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ON VISCOSITY SOLUTIONS OF PATH DEPENDENT PDES

BY IBRAHIM EKREN∗, CHRISTIAN KELLER, NIZAR TOUZI1,†

AND JIANFENG ZHANG2

University of Southern California∗ and Ecole Polytechnique†

In this paper we propose a notion of viscosity solutions for path depen-
dent semi-linear parabolic PDEs. This can also be viewed as viscosity solu-
tions of non-Markovian backward SDEs, and thus extends the well-known
nonlinear Feynman–Kac formula to non-Markovian case. We shall prove the
existence, uniqueness, stability and comparison principle for the viscosity
solutions. The key ingredient of our approach is a functional Itô calculus re-
cently introduced by Dupire [Functional Itô calculus (2009) Preprint].

1. Introduction. It is well known that a Markovian type backward SDE
(BSDE, for short) is associated with a semi-linear parabolic PDE via the so
called nonlinear Feynman–Kac formula; see Pardoux and Peng [19]. Such re-
lation was extended to forward–backward SDEs (FBSDE, for short) and quasi-
linear PDEs; see, for example, Ma, Protter and Yong [17], Pardoux and Tang [21]
and Ma, Zhang and Zheng [18], and second order BSDEs (2BSDEs, for short)
and fully nonlinear PDEs; see, for example, Cheridito et al. [3] and Soner, Touzi
and Zhang [29]. The notable notion G-expectation, proposed by Peng [24], was
also motivated from connection with fully nonlinear PDEs.

In non-Markovian case, the BSDEs (and FBSDEs, 2BSDEs) become path
dependent. Due to its connection with PDE in Markovian case, it has long
been discussed that general BSDEs can also be viewed as a PDE. In particu-
lar, in his ICM 2010 lecture, Peng [25] proposed the question whether or not
a non-Markovian BSDE can be viewed as a path-dependent PDE (PPDE, for
short).

The recent work Dupire [6], which was further extended by Cont and Fournie
[4], provides a convenient framework for this problem. Dupire introduces the no-
tion of horizontal derivative (that we will refer to as time derivative) and vertical
derivative (that we will refer to as space derivative) for nonanticipative stochastic
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processes. One remarkable result is the functional Itô formula under his defini-
tion. As a direct consequence, if u(t,ω) is a martingale under the Wiener measure
with enough regularity (under their sense), then its drift part from the Itô formula
vanishes, and thus it is a classical solution to the following path-dependent heat
equation:

∂tu(t,ω) + 1
2 ∂2

ωωu(t,ω) = 0.(1.1)

It is then very natural to view BSDEs as semi-linear PPDEs, and 2BSDEs and
G-martingales as fully nonlinear PPDEs. However, we shall emphasize that PPDEs
can rarely have classical solutions, even for heat equations. We refer to Peng and
Wang [27] for some sufficient conditions under which a semi-linear PPDE admits
a classical solution.

The present work was largely stimulated by Peng’s recent paper [26], which ap-
peared while our investigation of the problem was in an early stage. Peng proposes
a notion of viscosity solutions for PPDEs on càdlàg paths using compactness ar-
guments. However, the horizontal derivative (or time derivative) in [26] is defined
differently from that in Dupire [6] which leads to a different context than ours.
Moreover, Peng [26] derives a uniqueness result for PPDEs on càdlàg paths. Given
the nonuniqueness of extension of a function to the càdlàg paths, this does not im-
ply any uniqueness statement in the space of continuous paths. For this reason, our
approach uses an alternative definition than that of Peng [26].

The main objective of this paper is to propose a notion of viscosity solutions
of PPDEs on the space of continuous paths. To focus on the main idea, we focus
on the semi-linear case and leave the fully nonlinear case for future study. We
shall prove existence, uniqueness, stability, and comparison principle for viscosity
solutions.

The theory of viscosity solutions for standard PDEs has been well developed.
We refer to the classical references Crandall, Ishii and Lions [5] and Fleming
and Soner [11]. As is well understood, in path-dependent case the main challenge
comes from the fact that the space variable is infinite dimensional and thus lacks
compactness. Our context does not fall into the framework of Lions [13–15] where
the notion of viscosity solutions is extended to Hilbert spaces by using a limiting
argument based on the existence of a countable basis. Consequently, the standard
techniques for the comparison principle, which rely heavily on the compactness
arguments, fail in our context. We shall remark though, for first order PPDEs, by
using its special structure Lukoyanov [16] studied viscosity solutions by adapting
elegantly the compactness arguments.

To overcome this difficulty, we provide a new approach by decomposing the
proof of the comparison principle into two steps. We first prove a partial com-
parison principle, that is, a classical sub-solution (resp., viscosity sub-solution)
is always less than or equal to a viscosity super-solution (resp., classical super-
solution). The main idea is to use the classical one to construct a test function for
the viscosity one and then obtain a contradiction.
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Our second step is a variation of the Perron’s method. Let ¯u and ū denote the
supremum of classical sub-solutions and the infimum of classical super-solutions,
respectively, with the same terminal condition. In standard Perron’s approach (see,
e.g., Ishii [12] and an interesting recent development by Bayraktar and Sirbu [2]),
one shows that

¯u = ū(1.2)

by assuming the comparison principle for viscosity solutions, which further im-
plies the existence of viscosity solutions. We shall instead prove (1.2) directly,
which, together with our partial comparison principle, implies the comparison
principle for viscosity solutions immediately. Our arguments for (1.2) mainly rely
on the remarkable result Bank and Baum [1], which was extended to nonlinear
case in [28].

We also observe that our results make strong use of the representation of the so-
lution of the semilinear PPDE by means of the corresponding backward SDEs [20].
This is a serious limitation of our approach that we hope to overcome in some
future work. However, our approach is suitable for a large class of PPDEs as
Hamilton–Jacobi–Bellman equations, which are related to stochastic control prob-
lems, and their extension to Hamilton–Jacobi–Bellman–Isaacs equations corre-
sponding to differential games.

The rest of the paper is organized as follows. In Section 2 we introduce the
framework of [6] and [4] and adapt it to our problem. We define classical and vis-
cosity solutions of PPDE in Section 3. In Section 4 we introduce the main results,
and in Section 5 we prove some basic properties of the solutions, including exis-
tence, stability and the partial comparison principle of viscosity solutions. Finally
in Section 6 we prove (1.2) and the comparison principle for viscosity solutions.

2. A pathwise stochastic analysis. In this section we introduce the spaces on
which we will define the solutions of path dependent PDEs. The key notions of
derivatives were proposed by Dupire [6] who introduced the functional Itô calcu-
lus, and further developed by Cont and Fournie [4]. We shall also introduce their
localization version for our purpose.

2.1. Derivatives on càdlàg paths. Let �̂ := D([0, T ],R
d), the set of càdlàg

paths, ω̂ denote the elements of �̂, B̂ the canonical process, F̂ the filtration gen-
erated by B̂ and �̂ := [0, T ] × �̂. We define seminorms on �̂ and a pseudometric
on �̂ as follows: for any (t, ω̂), (t ′, ω̂′) ∈ �̂,

‖ω̂‖t := sup
0≤s≤t

|ω̂s |,
(2.1)

d∞
(
(t, ω̂),

(
t ′, ω̂′)) := ∣∣t − t ′

∣∣ + sup
0≤s≤T

∣∣ω̂t∧s − ω̂′
t ′∧s

∣∣.
Then (�̂,‖ · ‖T ) is a Banach space and (�̂, d∞) is a complete pseudometric space.
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Let û : �̂ → R be an F̂-progressively measurable random field. Note that the
progressive measurability implies that û(t, ω̂) = û(t, ω̂·∧t ) for all (t, ω̂) ∈ �̂. Fol-
lowing Dupire [6], we define spatial derivatives of û, if they exist, in the standard
sense: for the basis ei of R

d , i = 1, . . . , d ,

∂ωi
û(t, ω̂) := lim

h→0

1

h

[
û(t, ω̂ + h1[t,T ]ei) − û(t, ω̂)

]
,

(2.2)
∂ωiωj

û := ∂ωi
(ûωj

), i, j = 1, . . . , d,

and the right time-derivative of û, if it exists, as

∂t û(t, ω̂) := lim
h→0,h>0

1

h

[
û(t + h, ω̂·∧t ) − û(t, ω̂)

]
, t < T .(2.3)

For the final time T , we define

∂t û(T ,ω) := lim
t<T ,t↑T

∂t û(t,ω).(2.4)

We take the convention that ω̂ are column vectors, but ∂ωû denotes row vectors,
and ∂2

ωωû denote d × d-matrices.

DEFINITION 2.1. Let û : �̂ → R be F̂-progressively measurable.

(i) We say û ∈ C0(�̂) if û is continuous in (t, ω̂) under d∞.
(ii) We say û ∈ C0

b(�̂) ⊂ C0(�̂) if û is bounded.

(iii) We say û ∈ C
1,2
b (�̂) ⊂ C0(�̂) if ∂t û, ∂ωû, and ∂2

ωωû exist and are in
C0

b(�̂).

REMARK 2.2. To simplify the presentation, in this paper we will consider
only bounded viscosity solutions. By slightly more involved estimates, we can
extend our results to the cases with polynomial growth. However, the boundedness
of the derivatives ∂t û, ∂ωû, and ∂2

ωωû is crucial for the functional Itô’s formula
(2.6) below.

2.2. Derivatives on continuous paths. We now let � := {ω ∈ C([0, T ],R
d) :

ω0 = 0}, the set of continuous paths with initial value 0, B the canonical process,
F the filtration generated by B , P0 the Wiener measure, and � := [0, T ]×�. Here
and in the sequel, for notational simplicity, we use 0 to denote vectors or matrices
with appropriate dimensions whose components are all equal to 0.

Clearly � ⊂ �̂, � ⊂ �̂, and each ω ∈ � can also be viewed as an element
of �̂. Then ‖ · ‖t and d∞ in (2.1) are well defined on � and �, (�,‖ · ‖T ) is a
Banach space, and (�,d∞) is a complete pseudometric space. Given u :� → R

and û : �̂ → R, we say û is consistent with u on � if

û(t,ω) = u(t,ω) for all (t,ω) ∈ �.(2.5)
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DEFINITION 2.3. Let u :� → R be F-progressively measurable.

(i) We say u ∈ C0(�) if u is continuous in (t,ω) under d∞.
(ii) We say u ∈ C0

b(�) ⊂ C0(�) if u is bounded.

(iii) We say u ∈ C
1,2
b (�) if there exists û ∈ C

1,2
b (�̂) such that (2.5) holds.

By [6] and [4], we have the following important results.

THEOREM 2.4. Let u ∈ C
1,2
b (�) and û ∈ C

1,2
b (�̂) such that (2.5) holds.

(i) The following definition

∂tu := ∂t û, ∂ωu := ∂ωû, ∂2
ωωu := ∂2

ωωû on �

is independent of the choice of û. Namely, if there is another û′ ∈ C
1,2
b (�̂) such

that (2.5) holds, then the derivatives of û′ coincide with those of û on �.
(ii) If P is a semimartingale measure, then u is a semimartingale under P and

dut = ∂tut dt + 1
2 tr

(
∂2
ωωut d〈B〉t ) + ∂ωut dBt , P-a.s.(2.6)

We note that, for any given P, the quadratic variation 〈B〉 is well defined. In
fact, although not used in this paper, one can construct 〈B〉 in a pathwise manner,
see, for example, [29]. Here and in the sequel, when we emphasize that u is a
process, we use the notation ut(ω) := u(t,ω) and often omit ω by simply writing
it as ut . Moreover, when a probability is involved, quite often we use B which by
definition satisfies Bt(ω) = ωt .

2.3. Localization of the spaces. For our purpose, we need to introduce the
localization version of the above notions. Let

T := {
F-stopping time τ : for all t ∈ [0, T ),

(2.7) {
ω : τ(ω) > t

}
is an open subset of

(
�,‖ · ‖T

)}
.

The following is a typical example of such τ .

EXAMPLE 2.5. Let u ∈ C0(�). Then, for any constant c,

τ := inf
{
t :u(t,ω) ≥ c

} ∧ T is in T .

PROOF. For any t < T , {τ > t} = {sup0≤s≤t us < c}. Fix ω ∈ {τ > t}, and
set ε := 1

2 [c − sup0≤s≤t u(s,ω)] > 0. For any s ∈ [0, t], since u is continuous at
(s,ω), there exists a constant hs > 0 such that |u(r, ω̃) − u(s,ω)| ≤ ε whenever
d∞((r, ω̃), (s,ω)) < hs . Note that the open intervals (s − 1

2hs, s + 1
2hs), s ∈ [0, t],

cover the compact set [0, t]. Then there exist 0 = s0 < s1 < · · · < sn = t such
that [0, t] ⊂ ⋃

0≤i≤n(si − 1
2hsi , si + 1

2hsi ). Now set h := 1
2 min0≤i≤n hsi > 0. For
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any ω̃ ∈ � such that ‖ω̃ − ω‖T < h, for any s ∈ [0, t], there exists i such that
|s − si | ≤ 1

2hsi . Then

d∞
(
(s, ω̃), (si,ω)

) ≤ |s − si | + ‖ω̃ − ω‖T ≤ 1
2hsi + h ≤ hsi for all s ∈ [0, t].

Thus

u(s, ω̃) ≤ u(si,ω) + ε ≤ sup
0≤s≤t

u(s,ω) + ε < c for all s ∈ [0, t].

This implies that τ(ω̃) > t , and therefore τ ∈ T . �

Denote

�(τ) := {
(t,ω) ∈ � : t < τ(ω)

}
and �̄(τ ) := {

(t,ω) ∈ � : t ≤ τ(ω)
}
.(2.8)

Then clearly �(τ) is an open subset of (�,d∞).

DEFINITION 2.6. Let τ ∈ T and u : �̄(τ ) → R. We say u ∈ C
1,2
b (�̄(τ )) if

there exists ũ ∈ C
1,2
b (�) such that

u = ũ on �̄(τ ).(2.9)

The following result is the localization version of Theorem 2.4.

PROPOSITION 2.7. Let τ ∈ T , u ∈ C
1,2
b (�̄(τ )), ũ ∈ C

1,2
b (�) such that (2.9)

holds.

(i) One may define

∂tu := ∂t ũ, ∂ωu := ∂ωũ, ∂2
ωωu := ∂2

ωωũ on �(τ),(2.10)

and the definition is independent of the choice of ũ.
(ii) Let P be a semimartingale measure. Then u is a P-semimartingale on [0, τ ]

and (2.6) holds on [0, τ ].

PROOF. First, for the derivatives defined in (2.10), (2.6) follows directly from
Theorem 2.4. Next, assume ũ′ ∈ C

1,2
b (�) also satisfies (2.9). Denote ū := ũ − ũ′.

Then ū = 0 on �̄(τ ). Now fix (t,ω) ∈ �(τ). Since �(τ) is open, there ex-
ists h := h(t,ω) > 0 such that (s, ω̃) ∈ �(τ) whenever d∞((s, ω̃), (t,ω)) < h.
Now following the definition of the time derivative we obtain immediately that
∂t ū(t,ω) = 0. Moreover, let P = P0, and applying (2.6) to ū, we have

0 = 1
2 tr

(
∂2
ωωūt

)
dt + ∂ωūt dBt , 0 ≤ t < τ,P0-a.s.

Thus, since ∂ωū and ∂2
ωωū are bounded,

∂ωū = 0, ∂2
ωωū = 0, dt × dP0-a.s. on �(τ).
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Since �(τ) is open, and ∂ωū and ∂2
ωωū are continuous in (t,ω) under d∞, it is

clear that

∂ωū = 0, ∂2
ωωū = 0 on �(τ).

This implies that the definition in (2.10) is independent of the choice of ũ. �

2.4. Space shift. We first fix t ∈ [0, T ] and introduce the shifted spaces on
càdlàg paths:

- Let �̂t := D([t, T ],R
d) be the shifted canonical space; B̂t the shifted canoni-

cal process on �̂t ; F̂
t the shifted filtration generated by Bt ; and �̂t := [t, T ]× �̂t .

- Define ‖ · ‖t
s and dt∞ in the spirit of (2.1).

- For F̂
t -progressively measurable û : �̂t → R, define the derivatives in the spirit

of (2.2) and (2.3), and define the spaces C0(�̂t ), C0
b(�̂t ) and C

1,2
b (�̂t ) in the spirit

of Definition 2.1.

Similarly, we may define the shifted spaces on continuous paths:

- Let �t := {ω ∈ C([t, T ],R
d) :ωt = 0} be the shifted canonical space, Bt the

shifted canonical process on �t , F
t the shifted filtration generated by Bt , P

t
0 the

Wiener measure on �t and �t := [t, T ] × �t .
- Define C0(�t), C0

b(�t) and C
1,2
b (�t) in an obvious way.

- Let T t denote the space of F
t -stopping times τ such that, for any s ∈ [t, T ),

the set {ω ∈ �t : τ(ω) > s} is an open subset of �t under ‖ · ‖t
T .

- For each τ ∈ T t , define �t(τ), �̄t (τ ), and C
1,2
b (�̄t (τ )) in an obvious way.

We next introduce the shift and concatenation operators. Let 0 ≤ s ≤ t ≤ T .

- For ω̂ ∈ �̂s , ω̂′ ∈ �̂t and ω ∈ �s , ω′ ∈ �t , define the concatenation paths
ω̂ ⊗t ω̂′ ∈ �̂s and ω ⊗t ω′ ∈ �s by

(
ω̂ ⊗t ω̂′)(r) := ω̂r1[s,t)(r) + (

ω̂t− + ω̂′
r

)
1[t,T ](r);

for all r ∈ [s, T ].(
ω ⊗t ω′)(r) := ωr1[s,t)(r) + (

ωt + ω′
r

)
1[t,T ](r);

- Let ω̂ ∈ �̂s . For F̂ s
T -measurable random variable ξ̂ and F̂

s -progressively mea-
surable process X̂ on �̂s , define the shifted F̂ t

T -measurable random variable ξ̂ t,ω̂

and F̂
t -progressively measurable process X̂t,ω̂ on �̂t by

ξ̂ t,ω̂(
ω̂′) := ξ̂

(
ω̂ ⊗t ω̂′), X̂t,ω̂(

ω̂′) := X̂
(
ω̂ ⊗t ω̂′) for all ω̂′ ∈ �̂t .

- Let ω ∈ �s . For F s
T -measurable random variable ξ and F

s -progressively mea-
surable process X on �s , define the shifted F t

T -measurable random variable ξ t,ω

and F
t -progressively measurable process Xt,ω on �t by

ξ t,ω(
ω′) := ξ

(
ω ⊗t ω′), Xt,ω(

ω′) := X
(
ω ⊗t ω′) for all ω′ ∈ �t.
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It is clear that all the results in previous subsections can be extended to the
shifted spaces, after obvious modifications. Moreover, for any τ ∈ T , (t,ω) ∈
�(τ) and u ∈ C

1,2
b (�̄(τ )), it is clear that τ t,ω ∈ T t and ut,ω ∈ C

1,2
b (�̄t (τ t,ω)).

For some technical proofs later, we shall also use the following space. Denote

T t+ := {
τ ∈ T t : τ > t

}
for t < T and T T+ := {T }.(2.11)

DEFINITION 2.8. Let t ∈ [0, T ], u :�t → R and P be a semimartingale mea-
sure on �t . We say u ∈ C̄

1,2
P

(�t) if there exist an increasing sequence of F
t -

stopping times t = τ0 ≤ τ1 ≤ · · · ≤ T such that:

(i) For each i ≥ 0 and ω ∈ �t ,

τ
τi(ω),ω
i+1 ∈ T τi (ω)

+ and uτi(ω),ω ∈ C
1,2
b

(
�̄τi(ω)(τ τi(ω),ω

i+1

));
(ii) For each i ≥ 0 and ω ∈ �, u·(ω) is continuous on [0, τi(ω)];

(iii) For P-a.s. ω ∈ �t , the set {i : τi(ω) < T } is finite.

We shall emphasize that, for u ∈ C̄
1,2
P

(�t), the derivatives of u are bounded

on each interval [τi(ω), τ
τi(ω),ω
i+1 ]; however, in general they may be unbounded on

the whole interval [t, T ]. Also, the previous definition and, more specifically the
dependence on P introduced in item (iii), is motivated by the results established in
Section 6 below.

The following result is a direct consequence of Proposition 2.7.

PROPOSITION 2.9. Let P be a semimartingale measure on �t and u ∈
C̄

1,2
P

(�t). Then u is a local P-semimartingale on [t, T ] and

dus = ∂tus ds + 1
2 tr

(
∂2
ωωus d

〈
Bt 〉

s

) + ∂ωus dBt
s, t ≤ s ≤ T ,P-a.s.

3. PPDEs and definitions. In this paper we study the following semi-linear
parabolic Path-dependent PDE (PPDE, for short):

(Lu)(t,ω) = 0, 0 ≤ t < T ,ω ∈ �;
where (Lu)(t,ω) := −∂tu(t,ω) − 1

2 tr
(
∂2
ωωu(t,ω)

)
(3.1)

− f
(
t,ω,u(t,ω), ∂ωu(t,ω)

)
.

We remark that there is a potential to extend our results to a much more general
setting. However, in order to focus on the main ideas, in this paper we content our-
selves with the simple PPDE (3.1) under somewhat strong technical conditions,
and leave more general cases, for example, fully nonlinear PPDEs, for future stud-
ies.
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REMARK 3.1. In the Markovian case, namely f = f (t,ωt , y, z) and u(t,

ω) = v(t,ωt ), the PPDE (3.1) reduces to the following PDE:

(Lv)(t, x) = 0, 0 ≤ t < T , x ∈ R
d,

where (Lv)(t, x) := −∂tv(t, x) − 1
2 tr

[
D2

xxv(t, x)
]

(3.2)

− f
(
t, x, v(t, x),Dxv(t, x)

)
.

Here Dx and D2
xx denote the standard first and second order derivatives with

respect to x. However, slightly different from the PDE literature but consistent
with (2.3), ∂t denotes the right time-derivative.

As usual, we start with classical solutions.

DEFINITION 3.2. Let u ∈ C
1,2
b (�). We say u is a classical solution (resp.,

sub-solution, super-solution) of PPDE (3.1) if

(Lu)(t,ω) = (resp., ≤,≥)0 for all (t,ω) ∈ [0, T ) × �.(3.3)

It is clear that, in the Markovian setting as in Remark 3.1,

u is a classical solution (resp., sub-solution, super-solution) of PPDE (3.1)
if and only if v is a classical solution (resp., sub-solution, super-solution) of
PDE (3.2).

Existence and uniqueness of classical solutions are related to the analogue re-
sults for the corresponding backward SDE. In order to avoid diverting the attention
from our main purpose in this paper, we report these properties later in Section 5.1,
and we move to our notion of viscosity solutions.

For any L ≥ 0 and t < T , let U L
t denote the space of F

t -progressively measur-
able R

d -valued processes β such that each component of β is bounded by L. By
viewing β as row vectors, we define

Mt,β
s := exp

(∫ s

t
βr dBt

r − 1

2

∫ s

t
|βr |2 dr

)
,

(3.4)
P

t
0-a.s., dP

t,β := M
t,β
T dP

t
0,

and we introduce for all t ∈ [0, T ] two nonlinear expectations: for any ξ ∈
L2(F t

T ,P
t
0),

¯E
L
t [ξ ] := inf

{
E

P
t,β [ξ ] :β ∈ U L

t

};
(3.5)

Ē L
t [ξ ] := sup

{
E

P
t,β [ξ ] :β ∈ U L

t

}
.
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Moreover, for any u ∈ C0
b(�), define

¯ALu(t,ω) :=
{
ϕ ∈ C

1,2
b

(
�t ): there exists τ ∈ T t+ such that

0 = ϕ(t,0) − u(t,ω) = min
τ̃∈T t ¯E

L
t

[(
ϕ − ut,ω)

τ̃∧τ

]};
(3.6)

ĀLu(t,ω) :=
{
ϕ ∈ C

1,2
b

(
�t ): there exists τ ∈ T t+ such that

0 = ϕ(t,0) − u(t,ω) = max
τ̃∈T t

Ē L
t

[(
ϕ − ut,ω)

τ̃∧τ

]}
.

DEFINITION 3.3. Let u ∈ C0
b(�).

(i) For any L ≥ 0, we say u is a viscosity L-subsolution (resp., L-supersolu-
tion) of PPDE (3.1) if, for any (t,ω) ∈ [0, T ) × � and any ϕ ∈ ¯ALu(t,ω) [resp.,
ϕ ∈ ĀLu(t,ω)], it holds that(

Lt,ωϕ
)
(t,0) ≤ (resp., ≥)0,

where, for each (s, ω̃) ∈ [t, T ] × �t ,(
Lt,ωϕ

)
(s, ω̃) := −∂tϕ(s, ω̃) − 1

2 tr
[
∂2
ωωϕ(s, ω̃)

] − f t,ω(
s, ω̃, ϕ(s, ω̃), ∂ωϕ(s, ω̃)

)
.

(ii) We say u is a viscosity subsolution (resp., supersolution) of PPDE (3.1)
if u is viscosity L-subsolution (resp., L-supersolution) of PPDE (3.1) for some
L ≥ 0.

(iii) We say u is a viscosity solution of PPDE (3.1) if it is both a viscosity
subsolution and a viscosity supersolution.

In the rest of this section we provide several remarks concerning our definition
of viscosity solutions. In most places we will comment on the viscosity subsolution
only, but obviously similar properties hold for the viscosity supersolution as well.

REMARK 3.4. As standard in the literature on viscosity solutions of PDEs:

(i) The viscosity property is a local property in the following sense. For any
(t,ω) ∈ [0, T ) × � and any ε > 0, define

τε := inf
{
s > t :

∣∣Bt
s

∣∣ ≥ ε
} ∧ (t + ε).

To check the viscosity property of u at (t,ω), it suffices to know the value of ut,ω

on [t, τε] for an arbitrarily small ε > 0.
(ii) Typically ¯ALu(t,ω) and ĀLu(t,ω) are disjoint, so u is a viscosity solution

does not mean (Lt,ωϕ)(t,0) = 0 for ϕ in some appropriate set. One has to check
viscosity subsolution property and viscosity supersolution property separately.

(iii) In general ¯ALu(t,ω) could be empty. In this case automatically u satisfies
the viscosity subsolution property at (t,ω).
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REMARK 3.5. (i) For 0 ≤ L1 < L2, obviously U L1
t ⊂ U L2

t , ¯E
L2
t ≤ ¯E

L1
t

and ¯AL2u(t,ω) ⊂ ¯AL1u(t,ω). Then one can easily check that a viscosity L1-
subsolution must be a viscosity L2-subsolution. Consequently,

u is a viscosity subsolution if and only if there exists a L ≥ 0 such that, for
all L̃ ≥ L, u is a viscosity L̃-subsolution.

(ii) However, we require the same L for all (t,ω). We should point out that
our definition of viscosity subsolution is not equivalent to the following alternative
definition, under which we are not able to prove the comparison principle:

for any (t,ω) and any ϕ ∈ ⋂
L≥0 ¯ALu(t,ω), it holds that (Lt,ωϕ)(t,0) ≤ 0.

REMARK 3.6. We may replace ¯AL with the following ( ¯A′)L which requires
strict inequality,

¯A′Lu(t,ω) := {
ϕ ∈ C

1,2
b

(
�t ): there exists τ ∈ T t+ such that

(3.7)
0 = ϕ(t,0) − u(t,ω) < ¯E

L
t

[(
ϕ − ut,ω)

τ̃∧τ

]
for all τ̃ ∈ T t+

}
.

Then u is a viscosity L-subsolution of PPDE (3.1) if and only if
(

Lt,ωϕ
)
(t,0) ≤ 0 for all (t,ω) ∈ [0, T ) × � and ϕ ∈ ¯A′Lu(t,ω).

A similar statement holds for the viscosity supersolution.
Indeed, since ¯A′Lu(t,ω) ⊂ ¯ALu(t,ω), then only the if part is clear. To prove

the if part, let (t,ω) ∈ [0, T ) × � and ϕ ∈ ¯ALu(t,ω). For any ε > 0, denote
ϕε(s, ω̃) := ϕ(s, ω̃) + ε(s − t). Then clearly ϕε ∈ ¯A′Lu(t,ω), and thus

(
Lt,ωϕε)(t,0) = −∂tϕ(t,0) − ε − 1

2 tr
(
∂2
ωωϕ(t,0)

)
− f t,ω(

t,ω,ϕ(t,0), ∂ωϕ(t,0)
)

≤ 0.

Send ε → 0, we obtain (Lt,ωϕ)(t,0) ≤ 0, and thus u is a viscosity L-subsolution.

REMARK 3.7. Consider the Markovian setting in Remark 3.1. One can easily
check that u is a viscosity subsolution of PPDE (3.1) in the sense of Definition 3.3
implies that v is a viscosity subsolution of PDE (3.2) in the standard sense.

REMARK 3.8. We have some flexibility to choose ¯ALu(t,ω) and ĀLu(t,ω)

in Definition 3.3. In principle, the smaller these sets are, the more easily we can
prove viscosity properties and thus the existence of viscosity solutions, but the
comparison principle and the uniqueness of viscosity solutions become more dif-
ficult.
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(i) The following ¯A′′Lu(t,ω) is larger than ¯ALu(t,ω), but all the results in
this paper still hold true if we use ¯A′′Lu(t,ω) [and the corresponding Ā′′Lu(t,ω)],

¯A′′Lu(t,ω) := {
ϕ ∈ C

1,2
b

(
�t ): for any τ ∈ T t+,

0 = ϕ(t,0) − u(t,ω) ≤ ¯E
L
t

[(
ϕ − ut,ω)

τ̃∧τ

]
(3.8)

for some τ̃ ∈ T t+
}
.

(ii) However, if we use the following smaller alternatives of ¯ALu(t,ω), which
do not involve the nonlinear expectation, we are not able to prove the comparison
principle and the uniqueness of viscosity solutions,

¯A◦u(t,ω) := {
ϕ ∈ C

1,2
b

(
�t ): there exists τ ∈ T t+ such that

0 = ϕ(t,0) − u(t,ω) ≤ (
ϕ − ut,ω)

τ̃∧τ for any τ̃ ∈ T t+
};

or

¯A◦◦u(t,ω) := {
ϕ ∈ C

1,2
b

(
�t ): for all (s, ω̃) ∈ (t, T ] × �t,

0 = ϕ(t,0) − u(t,ω) ≤ (
ϕ − ut,ω)

(s, ω̃)
}
.

See also Remark 3.5(ii).

REMARK 3.9. (i) Let u be a viscosity subsolution of PPDE (3.1). Then for
any λ ∈ R, ũt := eλtut is a viscosity subsolution of the following PPDE:

L̃ũ := −∂t ũ − 1
2 tr

(
∂2
ωωũ

) − f̃ (t,ω, ũ, ∂ωũ) ≤ 0,(3.9)

where

f̃ (t,ω, y, z) := −λy + eλtf
(
t,ω, e−λty, e−λtz

)
.

Indeed, assume u is a viscosity L-subsolution of PPDE (3.1). Let (t,ω) ∈ [0, T )×
� and ϕ̃ ∈ ¯ALũ(t,ω). For any ε > 0, denote

ϕε
s := e−λsϕ̃s + ε(s − t).

Then, noting that ϕ̃t = eλtu(t,ω),

ϕε
s − ut,ω

s − e−λt (ϕ̃s − ũt,ω
s

)
= (

e−λs − e−λt )ϕ̃s + (
eλ(s−t) − 1

)
us + ε(s − t)

= (
e−λs − e−λt )(ϕ̃s − ϕ̃t ) + (

eλ(s−t) − 1
)
(us − ut)

+ (
e−λ(s−t) + eλ(s−t) − 2

)
ut + ε(s − t)

≥ ε(s − t) − C(s − t)
(|ϕ̃s − ϕ̃t | + |us − ut | + (s − t)

)
.

Let τ̃ ∈ T t+ be a stopping time corresponding to ϕ̃ ∈ ¯ALũ(t,ω), and set

τε := τ̃ ∧ inf
{
s > t : |ϕ̃s − ϕ̃t | + |us − ut | + (s − t) ≥ ε

C

}
∧ T .
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Then τε ∈ T t+, by Example 2.5, and for any τ ∈ T t such that τ ≤ τε , it follows
from the previous inequality that

ϕε
τ − ut,ω

τ ≥ e−λt [ϕ̃τ − ũt,ω
τ

]
.

By the increase and the homogeneity of the operator ¯E
L
t , together with the fact that

ϕ̃ ∈ ¯ALũ(t,ω), this implies that

¯E
L
t

[
ϕε

τ − ut,ω
τ

] ≥ ¯E
L
t

[
e−λt (ϕ̃τ − ũt,ω

τ

)] = e−λt

¯E
L
t

[
ϕ̃τ − ũt,ω

τ

] ≥ 0 = ϕε
t − ut .

This implies that ϕε ∈ ¯ALu(t,ω), then Lt,ωϕε(t,0) ≤ 0. Send ε → 0, and similar
to Remark 3.6 we get Lt,ωϕ0(t,0) ≤ 0, where ϕ0

s := e−λsϕ̃s . Now by straightfor-
ward calculation we obtain

−∂t ϕ̃(t,0) − 1
2 tr

[
∂2
ωωϕ̃(t,0)

] − f̃
(
t,ω, ϕ̃(t,0), ∂ωϕ̃(t,0)

) ≤ 0.

That is, ũ is a viscosity subsolution of PPDE (3.9).
(ii) If we consider more general variable change: ū(t,ω) := ψ(t, u(t,ω)), where

ψ ∈ C1,2([0, T ]×R) such that ∂yψ > 0. Denote by ψ̄ := ψ−1 the inverse function
of ψ with respect to the space variable y. Then one can easily check that u is a
classical subsolution of PPDE (3.1) if and only if ū is a classical subsolution of the
following PPDE:

L̄ū := −∂t ū − 1

2
tr

(
∂2
ωωū

) − f̄ (t,ω, ū, ∂ωū) ≤ 0

where f̄ (t,ω, y, z) := 1

∂yψ̄(t, y)

[
∂t ψ̄(t, y) + 1

2
∂2
yyψ̄(t, y)|z|2(3.10)

+ f
(
t,ω, ψ̄(t, y), ∂yψ̄(t, y)z

)]
.

However, if u is only a viscosity subsolution of PPDE (3.1), we are not able to
prove that ū is a viscosity subsolution of (3.10). The main difficulty is that the
nonlinear expectation ¯E

L
t and the nonlinear function ψ do not commute. Conse-

quently, given ϕ̄ ∈ ¯ALū(t,ω), we are not able to construct as in (i) the correspond-
ing ϕ ∈ ¯ALu(t,ω).

We conclude this section by connecting the nonlinear expectation operators to
backward SDEs, and providing some tools from optimal stopping theory which
will be used later.

REMARK 3.10 (Connecting ¯E
L and Ē L to backward SDEs). For readers who

are familiar with BSDE literature, by the comparison principle of BSDEs (see,
e.g., El Karoui, Peng and Quenez [10]), one can easily show that ¯E

L
t [ξ ] = ¯Yt and
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Ē L
t [ξ ] = Ȳt , where ( ¯Y, ¯Z) and (Ȳ, Z̄) are the solution to the following BSDEs,

respectively:

¯Ys = ξ −
∫ T

s
L| ¯Zr |dr −

∫ T

s ¯Zr dBt
r ,

(3.11)

Ȳs = ξ +
∫ T

s
L|Z̄r |dr −

∫ τ

s
Z̄r dBt

r , t ≤ s ≤ T ,P
t
0-a.s.

Moreover, this is a special case of the so called g-expectation; see Peng [22].

REMARK 3.11 (Optimal stopping under nonlinear expectation and reflected
backward SDEs). The definition of the set ¯AL is closely related to the follow-
ing optimal stopping problem under nonlinear expectation

Yt := inf
τ̃∈T t ¯E

L
t [Xτ̃∧τ ]

for some stopping time τ ∈ T t+ and some adapted bounded pathwise continuous
process X. For the ease of presentation here, we provide only heuristic arguments,
and we refer to Section 7 of [7] for a rigorous argument and to [8] for the optimal
stopping problem under more general nonlinear expectations.

For later use, we provide some key results which can be proved by following
the standard corresponding arguments in the standard optimal stopping theory, and
we observe that the process Y is pathwise continuous; see (iv) below.

Following the classical arguments in optimal stopping theory, we have:

(i) ¯E
L
t [Yτ̃∧τ ] ≥ Yt for all τ̃ ∈ T t , that is, Y is an ¯E

L-submartingale.
(ii) If τ ∗ ∈ T t is an optimal stopping rule, then

Yt = ¯E
L
t [Xτ∗∧τ ] = inf

τ̃∈T τ∗ ¯E
L
t [Xτ̃∧τ ] = inf

τ̃∈T τ∗ ¯E
L
t [Yτ̃∧τ ] = ¯E

L
t [Yτ∗∧τ ],

where the last inequality is a consequence of (i), and the third inequality follows
from the fact that X ≤ Y on one hand, and inf ¯E

L
t [·] ≥ ¯E

L
t [inf ·] on the other hand.

This implies that Yτ∗ = Xτ∗ and, by (i), that Y·∧τ∗ is an ¯E
L-martingale.

(iii) We then define τ 1
t := inf{s > t :Yt = Xt }. Since YT = XT , we have

τ 1
t ≤ T , a.s. Moreover, following the classical arguments in optimal stopping the-

ory, we see that {Ys∧τ 1
t
}s≥t is an ¯E

L-martingale. With this in hand, we conclude

that τ 1
t is an optimal stopping time, that is, Yt = ¯E

L
t [Xτ 1

t
].

(iv) For those readers who are familiar with backward stochastic differential
equations, we mention that Y = ¯Y ◦, where ( ¯Y ◦, ¯Z ◦, ¯K

◦) is the solution to the
following reflected BSDEs:

¯Y ◦
s = Xτ −

∫ τ

s
L| ¯Z ◦

r |dr −
∫ τ

s ¯Z ◦
r dBt

r −
∫ τ

s
d ¯K

◦
s ,(3.12)

¯Y ◦
s ≤ Xs and

(
¯Y ◦

s − Xs

)
d ¯K

◦
s = 0, s ∈ [t, T ],P

t
0-a.s.;(3.13)

see, for example, [9]. In particular, it is a well-known result that the process Y is
pathwise continuous.
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(v) Similar results hold for supτ̃∈T t Ēt [Xτ̃∧τ ].

4. The main results. We start with a stability result.

THEOREM 4.1. Let (f ε, ε > 0) be a family of coefficients converging uni-
formly toward a coefficient f ∈ C0(�) as ε → 0. For some L > 0, let uε be a vis-
cosity L-subsolution (resp., L-supersolution) of PPDE (3.1) with coefficients f ε ,
for all ε > 0. Assume further that uε converges to some u, uniformly in �. Then u

is a viscosity L-subsolution (resp., supersolution) of PPDE (3.1) with coefficient f .

The proof of this result is reported in Section 5.3. For our next results, we shall
always use the following standing assumptions, where g is a terminal condition
associated to the PPDE (3.1).

ASSUMPTION 4.2. (i) f is bounded, F-progressively measurable, continuous
in t , uniformly continuous in ω, and uniformly Lipschitz continuous in (y, z) with
a Lipschitz constant L0 > 0.

(ii) g is bounded and uniformly continuous in ω.

To establish an existence result of viscosity solutions under the above assump-
tion, we note that the PPDE (3.1) with terminal condition u(T ,ω) = g(ω) is
closely related to (and actually motivated from) the following BSDE:

Y 0
t = g(B·) +

∫ T

t
f

(
s,B·, Y 0

s ,Z0
s

)
ds

(4.1)

−
∫ T

t
Z0

s dBs, 0 ≤ t ≤ T ,P0-a.s.

We refer to the seminal paper by Pardoux and Peng [20] for the well-posedness of
such BSDEs. On the other hand, for any (t,ω) ∈ �, by [20] the following BSDE
on [t, T ] has a unique solution,

Y 0,t,ω
s = gt,ω(

Bt·
) +

∫ T

s
f t,ω(

r,Bt· , Y 0,t,ω
r ,Z0,t,ω

r

)
dr

(4.2)

−
∫ T

s
Z0,t,ω

r dBt
r , P

t
0-a.s.

By the Blumenthal 0–1 law, Y
0,t,ω
t is a constant and we thus define

u0(t,ω) := Y
0,t,ω
t .(4.3)

THEOREM 4.3. Under Assumption 4.2, u0 is a viscosity solution of PPDE
(3.1) with terminal condition g.
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The proof is reported in Section 5.2. Similar to the classical theory of viscosity
solutions in the Markovian case, we now establish a comparison result which, in
particular, implies the uniqueness of viscosity solutions. For this purpose, we need
an additional condition:

ASSUMPTION 4.4. There exist f̂ : �̂ × R × R
d → R satisfying:

(i) f̂ (t,ω, y, z) = f (t,ω, y, z) for all (t,ω, y, z) ∈ � × R × R
d .

(ii) f̂ is bounded, f̂ (·, y, z) ∈ C0(�̂) for any fixed (y, z) and f̂ is uniformly
Lipschitz continuous in (y, z).

REMARK 4.5. In the Markovian case as in Remark 3.1, we have a natural
extension: f̂ = f (t, ω̂t , y, z) for all ω̂ ∈ �̂. In this case Assumption 4.2 implies
Assumption 4.4.

THEOREM 4.6. Let Assumptions 4.2 and 4.4 hold. Let u1 be a viscosity sub-
solution and u2 a viscosity supersolution of PPDE (3.1). If u1(T , ·) ≤ g ≤ u2(T , ·),
then u1 ≤ u2 on �.

Consequently, given the terminal condition g, u0 is the unique viscosity solution
of PPDE (3.1).

The proof is reported in Section 6 building on a partial comparison result derived
in Section 5.4.

REMARK 4.7. For technical reasons, we require a uniformly continuous func-
tion g between u1

T and u2
T ; see Section 6. However, when one of u1 and u2 is in

C
1,2
b (�), then we need neither the presence of such g nor the existence of f̂ ; see

Lemma 5.7 below.

5. Some proofs of the main results. In this section we provide some proofs
of the main results, and provide some more results. We leave the most technical
part of the proof for the comparison principle to next section.

5.1. Properties of classical solutions. We first recall from Peng [23] that
an F-progressively measurable process Y is called an f -martingale (resp., f -
submartingale, f -supermartingale) if, for any F-stopping times τ1 ≥ τ2, we have

Yτ1 = (resp., ≤,≥)Yτ1(τ2, Yτ2), P0-a.s.,

where (Y, Z) := (Y(τ2, Yτ2), Z(τ2, Yτ2)) is the solution to the following BSDE on
[0, τ2]:

Yt = Yτ2 +
∫ τ2

t
f (s,B·, Ys, Zs) ds −

∫ τ2

t
Zs dBs, 0 ≤ t ≤ τ2,P0-a.s.

Clearly, Y is an f -martingale with terminal condition g(B·) if and only if it satis-
fies the BSDE (4.1).

Applying Itô’s formula to Proposition 2.9, we obviously have the following:
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PROPOSITION 5.1. Let Assumption 4.2 hold and u ∈ C
1,2
b (�). Then u is a

classical solution (resp., subsolution, supersolution) of PPDE (3.1) if and only if
the process u is an f -martingale (resp., f -submartingale, f -supermartingale).

In particular, if u is a classical solution of PPDE (3.1) with terminal condi-
tion g, then

Y := u, Z := ∂ωu(5.1)

provides the unique solution of BSDE (4.1).

PROOF. We shall only prove the subsolution case. Let (Y,Z) be defined by
(5.1).

(i) Assume u is a classical subsolution. By Itô’s formula,

dut = (
∂tut + 1

2 tr
[
∂2
ωωut

])
dt + ∂ωut dBt

(5.2)
= −(

f (t,B·, ut , ∂ωut ) + (Lu)t
)
dt + ∂ωut dBt , P0-a.s.

Then for any τ1 ≤ τ2, (Y,Z) satisfies BSDE

Yt = uτ2 +
∫ τ2

t

(
f (s,B·, Ys,Zs) + (Lu)(s,B·)

)
ds

−
∫ τ2

t
Zs dBs, 0 ≤ t ≤ τ2,P0-a.s.

Since Lu ≤ 0, by the comparison principle of BSDEs (see [10]) we obtain uτ1 =
Yτ1 ≤ Yτ1(τ2, uτ2). That is, u is an f -submartingale.

(ii) Assume u is an f -submartingale. For any 0 ≤ t < t +h ≤ T , denote δYs :=
Ys(t + h,ut+h) − Ys , δZs := Zs(t + h,ut+h) − Zs . By (5.2) we have

δYs =
∫ t+h

s

[
αrδYr + 〈β, δZ〉r − (Lu)r

]
dr

−
∫ t+h

s
δZs dBs, t ≤ s ≤ t + h,P0-a.s.,

where |α|, |β| ≤ L0. Define

�s := exp
(∫ s

t
βr dBr +

∫ s

t

(
αr − 1

2
|βr |2

)
dr

)
,(5.3)

and we have

δYt = −E
P0
t

[∫ t+h

t
�s(Lu)s ds

]
.

Since Y = u is an f -submartingale, we get

0 ≤ 1

h
δYt = −E

P0
t

[
1

h

∫ t+h

t
�s(Lu)s ds

]
.
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Send h → 0, and we obtain

Lu(t,B·) ≤ 0, P0-a.s.

Note that Lu is continuous in ω and obviously any support of P0 is dense, and we
have

Lu(t,ω) ≤ 0 for all ω ∈ �.

That is, u is a classical subsolution of PPDE (3.1).
(iii) When u is a classical solution similar to (i), we know Y is a f -martingale,

and thus (5.1) provides a solution to the BSDE. Finally, the uniqueness follows
from the uniqueness of BSDEs. �

REMARK 5.2. This proposition extends the well-known nonlinear Feynman–
Kac formula of Pardoux and Peng [19] to non-Markovian case.

We next prove a simple comparison principle for classical solutions.

LEMMA 5.3. Let Assumption 4.2 hold true. Let u1 be a classical subsolution
and u2 a classical supersolution of PPDE (3.1). If u1(T , ·) ≤ u2(T , ·), then u1 ≤ u2

on �.

PROOF. Denote Y i := ui,Zi := ∂ωui , i = 1,2. By (5.2) we have

dY i
t = −[

f
(
t,B·, Y i,Zi) + (

Lui)
t

]
dt + Zi

t dBt , 0 ≤ t ≤ T ,P0-a.s.

Since Y 1
T ≤ Y 2

T and Lu1 ≤ 0 ≤ Lu2, by the comparison principle for BSDEs we
obtain Y 1 ≤ Y 2. That is, u1 ≤ u2, P0-a.s. Since u1 and u2 are continuous, and the
support of P0 is dense in �, we obtain u1 ≤ u2 on �. �

5.2. Existence of viscosity solutions. We first establish the regularity of u0 as
defined in (4.3).

PROPOSITION 5.4. Under Assumption 4.2, u0 is uniformly continuous in �

under d∞.

PROOF. Since f and g are bounded, clearly u0 is bounded. To show the uni-
form continuity, let (ti,ω

i) ∈ �, i = 1,2, and assume without loss of generality

that 0 ≤ t1 ≤ t2 ≤ T . By taking conditional expectations E
P

t1
0

t2
, one can easily see

that Y 0,t1,ω
1

can be viewed as the solution to the following BSDE on [t2, T ]: for
P

t1
0 -a.s. Bt1 ,

Y 0,t1,ω
1

s = gt2,ω
1⊗t1Bt1 (

Bt2·
) +

∫ T

s
f t2,ω

1⊗t1Bt1 (
r,Bt2· , Y 0,t1,ω

1

r ,Z0,t1,ω
1

r

)
dr

−
∫ T

s
Z0,t1,ω

1

r dBt2
r , t2 ≤ s ≤ T ,P

t2
0 -a.s.
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Denote

δω := ω1 − ω2, δY := Y 0,t1,ω
1 − Y 0,t2,ω

2
, δZ := Z0,t1,ω

1 − Z0,t2,ω
2
.

Then

δYs = δYT +
∫ T

s

(
γr + αrδYr + 〈β, δZ〉r)dr

−
∫ T

s
δZr dBt2

r , t2 ≤ s ≤ T ,P
t2
0 -a.s.,

where

|α| ≤ L0, β ∈ U L0
t

and

γr := (
f t2,ω

1⊗t1Bt1 − f t2,ω
2)(

r,Bt2· , Y 0,t1,ω
1
,Z0,t1,ω

1

r

)
.

Define � as in (5.3) with initial time t2, then

δYt2 = �T δYT +
∫ T

t2

�rγr dr −
∫ T

t2

�r [δZr + δYrβr ]dBt2
r , P

t2
0 -a.s.

Let ρ denote the modulus of continuity function of f and g with respect to ω. Note
that

|δYT | = ∣∣g(
ω1 ⊗t1 Bt1 ⊗t2 Bt2

) − g
(
ω2 ⊗t2 Bt2

)∣∣
≤ ρ

(∥∥ω1 ⊗t1 Bt1 − ω2∥∥
t2

) ≤ ρ
(
d∞

((
t1,ω

1)
,
(
t2,ω

2)) + ∥∥Bt1
∥∥t1
t2

)
.

Similarly,

|γs | ≤ ρ
(
d∞

((
t1,ω

1)
,
(
t2,ω

2)) + ∥∥Bt1
∥∥t1
t2

)
.

Then

|δYt2 | =
∣∣∣∣EP

t2
0

[
�T δYT +

∫ T

t2

�sγs ds

]∣∣∣∣ ≤ Cρ
(
d∞

((
t1,ω

1)
,
(
t2,ω

2)) + ∥∥Bt1
∥∥t1
t2

)
.

Thus, noting that f is bounded,∣∣u0
t1

(
ω1) − u0

t2

(
ω2)∣∣

= ∣∣Y 0,t1,ω
1

t1
− Y

0,t2,ω
2

t2

∣∣
=

∣∣∣∣EP
t1
0

[
Y

0,t1,ω
1

t2
+

∫ t2

t1

f t1,ω
1(

s,Bt1· , Y 0,t1,ω
1

s ,Z0,t1,ω
1

s

)
ds − Y

0,t2,ω
2

t2

]∣∣∣∣(5.4)

≤ C[t2 − t1] + E
P

t1
0

[|δYt2 |
]

≤ C[t2 − t1] + CE
P

t1
0

[
ρ

(
d∞

((
t1,ω

1)
,
(
t2,ω

2)) + ∥∥Bt1
∥∥t1
t2

)]
.
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For any ε > 0, there exists h > 0 such that ρ(h) ≤ ε
2C

for the above C. Since f,g

are bounded, we may assume ρ is also bounded and denote by ‖ρ‖∞ its bound.
Now for d∞((t1,ω

1), (t2,ω
2)) ≤ h

2 , we obtain
∣∣u0

t1

(
ω1) − u0

t2

(
ω2)∣∣

≤ Cd∞
((

t1,ω
1)

,
(
t2,ω

2)) + Cρ(h) + C‖ρ‖∞P
t1
0

[∥∥Bt1
∥∥t1
t2

>
h

2

]

≤ ε

2
+ Cd∞

((
t1,ω

1)
,
(
t2,ω

2)) + 4C‖ρ‖∞h−2
E

P
t1
0

[(∥∥Bt1
∥∥t1
t2

)2]

= ε

2
+ Cd∞

((
t1,ω

1)
,
(
t2,ω

2)) + 4C‖ρ‖∞h−2(t2 − t1)

≤ ε

2
+ C

(
1 + 4‖ρ‖∞h−2)

d∞
((

t1,ω
1)

,
(
t2,ω

2))
.

By choosing d∞((t1,ω
1), (t2,ω

2)) small enough, we see that |u0
t1
(ω1)−u0

t2
(ω2)| ≤

ε. This completes the proof. �

However, in general one cannot expect u0 to be a classical solution to PPDE
(3.1). We refer to Peng and Wang [27] for some sufficient conditions, in a slightly
different setting.

PROOF OF THEOREM 4.3. We just show that u0 is a viscosity subsolution.
We prove by contradiction. Assume u0 is not a viscosity subsolution. Then, for
all L > 0, u0 is not an L-viscosity subsolution. For the purpose of this proof, it is
sufficient to consider an arbitrary L ≥ L0, the Lipschitz constant of f introduced
in Assumption 4.2(i). Then, there exist

(t,ω) ∈ [0, T ) × � and ϕ ∈ ¯ALu0(t,ω) such that c := (
Lt,ωϕ

)
(t,0) > 0.

Denote, for s ∈ [t, T ],
Ỹs := ϕ

(
s,Bt ), Z̃s := ∂ωϕ

(
s,Bt ),

δYs := Ỹs − Y 0,t,ω
s , δZs := Z̃s − Z0,t,ω

s .

Applying Itô’s formula, we have

d(δYs) = −[(
Lt,ωϕ

)(
s,Bt·

) + f t,ω(
s,Bt· , Ỹs, Z̃s

) − f t,ω(
s,Bt· , Y 0,t,ω

s ,Z0,t,ω
s

)]
ds

+ δZs dBt
s

= −[(
Lt,ωϕ

)(
s,Bt·

) + αsδYs + 〈β, δZ〉s]ds + δZs dBt
s, P

t
0-a.s.,

where |α| ≤ L0 and β ∈ U L0
t ⊂ U L

t . Observing that δYt = 0, we define

τ0 := T ∧ inf
{
s > t :

(
Lt,ωϕ

)(
s,Bt·

) − L0|δYs | ≤ c

2

}
.
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Then, by Proposition 5.4 and Example 2.5, τ0 ∈ T t+ and

(
Lt,ωϕ

)(
s,Bt·

) + αsδYs ≥ c

2
for all s ∈ [t, τ0].(5.5)

Now for any τ ∈ T t such that τ ≤ τ0, we have

0 = δYt = δYτ +
∫ τ

t

[(
Lt,ωϕ

)(
s,Bt·

) + αsδYs + 〈β, δZ〉s]ds −
∫ τ

t
δZs dBt

s

≥ ϕ
(
τ,Bt ) − u0,t,ω(

τ,Bt ) + c

2
(τ − t) −

∫ τ

t
δZs

(
dBt

s − βs ds
)
.

Then ¯E
L
t [(ϕ−u0,t,ω)(τ,Bt)] ≤ E

P
β

t [(ϕ−u0,t,ω)(τ,Bt)] ≤ 0. This contradicts with
ϕ ∈ ¯ALu0(t,ω). �

Following similar arguments, one can easily prove the following:

PROPOSITION 5.5. Under Assumption 4.2, a bounded classical subsolution
(resp., supersolution) of the PPDE (3.1) must be a viscosity subsolution (resp.,
supersolution).

5.3. Stability of viscosity solutions.

PROOF OF THEOREM 4.1. We shall prove only the viscosity subsolution prop-
erty by contradiction. By Remark 3.6, without loss of generality we assume there
exists ϕ ∈ ¯A′Lu(0,0) such that c := Lϕ(0,0) > 0, where ¯A′Lu(0,0) is defined
in (3.7).

Denote

X0 := ϕ − u, Xε := ϕ − uε and
(5.6)

τ0 := inf
{
t > 0 : Lϕ(t,B) ≤ c

2

}
∧ T .

Since f ∈ C0(�), it follows from Example 2.5 that τ0 ∈ T 0+ . By (3.7), there exists
τ1 ∈ T 0+ such that τ1 ≤ τ0 and

¯E
L
0

(
τ1,X

0
τ1

)
> 0 = X0

0.

Since uε converges toward u uniformly, we have

¯E
L
0

(
τ1,X

ε
τ1

)
> Xε

0 for sufficiently small ε > 0.(5.7)

Consider the optimal stopping problem, under nonlinear expectation, together with
the corresponding optimal stopping rule,

Yt := Y ε
t := inf

τ∈T t ¯E
L
t

[
Xε

τ∧τ1

]
and τ ∗

0 := inf
{
t ≥ 0 :Yt = Xε

t

};(5.8)
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see Remark 3.11. We claim that

P0
[
τ ∗

0 < τ1
]
> 0,(5.9)

because otherwise Xε
0 ≥ Y0 = ¯E

L
0 [Xε

τ1
], contradicting (5.7).

Since Xε and Y are continuous, P0-a.s. there exists E ⊂ {τ ∗
0 < τ1} such that

P0(E) = P0(τ
∗
0 < τ1) > 0, and for any ω ∈ E, denoting t := τ ∗

0 (ω) we have
Xε

t (ω) = Yt (ω). Notice that τ
t,ω
1 ∈ T t+. By standard arguments using the regular

conditional probability distributions (see, e.g., [30] or [28]), it follows from the
definition of τ ∗

0 together with the E L-submartingale property of Y that

Xε
t (ω) = Yt (ω) = Y

t,ω
t (ω) ≤ ¯E

L
t

[
Y t,ω

τ

] ≤ ¯E
L
t

[
Xε,t,ω

τ

]
for all τ ∈ T t , τ ≤ τ

t,ω
1 .

This implies that

0 ≤ ¯E
L
t

[
Xε,t,ω

τ − Xε
t (ω)

]
= ¯E

L
t

[
ϕt,ω

τ − ϕ(t,ω) + uε(t,ω) − uε,t,ω
τ

]
for all τ ∈ T , τ ≤ τ

t,ω
1 .

Define

ϕε
s := ϕt,ω

s − ϕ(t,ω) + uε(t,ω).

Then we have ϕε ∈ ¯ALuε(t,ω). Since uε is a viscosity L-subsolution of PPDE
(3.1) with coefficients f ε , we have

0 ≥ −∂tϕ
ε(t,0) − 1

2
tr

[
∂2
ωωϕε](t,0) − f ε(t,ω,ϕε(t,0), ∂ωϕε(t,0)

)

= −∂tϕ(t,ω) − 1

2
tr

[
∂2
ωωϕ

]
(t,ω) − f ε(t,ω,uε(t,ω), ∂ωϕ(t,ω)

)

= (Lϕ)(t,ω) + f
(
t,ω,u(t,ω), ∂ωϕ(t,ω)

) − f ε(t,ω,uε(t,ω), ∂ωϕ(t,ω)
)

≥ c

2
+ f

(
t,ω,u(t,ω), ∂ωϕ(t,ω)

) − f ε(t,ω,uε(t,ω), ∂ωϕ(t,ω)
)
,

thanks to (5.6). Send ε → 0, we obtain 0 ≥ c
2 , a contradiction. �

REMARK 5.6. (i) We need the same L in the proof of Theorem 4.1. If uε is
only a viscosity subsolution of PPDE (3.1) with coefficient f ε , but with possibly
different Lε , we are not able to show that u is a viscosity subsolution of PPDE
(3.1) with coefficients (3.1).

(ii) However, if uε is a viscosity solution of PPDE (3.1) with coefficient f ε , by
Theorems 4.3 and 4.6, it follows immediately from the stability of BSDEs that u

is the unique viscosity solution of PPDE (3.1) with coefficient f .
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5.4. Partial comparison principle. The following partial comparison princi-
ple, which improves Lemma 5.3, is crucial for this paper. The main argument is
very much similar to that of Theorem 4.1.

LEMMA 5.7. Let Assumption 4.2 hold true. Let u1 be a viscosity subsolution
and u2 a viscosity supersolution of PPDE (3.1). If u1(T , ·) ≤ u2(T , ·) and one of
u1 and u2 is in C

1,2
b (�), then u1 ≤ u2 on �.

PROOF. First, by Remark 3.9(i), by otherwise changing the variable we may
assume without loss of generality that

f is strictly decreasing in y.(5.10)

We assume u2 ∈ C
1,2
b (�) and u1 is a viscosity L-subsolution for some L ≥ 0. We

shall prove by contradiction. Without loss of generality, we assume

−c := u2
0 − u1

0 < 0.

For future purposes, we shall obtain the contradiction under the following slightly
weaker assumptions:

u2 ∈ C̄
1,2
P0

(�) bounded and
(5.11) (

Lu2) ≥ 0, u2(T , ·) ≥ u1(T , ·), P0-a.s.

Denote

X := u2 − u1 and τ0 := inf{t > 0 :Xt ≥ 0} ∧ T .

Note that X0 = −c < 0, XT ≥ 0, and X is continuous, P0-a.s. Then

τ0 > 0, Xt < 0, t ∈ [0, τ0), and Xτ0 = 0, P0-a.s.(5.12)

Similar to Remark 3.11, define the process Y by the optimal stopping problem
under nonlinear expectation,

Yt := inf
τ∈T t ¯E

L
t [Xτ∧τ0], t ∈ [0, τ0],

together with the corresponding optimal stopping rule,

τ ∗
0 := inf{t ≥ 0 :Yt = Xt }.

Then τ ∗
0 ≤ τ0, and we claim that

P0
[
τ ∗

0 < τ0
]
> 0,(5.13)

because otherwise X0 ≥ Y0 = ¯E
L
0 [Xτ0], contradicting (5.12).

As in the proof of Theorem 4.1, there exists E ⊂ {τ ∗
0 < τ0} such that P0(E) =

P0[τ ∗
0 < τ0] > 0, and for any ω ∈ E, by denoting t := τ ∗

0 (ω) we have τ
t,ω
0 ∈ T t+

and

Xt(ω) = Yt (ω) = inf
τ∈T t ¯E

L
t [Xτ∧τ

t,ω
0

], P
t
0-a.s.
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Let {τi, i ≥ 0} be the sequence of stopping times in Definition 2.8 corresponding
to u2. Then P0[{τ ∗

0 < τi} ∩ E] > 0 for i large enough, and thus there exists ω ∈ E

such that t := τ∗
0 (ω) < τi(ω). Without loss of generality, we assume τi−1(ω) ≤ t .

It is clear that (τ0 ∧ τi)
t,ω ∈ T t+ and (u2)t,ω ∈ C

1,2
b (�̄t ((τ0 ∧ τi)

t,ω)). In particular,

there exists ũ2 ∈ C
1,2
b (�t) such that (u2)t,ω = ũ2 on (τ0 ∧ τi)

t,ω.
Now for any τ ∈ T t+ such that τ ≤ (τ0 ∧ τi)

t,ω, it follows from Remark 3.11 that

Xt(ω) = Yt (ω) = Y
t,ω
t ≤ ¯E

L
t

[
Y t,ω

τ

] ≤ ¯E
L
t

[
Xt,ω

τ

]
.

Thus

0 ≤ ¯E
L
t

[(
ũ2)t,ω

τ − (
u1)t,ω

τ − Xt(ω)
]
.

Denote ϕs := (ũ2)t,ωs − Xt(ω), s ∈ [t, T ]. Then ϕ ∈ ¯ALu1(t,ω). Since u1 is a
viscosity L-subsolution, and u2 is a classical supersolution, we have

0 ≥ (Lϕ)(t,0) = −∂t ũ
2(t,0) − 1

2 tr
[
∂2
ωωũ2(t,0)

] − f
(
t,ω,u1(t,ω), ∂ωũ2(t,0)

)
= −∂tu

2(t,ω) − 1
2 tr

[
∂2
ωωu2(t,ω)

] − f
(
t,ω,u1(t,ω), ∂ωu2(t,ω)

)
= (

Lu2)
(t,ω) + f

(
t,ω,u2(t,ω), ∂ωu2(t,ω)

) − f
(
t,ω,u1(t,ω), ∂ωu2(t,ω)

)
≥ f

(
t,ω,u2(t,ω), ∂ωu2(t,ω)

) − f
(
t,ω,u1(t,ω), ∂ωu2(t,ω)

)
.

By (5.12), u2(t,ω) < u1(t,ω). Then the above inequality contradicts with (5.10).
�

6. A variation of Perron’s approach. To prove Theorem 4.6, we define

ū(t,ω) := inf
{
ϕ(t,0) :ϕ ∈ D̄(t,ω)

}
,

(6.1)

¯u(t,ω) := sup
{
ϕ(t,0) :ϕ ∈ ¯D(t,ω)

}
,

where, in light of (5.11),

D̄(t,ω) := {
ϕ ∈ C̄

1,2
P

t
0

(
�t ) bounded: (Lϕ)t,ωs ≥ 0,

s ∈ [t, T ] and ϕT ≥ gt,ω,P
t
0-a.s.

};
(6.2)

¯D(t,ω) := {
ϕ ∈ C̄

1,2
P

t
0

(
�t ) bounded: (Lϕ)t,ωs ≤ 0,

s ∈ [t, T ] and ϕT ≤ gt,ω,P
t
0-a.s.

}
.

By Lemma 5.7, in particular by its proof under the weaker condition (5.11), it is
clear that

¯u ≤ u0 ≤ ū.(6.3)

The following result is important for our proof of Theorem 4.6.
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THEOREM 6.1. Let Assumptions 4.2 and 4.4 hold true. Then

¯u = ū.(6.4)

PROOF OF THEOREM 4.6. By Lemma 5.7, in particular by its proof under the
weaker condition (5.11), we have u1 ≤ ū and ¯u ≤ u2. Then Theorem 6.1 implies
that u1 ≤ u2.

This clearly leads to the uniqueness of viscosity solution, and therefore, by The-
orem 4.3 u0 is the unique viscosity solution of PPDE (3.1) with terminal condi-
tion g. �

REMARK 6.2. In standard Perron’s method, one shows that ¯u (resp., ū) is a
viscosity super-solution (resp., viscosity sub-solution) of the PDE. Assuming that
the comparison principle for viscosity solutions holds true, then (6.4) holds.

In our situation, we shall instead prove (6.4) directly first, which in turn is used
to prove the comparison principle for viscosity solutions. Roughly speaking, the
comparison principle for viscosity solutions is more or less equivalent to the partial
comparison principle Lemma 5.7 and the equality (6.4). To our best knowledge,
such an approach is novel in the literature.

We decompose the proof of Theorem 6.1 into several lemmas. First, let t < T

and θ ∈ (C0
b(�t))d satisfy

there exists θ̂ ∈ (C0
b(�̂t ))d such that θ = θ̂ in � and θ̂ is uniformly con-

tinuous in ω̂ under the uniform norm ‖ · ‖t
T .

(6.5)

Define

Zs = z +
∫ s

t
θr dr, vs :=

∫ s

t
Zs dBt

s, t ≤ s ≤ T ,P
t
0-a.s.(6.6)

By Itô’s formula, we have

vs = ZsB
t
s −

∫ s

t
θrB

t
r dr.

Denote

Ẑs(ω̂) := z +
∫ s

t
θ̂r (ω̂) dr,

(6.7)
v̂(s, ω̂) := Ẑs(ω̂)ω̂s −

∫ s

t
θ̂r (ω̂)ω̂r dr, ω̂ ∈ �̂t .

Now for any ω ∈ � and x ∈ R, let ût,ω denote the unique solution to the following
ODE (with random coefficients) on [t, T ]:

ût,ω(s, ω̂) := x −
∫ s

t
f̂ t,ω(

r, ω̂, ût,ω(r, ω̂), Ẑr(ω̂)
)
dr

(6.8)
+ v̂(s, ω̂), t ≤ s ≤ T , ω̂ ∈ �̂t ,
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and define

ut,ω(s, ω̃) := ût,ω(s, ω̃) for (s, ω̃) ∈ �t.(6.9)

We then have the following:

LEMMA 6.3. Let Assumptions 4.2 and (6.5) hold true. Then for each
(t,ω) ∈ �, the above ut,ω ∈ C

1,2
b (�t) and Lt,ωut,ω = 0.

PROOF. We first show that ût,ω ∈ C
1,2
b (�̂t ), which implies that ut,ω ∈

C
1,2
b (�t). For t ≤ s1 < s2 ≤ T and ω̂1, ω̂2 ∈ �̂t , we have

∣∣Ẑs1

(
ω̂1) − Ẑs2

(
ω̂2)∣∣ ≤

∫ s2

s1

∣∣θ̂r

(
ω̂1)∣∣dr +

∫ s1

t

∣∣θ̂r

(
ω̂1) − θ̂r

(
ω̂2)∣∣dr

≤ C[s2 − s1] +
∫ s1

t

∣∣θ̂r

(
ω̂1) − θ̂r

(
ω̂2)∣∣dr.

Note that dt∞((r, ω̂1), (r, ω̂2)) ≤ dt∞((s1, ω̂
1), (s2, ω̂

2)) for t ≤ r ≤ s1. Then one
can easily see that Ẑ ∈ C0

b(�̂t ). Similarly one can show that v̂, ût,ω ∈ C0(�̂t ).
Next, one can easily check that, for all ω̂ ∈ �̂t ,

∂t Ẑs(ω̂) = θ̂s(ω̂), ∂ωẐs(ω̂) = 0;
∂t v̂(s, ω̂) = θ̂s(ω̂)ω̂s − θ̂s(ω̂)ω̂s = 0,

∂ωv̂(s, ω̂) = Ẑs(ω̂), ∂2
ωωv̂(s, ω̂) = 0;

∂t û
t,ω(s, ω̂) = −f̂ t,ω(

s, ω̂, ût,ω(s, ω̂), Ẑs(ω̂)
)
,

∂ωût,ω(s, ω̂) = Ẑs(ω̂), ∂2
ωωût,ω(s, ω̂) = 0.

Since θ̂ and f̂ are bounded, it is straightforward to see that ût,ω ∈ C
1,2
b (�̂t ).

Finally, from the above derivatives we see immediately that Lt,ωut,ω = 0. �

Our next two lemmas rely heavily on the remarkable result Bank and Baum [1],
which is extended to BSDE case in [28].

LEMMA 6.4. Let Assumption 4.2 hold true. Let τ ∈ T , Z be F-progressively

measurable such that E
P0[∫ T

τ |Zs |2 ds] < ∞, and Xτ , X̃τ ∈ L2(Fτ ,P0). For any
ε > 0, there exists F-progressively measurable process Zε such that:

(i) For the Lipschitz constant L0 in Assumption 4.2(ii), it holds that

P0

[
sup

τ≤t≤T

e−L0t
∣∣Xε

t − Xt

∣∣ ≥ ε + e−L0τ |X̃τ − Xτ |
]
≤ ε,(6.10)
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where X,Xε are the solutions to the following ODEs with random coefficients,

Xt = Xτ −
∫ t

τ
f (s,B,Xs,Zs) ds +

∫ t

τ
Zs dBs,

Xε
t = X̃τ −

∫ t

τ
f

(
s,B,Xε

s ,Z
ε
s

)
ds(6.11)

+
∫ t

τ
Zε

s dBs, τ ≤ t ≤ T ,P0-a.s.;

(ii) θε
t := d

dt
Zε

t exists for t ∈ [τ, T ), where θε
τ is understood as the right deriva-

tive, and for each ω ∈ �, (θε)τ(ω),ω satisfies (6.5) with t := τ(ω).

PROOF. First, let h := hε > 0 be a small number which will be specified later.
By standard arguments there exists a time partition 0 = t0 < · · · < tn = T and
a smooth function ψ : [0, T ] × R

n×d → R
d such that ψ and its derivatives are

bounded and

E
P0

[∫ T

τ
|Z̃t − Zt |2 dt

]
< h

(6.12)
where Z̃t (ω) := ψ(t,ωt1∧t , . . . ,ωtn∧t ) for all (t,ω) ∈ �.

Next, for some h̃ := h̃ε > 0 which will be specified later, denote

Zε
t := 1

h̃

∫ t

t−h̃
Z̃τ∨s ds for t ∈ [τ, T ].(6.13)

By choosing h̃ > 0 small enough (which may depend on hε), we have

E
P0

[∫ T

τ

∣∣Zε
t − Zt

∣∣2 dt

]
< 2h.(6.14)

Now denote

δZε := Zε − Z, δXε := Xε − X.

Then

δXε
t = δXε

τ −
∫ t

τ

[
αsδX

ε
s + 〈

β, δZε〉
s

]
ds +

∫ t

τ
δZε

s dBs,

where |α| ≤ L0 and β ∈ U L0
t . Denote �ε

t := exp(
∫ t
τ αs ds). We get

�ε
t δX

ε
t = δXε

τ −
∫ t

τ
�ε

s

〈
β, δZε〉

s ds +
∫ t

τ
�ε

s δZ
ε
s dBs.
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Then

0 ≤ sup
τ≤t≤T

e−L0t
∣∣δXε

t

∣∣ − e−L0τ
∣∣δXε

τ

∣∣ ≤ e−L0τ
[

sup
τ≤t≤T

�ε
t

∣∣δXε
t

∣∣ − ∣∣δXε
τ

∣∣]

≤ sup
τ≤t≤T

∣∣�ε
t δX

ε
t − δXε

τ

∣∣ = sup
τ≤t≤T

∣∣∣∣−
∫ t

τ
�ε

s

〈
β, δZε〉

s ds +
∫ t

τ
�ε

s δZ
ε
s dBs

∣∣∣∣

≤ C

∫ T

τ

∣∣δZε
s

∣∣ds + sup
τ≤t≤T

∣∣∣∣
∫ t

τ
�ε

s δZ
ε
s dBs

∣∣∣∣.

Thus

P0

[
sup

τ≤t≤T

e−L0t
∣∣Xε

t − Xt

∣∣ ≥ ε + e−L0τ |X̃τ − Xτ |
]

= P0

[
sup

τ≤t≤T

e−L0t
∣∣Xε

t − Xt

∣∣ − e−L0τ |X̃τ − Xτ | ≥ ε
]

≤ P0

[
C

∫ T

τ

∣∣δZε
s

∣∣ds + sup
τ≤t≤T

∣∣∣∣
∫ t

τ
�ε

s δZ
ε
s dBs

∣∣∣∣ ≥ ε

]

≤ C

ε2 E
P0

[(∫ T

τ

∣∣δZε
s

∣∣ds

)2

+ sup
τ≤t≤T

∣∣∣∣
∫ t

τ
�ε

s δZ
ε
s dBs

∣∣∣∣
2]

≤ C

ε2 E
P0

[∫ T

τ

∣∣δZε
s

∣∣2 ds

]
≤ Ch

ε2 ,

thanks to (6.14). Now set h := ε3

C
, and we prove (6.10).

Finally, by (6.13) and (6.12) we have

θε
s = 1

h̃
[Z̃s − Z̃

(s−h̃)∨τ
], s ∈ [τ, T ].

Fix ω ∈ � and set t := τ(ω). For each ω̂ ∈ �̂t , set ω̄ := ω ⊗t ω̂ ∈ �̂, and define

Ẑt,ω
s (ω̂) := ψ(s, ω̄t1∧s, . . . , ω̄tn∧s),

(
θε)t,ω

s (ω̂) := 1

h̃

[
Ẑt,ω

s (ω̂) − Ẑ
t,ω

(s−h̃)∨t
(ω̂)

]
, s ∈ [τ, T ].

Then we can easily check that (θε)t,ω satisfies (6.5). �

LEMMA 6.5. Assume Assumption 4.2 holds. Let x ∈ R and Z be F-progres-
sively measurable such that E

P0[∫ T
0 |Zs |2 ds] < ∞. For any ε > 0, there exists

F-progressively measurable process Zε and an increasing sequence of F-stopping
times 0 = τ0 ≤ τ1 ≤ · · · ≤ T such that:
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(i) It holds that

sup
0≤t≤T

∣∣Xε
t − Xt

∣∣ ≤ ε, P0-a.s.,(6.15)

where X,Xε are the solutions to the following ODEs with random coefficients

Xt = x −
∫ t

0
f (s,B,Xs,Zs) ds +

∫ t

0
Zs dBs,

Xε
t = x −

∫ t

0
f

(
s,B,Xε

s ,Z
ε
s

)
ds(6.16)

+
∫ t

0
Zε

s dBs, 0 ≤ t ≤ T ,P0-a.s.

(ii) For each i, θε
t := d

dt
Zε

t exists for t ∈ [τi, τi+1), where θε
τ is understood as

the right derivative. Moreover, there exists θ̃ i,ε on [τi, T ] such that θ̃
i,ε
t = θε

t for
t ∈ [τi, τi+1), and for each ω ∈ �, (θ i,ε)τi (ω),ω satisfies (6.5) with t := τi(ω).

(iii) For P0-a.s. ω ∈ �, for each i, τi < τi+1 whenever τi < T , and the set
{i : τi(ω) < T } is finite.

PROOF. Let ε > 0 be fixed, and set εi := 2−i−2e−L0T ε, i ≥ 0. We construct τi

and (Zi,ε,Xi,ε) by induction as follows.
First, for i = 0, set τ0 := 0. Apply Lemma 6.4 with initial time τ0, initial value

x and error level ε0, we can construct Z0,ε and X0,ε on [τ0, T ] satisfying the
properties in Lemma 6.4. In particular,

P0

[
sup

τ0≤t≤T

e−L0t
∣∣X0,ε

t − Xt

∣∣ ≥ ε0

]
≤ ε0.

Denote

τ1 := inf
{
t ≥ τ0 : e−L0t

∣∣X0,ε
t − Xt

∣∣ ≥ ε0
} ∧ T .(6.17)

Since X and X0,ε are continuous, we have τ1 > τ0, P0-a.s. We now define

Zε
t := Z

0,ε
t , Xε

t := X
0,ε
t , t ∈ [τ0, τ1).

Assume we have defined τi , Zε,Xε on [τ0, τi) and Xi−1,ε on [τi−1, T ]. Apply
Lemma 6.4 with initial time τi , initial value Xi−1,ε

τi
and error level εi , we can con-

struct Zi,ε and Xi,ε on [τi, T ] satisfying the properties in Lemma 6.4. In particular,

P0

[
sup

τi≤t≤T

e−L0t
∣∣Xi,ε

t − Xt

∣∣ ≥ εi + e−L0τi
∣∣Xi−1,ε

τi
− Xτi

∣∣] ≤ εi.

Denote

τi+1 := inf
{
t ≥ τi : e−L0t

∣∣Xi,ε
t − Xt

∣∣ ≥ εi + e−L0τi
∣∣Xi−1,ε

τi
− Xτi

∣∣} ∧ T .
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Since X and Xi,ε are continuous, we have τi+1 > τi whenever τi < T . We then
define

Zε
t := Z

i,ε
t , Xε

t := X
i,ε
t , t ∈ [τi, τi+1).

From our construction we have P0(τi+1 < T ) ≤ εi . Then

∞∑
i=0

P0(τi+1 < T ) ≤
∞∑
i=0

εi < ∞.

It follows from the Borel–Cantelli lemma that the set {i : τi(ω) < T } is finite, for
P0-a.s. ω ∈ �, which proves (iii).

We thus have defined Zε,Xε on [0, T ], and the statements in (ii) follow directly
from Lemma 6.4. So it remains to prove (i). For each i, by the definition of τi we
see that

e−L0τi+1
∣∣Xε

τi+1
− Xτi+1

∣∣ ≤ εi + e−L0τi
∣∣Xε

τi
− Xτi

∣∣, P0-a.s.

Since Xε
τ0

= Xτ0 = x, by induction we get

sup
i

e−L0τi
∣∣Xε

τi
− Xτi

∣∣ ≤
∞∑
i=0

εi ≤
∞∑
i=0

2−i−2e−L0T ε = 1

2
e−L0T ε, P0-a.s.

Then for each i,

sup
τi≤t≤τi+1

∣∣Xε
t − Xt

∣∣ ≤ eL0T
[
εi + ∣∣Xε

τi
− Xτi

∣∣]

≤ eL0T

[
2−i−2e−L0T ε + 1

2
e−L0T ε

]
≤ ε, P0-a.s.,

which implies (6.15). �

PROOF OF THEOREM 6.1. Without loss of generality, we shall only prove
ū0 = u0

0. Recall that (Y 0,Z0) is the solution to BSDE (4.1). Set Z := Z0 and
x := Y 0

0 in Lemma 6.5, we see that X = Y 0 = u0 and thus X satisfies the regularity
in Proposition 5.4.

From the construction in Lemma 6.5 and then by Lemma 6.4 we see that θ̃
0,ε
t :=

d
dt

Z
0,ε
t exists for all t ∈ [0, T ) and satisfies (6.5). Then by Lemma 6.3 we see that

X0,ε ∈ C
1,2
b (�) and LX0,ε = 0. This implies that, for the τ1 defined in (6.17),

τ1(ω) > τ0 for all ω ∈ � and, by Example 2.5, τ1 ∈ T+.
For i = 1,2, . . . , repeat the above arguments and by induction we can show that,

for each i and each ω ∈ �, τ τi(ω),ω
i+1 ∈ T τi (ω)

+ . Moreover, by Lemma 6.5, {i : τi < T }
is finite, P0-a.s.
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We now let uε be the solution to the following ODE:

uε
t = Xε

0 + eL0T ε −
∫ t

0
f

(
s,B,uε

s ,Z
ε
s

)
ds +

∫ t

0
Zε

s dBs.

For i = 0,1, . . . , by the construction of Zε in Lemma 6.5 and following the argu-
ments in Lemma 6.3, one can easily show that

uε ∈ C̄
1,2
P0

([0, T ]) and Luε = 0.(6.18)

Moreover, note that

uε
t − Xε

t = eL0T ε −
∫ t

0
αs

[
uε

s − Xε
s

]
ds,

where |α| ≤ L0. By standard arguments one has

sup
0≤t≤T

∣∣uε
t − Xε

t

∣∣ ≤ e2L0T ε and uε
T − Xε

T ≥ e−LT [
uε

0 − Xε
0
] = ε.

Therefore, by (6.15) and noting that u0 is bounded, uε is bounded and

uε
T (ω) ≥ Xε

T (ω) + ε ≥ XT (ω) = Y 0
T (ω) = g(ω) for P0-a.s. ω.

This, together with (6.18), implies that uε ∈ D̄(0,0). Then, by the definition of ū,

ū0 ≤ uε
0 = Xε

0 + eL0T ε ≤ u0
0 + ε + eL0T ε.

Since ε is arbitrary, we obtain ū0 ≤ u0
0. �
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