )
[
−KZ

T ] = vE0 .

On the other hand, consider the maximizer Ẑ of the reduced exchange problem, induced by the

feedback controls ẑ in (21). As Ẑ is bounded, it follows that Ẑ ∈ Z. Moreover, hẐ − H = 0,

by definition, so that the last argument leads to the equality v(0, Q0) = Eδ̂(Y ẐT )
[
−KẐ

T

]
, instead

of the inequality. This shows that v(0, Q0) = vE0 , the reduced exchange problem of (18), with
optimal control Ẑ.

4.3 Discussion

The processes Ẑa, Ẑb and ẐS allowing the exchange to build the optimal contract have actually
quite natural interpretations. Indeed, using Lemma 4.1, we obtain that the quantities

− log
( u(T − t, qt−)

u(T − t, qt− − 1)

)
and − log

( u(T − t, qt−)

u(T − t, qt− + 1)

)
are roughly proportional respectively to Qt− and −Qt− . Thus, when the inventory is highly
positive, the exchange provides incentives to the market-maker so that it attracts buy market
orders and tries to dissuade him to accept more sell market orders, and conversely for a negative
inventory. The integral ∫ T

0
ẐSr dSr

can be understood as a risk sharing term. Indeed,
∫ t

0 Qr−dSr corresponds to the price driven
component of the inventory risk QtSt. Hence in the optimal contract, the exchange supports
part of this risk so that the market maker maintains reasonable quotes despite some inventory.
The proportion of risk handled by the platform is γ

γ+η .

Concerning the optimal bid and ask spreads, we recover the optimal bid/ask spread of [11] im-

pacted by the exchange through the term −c− 1
η log

(
1− σ2γη

(k+σγ)(k+ση)

)
.

Until now, we have focused on the maker part of the make-take fees problem since we have
considered that the taker cost c is fixed. Nevertheless, our approach also enables us to suggest

11



the exchange a relevant value for c. Actually, we see that when acting optimally, the exchange
transfers the totality of the fixed taker fee c to the market maker. It is therefore somehow
neutral to the value of c. However, c plays an important role in the optimal spread offered by
the market maker given by

−2c+
σ

k
log
( u(T − t, Qt−)2

u(T − t, Qt− − 1)u(T − t, Qt− + 1)

)
−2

η
log
(

1− σ2γη

(k + σγ)(k + ση)

)
+

2

γ
log(1+

σγ

k
).

Furthermore, from numerical computations, we remark that

u(t, q)2

u(t, q − 1)u(t, q + 1)

is close to unity for any t and q. Hence the exchange may fix in practice the transaction cost c
so that the spread is close to one tick by setting

c ≈ −1

2
Tick− 1

η
log
(

1− σ2γη

(k + σγ)(k + ση)

)
+

1

γ
log(1 +

σγ

k
).

For σγ/k small enough, this equation reduces to

c ≈ σ

k
− 1

2
Tick. (30)

Equation (30) is a particularly simple formula to fix the taker constant c. We see that the
higher the volatility, the larger the taker cost should be. It is also quite natural that this cost is
a decreasing function of k. Indeed, if k is large, the liquidity vanishes rapidly when the spread
becomes wide, meaning that market takers are sensitive to extra costs relative to the efficient
price. Therefore, the taker cost has to be small if the exchange wants to maintain a reasonable
market order flow. Finally, note that the parameters σ and k can be easily estimated from
market data. Therefore the formula (30) can be readily used in practice.

5 Impact of the presence of the exchange on market quality and
comparison with [2, 11]

In this section, we compare our setting with the situation without incentive policy from an ex-
change towards market making activities. The latter is considered in [2, 11] where the authors
deal with the issue of optimal market making without intervention of the exchange. The results
in [2] are taken as benchmark for our investigation to emphasize the impact of the incentive
policy on market quality. We will refer to this case as the neutral exchange case.

Let us first recall the results in [2, 11]. The optimal controls of the market maker denoted by
δ̃a and δ̃b are given as a function of the inventory qt by

δ̃at =
σ

k
log
( ũ(t, Qt)

ũ(t, Qt − 1)

)
+

1

γ
log(1 +

σγ

k
),

δ̃bt =
σ

k
log
( ũ(t, Qt)

ũ(t, Qt + 1)

)
+

1

γ
log(1 +

σγ

k
),

12



where ũ is the unique solution of the linear differential equation{
∂tũ(t, q) + C̃1q

2ũ(t, q)− C̃2(ũ(t, q + 1)1I{q<q̄} + ũ(t, q − 1)1I{q>−q̄}) = 0, (t, q) ∈ (0, T ]× [−q̄, q̄]
ũ(T, q) = 1,

(31)

with C̃1 = σγk
2 and C̃2 = A exp

(
− (1 + σγ

k ) log(1 + σγ
k )
)
. In our case, the optimal quotes δa?

and δb,? are obtained from Theorem 4.1 and satisfy

δa?t =
σ

k
log
( u(t, Qt)

u(t, Qt − 1)

)
+

1

γ
log(1 +

σγ

k
)− c− 1

η
log
(

1− σ2γη

(k + σγ)(k + ση)

)
,

δb?t =
σ

k
log
( u(t, Qt)

u(t, Qt + 1)

)
+

1

γ
log(1 +

σγ

k
)− c− 1

η
log
(

1− σ2γη

(k + σγ)(k + ση)

)
,

where u is solution of the linear equation (25).

Numerical experiments show that u and ũ can decrease quickly to zero when q becomes large.
Hence, the computation of the following crucial quantities appearing in the optimal quotes:

v+(t, q) = log
(u(t, q + 1)

u(t, q)

)
, ṽ+(t, q) = log

( ũ(t, q + 1)

ũ(t, q)

)
, q ∈ {−q̄, · · · , q̄ − 1}.

can be intricate in practice. To circumvent this numerical difficulty, we remark that v+ and ṽ+

are solution of the following differential equations: Attention: inversion du temps...{
∂tv+(t, q) + C1(2q + 1)− C2(ev+(t,q+1)1I{q<q̄−1} + e−v+(t,q) − ev+(t,q) − e−v+(t,q−1)1I{q>−q̄}) = 0

v+(T, q) = 1,

(32)
and{
∂tṽ+(t, q) + C̃1(2q + 1)− C̃2(eṽ+(t,q+1)1I{q<q̄−1} + e−ṽ+(t,q) − eṽ+(t,q) − e−ṽ+(t,q−1)1I{q>−q̄}) = 0

ṽ+(T, q) = 1.

(33)
We thus rather apply classical finite difference schemes to (32) and (33).

In the following numerical illustrations, in the spirit of [11, Section 6], we take T = 600s
for an asset with volatility σ = 0.3 Tick.s−1/2 (unless specified differently). Market orders
arrive according to the intensities (3) with A = 0.9s−1 and k = 0.3s−1/2. We assume that the
threshold inventory of the market maker is Q = 50 unities and that his aversion of risk γ = 0.01.
The exchange is taken more risk averse with η = 1. Finally, we assume that the taker cost
c = 0.5 Tick.

5.1 Impact of the exchange on the spread and market liquidity

We start by comparing the optimal spread δ̂a0 + δ̂b0 at time 0 obtained when contracting optimally

with the spread without incentives towards market making activities δ̃a0 +δ̃b0. The optimal spreads
are plotted in Figure 1 for different initial inventory values q0 ∈ {−q̄, · · · , q̄}.
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Figure 1: Comparison of optimal initial spreads with/without incentive policy from the exchange.

We observe in Figure 1 that the initial spread does not depend a lot on the initial inventory
(because the considered time interval [0, T ] is not too small) and that it is reduced thanks to
the optimal contract between the market maker and the exchange. This is not surprising since
in our case the exchange aims at increasing the market order flow by proposing an incentive
contract to the market maker inducing a spread reduction. Actually this phenomenon occurs
over the whole trading period [0, T ]. To see this, we generate 5000 paths of market scenarios
and the average spread over [0, T ] for an initial inventory q0 = 0. The results are given in Figure
2.

Figure 2: Average spread on [0, T ] with 95% confidence interval, with/without incentive policy
from the exchange toward the market maker.

Since the spread is tighter during the trading period under an incentive policy from the exchange,
the arrival intensity of market orders is more important and hence the market more liquid as
shown in Figure 3.
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Figure 3: Average order flow on [0, T ] with 95% confidence interval, with/without incentive
policy from the exchange.

We now consider in Figure 4 the bid and ask sides separately. We see that when the inventory
is positive and very large, δ̂a and δ̃a are negative. It means the market maker is ready to sell at
prices lower than the efficient price in order to attract market orders and reduce his inventory
risk. On the contrary, if the inventory is negative and very large, in both situations, its ask
quotes are well above the efficient price in order to repulse the arrival of buy market orders.
However, since in our case the exchange remunerates the market maker for each arrival of market
order, we get that the ask spread with contract δ̂a is smaller than δ̃a. A symmetric conclusion
holds for the bid part of the spread.

Figure 4: Optimal ask and bid spreads, with/without incentive policy from the exchange toward
the market maker.

We now turn to the impact of the volatility on the spread. The optimal contract obtained in (28)
induces an inventory risk sharing phenomenon through the term ẐS . Hence, when the volatility
increases, the spread difference between situations with/without incentive policy becomes less
important, see Figure 5 in which we consider the optimal initial spread difference when the
initial inventory is set to zero between both situations with/without incentive policy from the
exchange to the market maker for different values of the volatility.
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Figure 5: The initial optimal spread difference between both situation with/without incentive
policy from the exchange toward the market maker as a decreasing function of the volatility σ.

5.2 Impact of the incentive policy on the profit and loss of the exchange and
market maker

We assume that q0 = 0. Recall that PLδ defined in (5) denotes the trading part of the profit
and loss (P&L) of the market maker for a given strategy δ. In our case, the underlying total
P&L at time t of a market maker acting optimally, denoted by PL?t , is given by

PL?t = PLδ
?

t + Y Z∗
t ,

where Y Z∗
t corresponds to the quantity on the right hand side of (28) with T replaced by t.

We now investigate the behavior of this quantity, notably with respect to the benchmark PLδ̃
?

t

which corresponds to the optimal profit and loss without intervention of the exchange.

To make PL?t and PLδ̃
?

t comparable, we choose Y ∗ in (28) so that the market maker gets the same
utility in both situations, that is Ŷ0 = k

σ log(ũ(T, q0)). Thus, the market maker is indifferent
between the situation with or without exchange intervention. We generate 5000 paths of market
scenarios and compare the average of both P&L in Figure 6 with and without incentive policy.

Figure 6: Average P&L of the market maker on [0, T ] with 95% confidence interval, with/without
incentive policy from the exchange.
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Since Ŷ0 is set to obtain the same utility in both cases, the two average P&L are very close at the
end of the trading period. The variance of the P&L also seems to be the same in both situations.
The only difference from the market maker viewpoint here is that in the case of a contract, the
P&L is already made at time 0 thanks to the remuneration of the exchange and then fluctuates
slightly. This is because he is earning the spread but paying a continuous “coupons” Htdt from
the contract. In the case without exchange intervention, the market maker increases his P&L
over the whole trading period thanks to the spread.

We now compare the profit and loss of the exchange in the two considered cases. When it
applies an incentive policy towards the market maker, the P&L of the exchange is given by
c(Na

t +N b
t )− Y Z∗

t . When the exchange is neutral, its P&L is simply c(Na
t +N b

t ). We compare
these two quantities in Figure 7.

Figure 7: Average P&L of the exchange on [0, T ] with 95% confidence interval, with/without
incentive policy from the exchange.

We see that the initial P&L of the contracting exchange is negative because of the initial pay-
ment Y ?. However it finally exceeds, with a smaller standard deviation, the P&L in the situation
without incentive policy from the exchange. Hence the incentive policy of the exchange proves
to be successful. Indeed, both configurations are equivalent for market makers but the exchange
obtains more revenues when contracting optimally. This is due to the fact that the contract
triggers more market orders.

Finally, we plot the aggregated average P&L of the market maker and the exchange (independent
of the choice of the initial payment). We observe that it is always greater in the optimal contract
case.
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Figure 8: Average total P&L of the exchange and the market maker on [0, T ] with 95% confidence
interval, with/without incentive policy from the exchange.

5.3 Impact of the incentive policy on the trading cost

We now study the impact of the incentive policy on the investors, viewed as the market takers.
We assume that there is only one market taker. In the case without exchange, with the specified
parameters and under optimal reaction of the market maker, this investor buys on average 200
shares over [0, T ]. To make the comparison with the case with exchange intervention, we modify
the parameter A appearing in the intensity (3) when simulating a market with optimal contract.
This new value is chosen so that the investor buys on average the same number of assets (200)
over the time period. This amounts to take A = 0.55s−1. We confirm in Figure 9 that the
average ask order flows agree in both situations.

Figure 9: Setting similar average ask order flows on [0, T ] by taking different intensity basis A
in the case with and in the case without incentive policy; 95% confidence interval.

We finally compare in Figure 10 the average cost of trading for the market taker:

E
[ ∫ T

0
δat dN

a
t

]
,

with and without incentive.
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Figure 10: Average trading cost on [0, T ] with 95% confidence interval, with/without incentive
policy from the exchange.

We see that, thanks to the incentive policy of the exchange, the reduced spreads lead to signifi-
cantly smaller trading costs for investors.

A Appendix

A.1 Exchange Hamiltonian maximization

Lemma A.1. Let c ∈ R, γ, η, k, σ > 0 and v1, v2 < 0. We define for z ∈ R

ϕ(z) = Ae−k∆(z)/σ
(
v1e

η(z−c) − v2

(η
γ

(
1− e−γ(z+∆(z))

)
+ 1
))
,

with ∆(z) = (−δ∞) ∨
(
− z + 1

γ log(1 + σγ
k )
)
∧ δ∞ and δ∞ > 0. The function ϕ is nondecreasing

on (−∞,−δ∞ + 1
γ log(1 + σγ

k )] and non-increasing on [δ∞ + 1
γ log(1 + σγ

k ),∞). Provided

δ∞ ≥ C∞ +
1

η

∣∣ log(
v2

v1
)
∣∣, (34)

with C∞ = |c| + ( 1
η + 1

γ ) log(1 + σγ
k ) − 1

η log
(

1 − σ2γη
(k+σγ)(k+ση)

)
. It admits a maximum on

[−δ∞ + 1
γ log(1 + σγ

k ), δ∞ + 1
γ log(1 + σγ

k )] attained in z? given by

z? = c+
1

η
log(v2/v1) +

1

η
log
(

1− σ2γη

(k + σγ)(k + ση)

)
.

In that case, we have

ϕ(z?) = −Cv2 exp
( k
ση

log(v2/v1)
)
,

where

C = A
ση

k
exp

(kc
σ
− k

σγ
log(1 +

σγ

k
) + (1 +

k

ση
) log

(
1− σ2γη

(k + σγ)(k + ση)

))
.

Proof. Easy but tedious computations lead to prove that ϕ is non-decreasing on (−∞,−δ∞ +
1
γ log(1 + σγ

k )] and non-increasing on [δ∞ + 1
γ log(1 + σγ

k ),∞) if,

δ∞ ≥
∣∣∣c+

1

η
log(v2/v1)− (

1

η
+

1

γ
) log(1 +

σγ

k
)
∣∣∣.
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Moreover, we notice that ϕ admits a maximum on [−δ∞ + 1
γ log(1 + σγ

k ), δ∞ + 1
γ log(1 + σγ

k )]
attained in

z? = c+
1

η
log(v2/v1) +

1

η
log
(

1− σ2γη

(k + σγ)(k + ση)

)
,

as soon as δ∞ ≥ | − z? + 1
γ log(1 + σγ

k )|. By combining these two conditions, we get the result
under Condition (34) on δ∞.

A.2 Dynamic programming principle and contract representation

For all F-stopping time τ with values in [t, T ] and for any µ ∈ Aτ , we define

JT (τ, µ) = Eµτ
[
−e−γ

∫ T
τ (µaudN

a
u+µbudN

b
u+qudSu)e−γξ

]
, and Jτ,T = (JT (τ, µ))µ∈Aτ ,

where Aτ denotes the restriction of A to controls on [τ, T ]. The continuation utility of the
market maker is defined or all F-stopping time τ by

Vτ = ess sup
µ∈Aτ

JT (τ, µ).

Lemma A.2. Let τ be an F-stopping time with values in [t, T ]. Then, there exists a non-
decreasing sequence (µn)n∈N in Aτ such that Vτ = lim

n→+∞
↑ JT (τ, µn).

Proof. For µ and µ′ in Aτ , define µ̂ = µ1JT (τ,µ)≥JT (τ,µ′) + µ′1JT (τ,µ)<JT (τ,µ′). Then µ̂ ∈ Aτ and
by definition of µ̂

JT (τ, µ̂) ≥ max
(
JT (τ, µ), JT (τ, µ′)

)
.

Hence Jτ,T is directly upwards, and the required result folows from [23, Proposition VI.I.I
p121].

Lemma A.3. Let t ∈ [0, T ], and τ an F-stopping time with values in [t, T ]. Then,

Vt = ess sup
δ∈A

Eδt
[
− e−γ

∫ τ
t (δaudN

a
u+δbudN

b
u+qudSu)Vτ

]
. (35)

Proof. Let 0 < t < T and set an F-stopping time τ with values in [t, T ]. The proof is similar to
[6, Proof of Proposition 6.2]. First, by the tower property,

Vt = ess sup
δ∈A

Eδt
[
e−γ

∫ τ
t (δaudN

a
u+δbudN

b
u+qudSu)Eδτ

[
−e−γ(

∫ T
τ (δaudN

a
u+δbudN

b
u+qudSu)+ξ)

] ]
.

For all δ ∈ A, the quotient
LδT
Lδτ

does not depend on the values of δ before time τ . Then,

Eδτ
[
−e−γ(

∫ T
τ (δaudN

a
u+δbudN

b
u+qudSu)+ξ)

]
= E0

τ

[
−
LδT
Lδτ

e−γ(
∫ T
τ (δaudN

a
u+δbudN

b
u+qudSu)+ξ)

]
≤ ess sup

µ∈Aτ
Eµτ
[
−e−γ(

∫ T
τ (µaudN

a
u+µbudN

b
u+qudSu)+ξ)

]
= Vτ ,

Then,

Vt ≤ ess sup
δ∈A

Eδt
[
Vτe
−γ

∫ τ
t (δaudN

a
u+δbudN

b
u+qudSu)

]
.
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We next prove the reverse inequality. Let δ ∈ A and µ ∈ Aτ . We define (δ⊗τ µ)u = δu10≤u<τ +
µu1τ≤u≤T . Then, δ ⊗τ µ ∈ A and

Vt ≥ Eδ⊗τµt

[
−e−γ

( ∫ τ
t (δaudN

a
u+δbudN

b
u+qudSu)+

∫ T
τ (µaudN

a
u+µbudN

b
u+qudSu)

)
e−γξ

]
= Eδ⊗τµt

[
e−γ

∫ τ
t (δaudN

a
u+δbudN

b
u+qudSu)Eδ⊗τµτ

[
− e−γ

∫ T
τ (µaudN

a
u+µbudN

b
u+qudSu)e−γξ

]]
. (36)

From Bayes’ Formula and by noticing that
Lδ⊗τµT

Lδ⊗τµτ
=

LµT
Lµτ

, we get

Eδ⊗τµτ

[
−e−γ

∫ T
τ (µaudN

a
u+µbudN

b
u+qudSu)e−γξ

]
= E0

τ

[
Lδ⊗τµT

Lδ⊗τµτ

(
−e−γ

∫ T
τ (µaudN

a
u+µbudN

b
u+qudSu)e−γξ

)]
= JT (τ, µ).

Thus, Inequality (36) becomes

Vt ≥ Eδ⊗τµt

[
e−γ

∫ τ
t (δaudN

a
u+δbudN

b
u+qudSu)JT (τ, µ)

]
.

By using again Bayes’ Formula and by noticing that Lδ⊗τµτ

Lδ⊗τµt

= Lδτ
Lδt

, we have

Vt ≥
E0
t

[
Lδ⊗τµT e−γ

∫ τ
t (δaudN

a
u+δbudN

b
u+qudSu)JT (τ, µ)

]
Lδ⊗τµt

= E0
t

[
E0
τ

[Lδ⊗τµT

Lδ⊗τµτ

Lδ⊗τµτ

Lδ⊗τµt

e−γ
∫ τ
t (δaudN

a
u+δbudN

b
u+qudSu)JT (τ, µ)

]]

= E0
t

[
E0
τ

[Lδ⊗τµT

Lδ⊗τµτ

]Lδ⊗τµτ

Lδ⊗τµt

e−γ
∫ τ
t (δaudN

a
u+δbudN

b
u+qudSu)JT (τ, µ)

]

= E0
t

[
Lδ⊗τµτ

Lδ⊗τµt

e−γ
∫ τ
t (δaudN

a
u+δbudN

b
u+qudSu)JT (τ, µ)

]
= Eδt

[
e−γ

∫ τ
t (δaudN

a
u+δbudN

b
u+qudSu)JT (τ, µ)

]
.

Since the previous inequality holds for all µ ∈ Aτ we deduce from monotone convergence The-
orem together with Lemma A.2 that there exists a sequence (µn)n∈N of control in Aτ such
that

Vt ≥ lim
n→+∞

↑ Eδt
[
e−γ

∫ τ
t (δaudN

a
u+δbudN

b
u+qudSu)JT (τ, µn)

]
= Eδt

[
e−γ

∫ τ
t (δaudN

a
u+δbudN

b
u+qudSu) lim

n→+∞
↑ JT (τ, µn)

]
= Eδt

[
e−γ

∫ τ
t (δaudN

a
u+δbudN

b
u+qudSu)Vτ

]
,

thus concluding the proof.

Proof of Theorem 3.1 (i) We proceed in several steps.
Step 1. For δ ∈ A, it follows from the dynamic programming principle of Lemma A.3 that the
process

U δt = Vt e
−γ

∫ t
0 δ

a
udN

a
u+δbudN

b
u+QudSu , t ∈ [0, T ], (37)
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defines a Pδ−supermartingale3 for all δ ∈ A. By standard analysis, we may then consider it in
its càdlàg version (by taking right limits along rationals). By the Doob-Meyer decomposition,
we can write

U δt = M δ
t −A

δ,c
t −A

δ,d
t , (38)

where M δ is a Pδ−martingale and Aδ = Aδ,c + Aδ,d is an integrable non-decreasing predictable
process such that Aδ,c0 = Aδ,d0 = 0, with pathwise continuous component Aδ,c, and a piecewise
constant predictable process Aδ,d.
By the martingale representation theorem under Pδ, see Lemma A.5, there exists a predictable
process Z̃δ = (Z̃δ,S , Z̃δ,a, Z̃δ,b) such that

M δ
t = V0 +

∫ t

0
Z̃δr .dχr −

∫ t

0
Z̃δ,ar λ(δar )1{Qr>−q̄}dr −

∫ t

0
Z̃δ,br λ(δbr)1{Qr<q̄}dr, (39)

where we recall that χ = (S,Na, N b).
Step 2. We show that V is a negative process. In fact, thanks to the uniform boundedness of δ,
we show that

LδT
Lδt
≥ αt,T = e−

kδ∞
σ

(Na
T−N

a
t +Nb

T−N
b
t )−A(e

kδ∞
σ +1)(T−t) > 0. (40)

Therefore,

Vt ≤ E0
[
−αt,T e−γδ∞(Na

T−N
a
t +Nb

T−N
b
t )e−γξ

]
< 0.

Step 3. Let Y be the process defined by Vt = −e−γYt for all t ∈ [0, T ]. As Aδ,d is a predictable
point process and the jumps of (Na, N b) are totally inaccessible stopping times under P0, we
have [Na, Aδ,d] = 0 and [N b, Aδ,d] = 0 a.s, see Proposition I.2.24 in [15]. Using Itô’s formula, we
obtain from (38) and (39) that

YT = ξ, and dYt = Zat dN
a
t + Zbt dN

b
t + ZSt dSt − dIt − dÃdt (41)

where Za, Zb, ZS , I, Ãd are independent of δ, as they may be expressed as ZitdN
i
t = d[Y,N i]t,

i ∈ {a, b}, ZSt σ2dt = d〈Yt, St〉t, Ãd the predictable pure jumps of Y . Moreover, Itô’s Formula
yields

Zat = −1

γ
log(1 +

Z̃δ,at
U δt−

)− δat , Zbt = −1

γ
log(1 +

Z̃δ,bt
U δt−

)− δbt , ZSt = − Z̃δ,bt
γU δt−

−Qt,

and

It =

∫ t

0
h(δr, Zr, Qr)dr −

1

γU δr
dAδ,cr , Ãdt =

∑
s≤t

log
(

1− ∆Aδ,d

U δt−

)
,

with h(δ, z, q) = h(δ, z, q)− 1
2γσ

2(zs)2. In particular, the last relation between Ãd and Aδ,d shows

that ∆at =
−∆Aδ,dt
Uδt−

≥ 0 is independent of δ; recall that U δ < 0.

In order to complete the proof, we argue in the subsequents steps that

Aδ,dt = −
∑
s≤t

U δs−∆as = 0, (so that Ãdt = 0), and It =

∫ t

0
H(Zr, Qr), t ∈ [0, T ], (42)

3Note that Eδ[UδT ] = JT (0, δ) > −∞ using Hölder inequality together with (11) and the uniform boundedness
of the intensities of Na and Nb. Hence the process Uδ is integrable.
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where H(z, q) = H(z, q)− 1
2γσ

2(zs)2.
Step 4. Since VT = −1, notice that

0 = sup
δ∈A

Eδ[U δT ]− V0 = sup
δ∈A

Eδ[U δT −M δ
T ]

= γ sup
δ∈A

E0
[
LδT

∫ T

0
U δr
(
dIr − h(δr, Zr, Qr)dr −

dar
γ

)]
. (43)

Moreover, since the controls are uniformly bounded, we have

U δt ≤ −βt = Vte
−γδ∞(Na

T+Nb
T )−γ

∫ t
0 qrdSr < 0. (44)

Then, since Aδ,d ≥ 0, U δ ≤ 0, and dI − h(δ, Z,Q) ≤ 0, it follows from (43) together with the
inequalities (40) and (44),

0 ≥ sup
δ∈A

E0
[
α0,T

∫ T

0
βr
(
−dIr+h(δr, Zr, Qr)dr+dar

)]
= E0

[
α0,T

∫ T

0
βr
(
−dIr+H(Zr, Qr)dr+dar

)]
,

which implies (42), P0−a.s.
Step 5. We now prove that Z ∈ Z by showing that

sup
δ∈A

sup
t∈[0,T ]

Eδ[e−γ(p+1)Yt ] <∞ for some p > 0 (45)

Using Hölder inequality together with Condition (11) and the boundedness of the intensities of
Na and N b, we have that supδ∈A Eδ[|U δT |p

′+1] <∞ for some p′ > 0. Hence

sup
δ∈A

sup
t∈[0,T ]

Eδ[|U δt |p
′+1] = sup

δ∈A
Eδ[|U δT |p

′+1] <∞,

because U δ is a negative P δ-supermartingale. This leads to (45) using Hölder inequality the uni-

form boundedness of the intensities of Na and N b and that e−γY = U δeγ
∫ ·
0 δ

a
udN

a
u+δbudN

b
u+QudSu .

Step 6. We finally prove uniqueness of the representation. Let (Y0, Z), (Y ′0 , Z
′) ∈ R×Z be such

that ξ = Y Y0,Z
T = Y

Y ′0 ,Z
′

T . By following the line of the verification argument in the proof of The-

orem 3.1 (ii), we obtain the equality Y Y0,Z
t = Y

Y ′0 ,Z
′

t by considering the value of the continuation
utility of the market maker

− exp(−γY Y0,Z
t ) = − exp(−γY Y ′0 ,Z

′

t ) = ess sup
δ∈A

Eδt [−e−γ(PLδT− PLδt+ξ)], t ∈ [0, T ].

This in turn implies that ZitdN
i
t = Z ′itdN

i
t = d[Y Y0,Z ,∆N i]t, i ∈ {a, b}, and ZSt σ

2dt = Z ′St σ
2dt =

d〈Y, S〉t, t ∈ [0, T ]. Hence (Y0, Z) = (Y ′0 , Z
′).

A.3 On the verification argument for the exchange problem

The proof of the main result of Theorem 4.1 requires the following technical result. We observe
that this is the place where Condition (10) is needed.

Lemma A.4. Let Z ∈ Z. There exists C > 0 and ε > 0 such that

sup
t∈[0,T ]

Eδ̂(Y
Z
T )[|KZ

t |1+ε] ≤ C.
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Proof. We recall the definition of KZ for Z ∈ Z

KZ
t = e−η

(
c(Na

t +Nb
t )−Y 0,Z

t

)
, t ∈ [0, T ].

Let p > 1. By using Hölder’s Inequality and the uniform boundedness of the intensities of Na

and N b, we deduce that there exists C ′ > 0 such that

Eδ̂(Y
Z
T )[|KZ

t |p] ≤ C ′E0[(e−γY
0,Z
t )

− p
′η
γ ]

p
p′ ,

with any p′ > p. Thus,

Eδ̂(Y
Z
T )[|KZ

t |p] ≤ C ′
(

1 + E0[(e−γY
0,Z
t )

− p
′η
γ ]

)
= C ′

(
1 + E0

[
(− sup

δ∈A
Eδt [−e−γ(Y ZT +PLδT−PL

δ
t )])
− p
′η
γ

])
.

From Jensen’s Inequality then Hölder’s inequality, we deduce that for any p′′ > p′ we have

Eδ̂(Y
Z
T )[|KZ

t |p] ≤ C ′
(

1 + E0

[
sup
δ∈A

Eδt [ep
′η(Y ZT +PLδT−PL

δ
t )]

])
≤ C ′

(
1 + E0

[
sup
δ∈A

Eδt [ep
′′ηY ZT ]

])
.

By using a dynamic programming principle, similarly to the proof of Lemma A.3 by noticing

that the family
(
J̃(µ, δ) = Eδτ [ep

′′ηY ZT ]
)
µ∈Aτ

is directly upwards, we get

Eδ̂(Y
Z
T )[|KZ

t |p] ≤ C ′
(

1 + sup
δ∈A

Eδ
[
ep
′′ηY ZT

])
.

By setting ε = η′−η
3 , if we take p = 1 + ε, then p′ = p+ ε and p′′ = p′ + ε, we obtain

Eδ̂(Y
Z
T )[|KZ

t |1+ε] ≤ C ′
(

1 + sup
δ∈A

Eδ
[
eη
′Y ZT

])
.

From the definition of Z (involving the condition (10)), we get for any t ∈ [0, T ]

Eδ̂(Y
Z
T )[|KZ

t |1+ε] ≤ C,

with C = C ′
(

1 + supδ∈A Eδ
[
eη
′Y ZT

])
< +∞.

A.4 Predictable representation

The following result is probably well-known, we report it here for completeness as we could not
find a precise reference.

Lemma A.5. Let (Ω,F ,P,F) be a filtered probability space where F = FW ∨ FN is the right
continuous completed filtration of a Brownian motion W and a d-dimensional integrable point
process N = (N1, · · · , Nd) with compensator A = (A1, · · · , Ad). Then, for any F−martingale
X there exists a predictable process Z = (ZW , Z1, · · · , Zd) such that

Xt = X0 +

∫ t

0
ZWs dWs +

d∑
i=1

∫ t

0
Zis(dN

i
s − dAis).

24



Proof. For sake of simplicity, we take d = 1. Let P be a solution of the martingale problem
associated to Mt = Nt −At and Wt. By Theorem III.4.29 in [15], to prove Lemma A.5 we need
to establish the uniqueness of P.

We denote by PW the law P conditional on W . We first show that M is still a martingale under
PW . To do so we consider Bs ∈ Fs and want to prove that

EPW [1IBs(Mt −Ms)
]

= 0,

for 0 ≤ s ≤ t ≤ T . Let C ∈ FWT . We aim at showing that

E
[
1CEPW [1IBs(Mt −Ms)

]]
= E

[
1IC1IBs(Mt −Ms)

]
= 0.

Thanks to the martingale representation theorem for Brownian martingales, we can write

1IC = αs +

∫ T

s
φudWu,

where αs = E[1IC |FWs ] and (φu)u≥0 is FW predictable process. Using the martingale property
of M , we obtain

E
[
αs1IBs(Mt −Ms)

]
= 0.

Then W and M being orthogonal martingales, we deduce

E
[ ∫ T

s
φudWu1IBs(Mt −Ms)

]
= 0,

Consequently, using Theorem III.1.21 in [15], PW is the unique probability measure such that
M is an F-martingale conditional on W . Finally, by integration, the uniqueness of PW implies
that of P.
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[6] J. Cvitanić and I. Karatzas. Hedging contingent claims with constrained portfolios. The
Annals of Applied Probability, pages 652–681, 1993.

25
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[11] O. Guéant, C.-A. Lehalle, and J. Fernandez-Tapia. Dealing with the inventory risk: a
solution to the market making problem. Mathematics and Financial Economics, 7(4):1–31,
2013.

[12] L. Harris. Maker-taker pricing effects on market quotations. USC Marshall School of
Business, 2013.
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