
SIAM J. CONTROL OPTIM. c© 2012 Society for Industrial and Applied Mathematics
Vol. 50, No. 5, pp. 2543–2572

DETECTING THE MAXIMUM OF A SCALAR DIFFUSION WITH
NEGATIVE DRIFT∗

GILLES-EDOUARD ESPINOSA† AND NIZAR TOUZI†

Abstract. Let X be a scalar diffusion process with drift coefficient pointing towards the origin,
i.e. X is mean-reverting. We denote by X∗ the corresponding running maximum, T0 the first time
X hits the level zero. Given an increasing and convex loss function �, we consider the following
optimal stopping problem: inf0≤θ≤T0

E[�(X∗
T0

−Xθ)], over all stopping times θ with values in [0, T0].
For the quadratic loss function and under mild conditions, we prove that an optimal stopping time
exists and is defined by: θ∗ = T0 ∧ inf{t ≥ 0; X∗

t ≥ γ(Xt)}, where the boundary γ is explicitly
characterized as the concatenation of the solutions of two equations. We investigate some examples
such as the Ornstein-Uhlenbeck process, the CIR–Feller process, as well as the standard and drifted
Brownian motions.
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1. Introduction. Motivated by applications in portfolio management, Graversen,
Peskir, and Shiryaev [6] considered the problem of detecting the maximum of a Brow-
nian motion W on a fixed time period. More precisely, [6] considers the optimal
stopping problem

inf
0≤θ≤1

E[(W ∗
1 −Wθ)

p],(1.1)

where W ∗
t := maxs≤t Ws is the running maximum of W , p > 0 (and p �= 1), and the

infimum is taken over all stopping times θ taking values in [0, 1]. Using properties
of the Brownian motion and a relevant time change, [6] reduces the above problem
to a one-dimensional infinite horizon optimal stopping problem and proves that the
optimal stopping rule is given by

θ̂ := inf{t ≤ 1; W ∗
t −Wt ≥ b(t)},

where the free boundary b is an explicit decreasing function.
A first extension of [6] was achieved by Pedersen [10], and later by Du Toit and

Peskir [3], in the case of a Brownian motion with constant drift. A similar problem
was solved by Shiryaev, Xu, and Zhou [13] in the context of exponential Brownian
motion. See also Du Toit and Peskir [5], Dai, Yang, and Zhong [2] and Dai et al. [1].

We also mention a connection with the problem of detection of the last moment
τ when W reaches its maximum before the terminal time t = 1 (see Shiryaev in [12]):

inf
0≤θ≤1

E|θ − τ |.
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This problem can indeed be related to the previous one by the observation of Urusov
[14] that E(Wτ − Wθ)

2 = E|τ − θ| + 1
2 for any stopping time θ. A similar problem

formulated in the context of a drifted Brownian motion was solved by Du Toit and
Peskir [4], although the latter identity stated by Urusov is no longer valid.

In the present paper, we consider a scalar Markov diffusion X , which “mean-
reverts” toward the origin starting from a positive initial datum, and we consider the
problem of optimal detection of the absolute maximum up to the first hitting time of
the origin T0 := inf{t ≥ 0 : Xt = 0}:

inf
0≤θ≤T0

E[�(X∗
T0

−Xθ)].

Here, the infimum is taken over all stopping times with values in [0, T0], and � is a
nondecreasing and convex function, satisfying some additional technical conditions.
We solve explicitly this problem as a free boundary problem and exhibit an optimal
stopping time of the form:

θ̂ = inf{t ≥ 0; X∗
t ≥ γ(Xt)},

for some stopping boundary γ. Our analysis has some similarities with that of Peskir
[11]; see also Obloj [9] and Hobson [7].

Notice that the formulation of the above optimal stopping problem involves the
hitting time of the origin as the maturity for the problem. From the mathematical
viewpoint, this is a crucial simplification, as the value function does not depend on
the time variable. From the financial viewpoint, this formulation is also relevant, as
it captures the practice of asset managers of trading at the extrema of excursions of
some underlying asset. Namely, a popular strategy among portfolio managers is the
following:

- Managers identify some mean-reverting asset or portfolio of assets; the portfolio
composition may be estimated from historical data by minimizing empirical autocor-
relations,

- Managers would then want to buy at the lowest price, along an excursion below
the mean, and sell at the highest price, along an excursion above the mean; since trad-
ing decisions can occur only at stopping times, the only hope is to better approximate
the extrema of the price process.

The above formulation corresponds exactly to a single-excursion problem of the
asset managers. Clearly, a similar problem with fixed deterministic time horizon is
not suitable for the present practical problem.

Using the dynamic programming approach, our problem leads to a two-dimensional
elliptic variational inequality, in contrast with the finite horizon, where the problem
can be reduced to a one-dimensional parabolic variational inequality. A major diffi-
culty in the present context is that, in general, our solution exhibits a nonmonotonic
free boundary γ made of two different parts and driven by two different equations.
Except for [4], the latter feature does not appear in the literature mentioned above
and has the following a posteriori interpretation. Because of the mean-reversion, we
expect that stopping is optimal whenever the running maximum X∗ is sufficiently
larger than the level X , which corresponds to the intuitive increasing part of the
boundary. On the other hand, for some specific dynamics, we may expect that when
the process approaches the origin, the martingale part dominates the mean-reversion,
implying that the process has equal chances to be pushed away from the origin, so
that the investor may defer the stopping decision. This indeed turns out to be the case
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for the Ornstein–Uhlenbeck process and induces a decreasing part of the boundary
near the origin.

The paper is organized as follows. Section 2 presents the general framework and
provides some necessary and sufficient conditions for the problem to be well defined.
In section 3, we derive the formulation as a free boundary problem, and we prove a
verification result together with some preliminary properties. Sections 4–6 focus on
the case of a quadratic loss function. In section 4, we study a certain set Γ+ which
plays an essential role in the construction of the solution. The candidate boundary
is exhibited in section 5, and in section 6 the corresponding candidate value function
is shown to satisfy the assumptions of the verification result of section 3. Section 7 is
dedicated to some examples. In section 8, we provide sufficient conditions which
guarantee that a similar solution is obtained for a general loss function.

2. Problem formulation. Let W be a scalar Brownian motion on the com-
plete probability space (Ω,F ,P), and denote by F = {Ft, t ≥ 0} the corresponding
augmented canonical filtration. Given two Lipschitz functions μ, σ : R −→ R, we
consider the scalar diffusion defined by the stochastic differential equation

dXt = μ(Xt)dt+ σ(Xt)dWt, t ≥ 0,

together with some initial datum X0 > 0. We assume throughout that

μ < 0 and σ > 0 on (0,∞)(2.1)

as well as the following stronger restrictions:

the function α :=
−2μ

σ2
: [0,∞) −→ R is C2 and concave.(2.2)

Remark 2.1. Conditions (2.2) are needed only for technical reasons. See, in
particular, Remark 2.2 for some crucial implications of the concavity condition. In
the context of our problem defined below, we shall consider only the process X up to
the first hitting time of 0. Therefore the negative drift in condition (2.1) models the
mean-reversion of X . Notice that we could formulate a symmetric problem on the
negative real line under the condition of a positive drift on (−∞, 0).

The scale function S is defined by (see [8])

S(x) :=

∫ x

0

e
∫ u
0

α(r)drdu, x ≥ 0.(2.3)

By the mean-reversion condition (2.1),

S is convex and lim
x→∞

S(x) = ∞.(2.4)

Remark 2.2. For later use, we observe that the restriction (2.2) has the following
useful consequences:

(i) The function α is nonnegative and nondecreasing. Consequently,
∫ u

0
α(r)dr <

∞ and (2.3) is well defined.
(ii) (1/α)′ (x) → 0 as x → ∞, and therefore α′ = ◦(α2).
(iii) The function 2S′ − αS − 2 is nonnegative and increasing.
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We denote by Ty := inf {t > 0 : Xt = y} the first hitting time of the barrier y.
We recall that, for the above homogeneous scalar diffusion with positive diffusion
coefficients, we have

Px [Ty < T0] =
S(x)

S(y)
for 0 ≤ x < y,(2.5)

Our main objective is to solve the optimization problem

V0 := inf
θ∈T0

E
[
�
(
X∗

T0
−Xθ

)]
,(2.6)

where X∗
t := maxs≤t Xs, t ≥ 0, is the running maximum process of X ; � : R+ −→ R+

is a nondecreasing, strictly convex function; and T0 is the collection of all F stopping
times θ with θ ≤ T0 almost surely.

Remark 2.3. Our main results (sections 4–6) concern the quadratic loss function

�(x) = x2

2 . However, a large part of the analysis is valid for general loss functions.
In particular, we provide a natural extension of the quadratic case in section 8, but
we have not succeeded in obtaining satisfactory conditions which guarantee that the
extension holds true.

We shall approach this problem by the dynamic programming technique. We
then introduce the dynamic version

V (x, z) := inf
θ∈T0

Ex,z [� (ZT0 −Xθ)] where Zt := z ∨X∗
t , t ≥ 0,(2.7)

and Ex,z denotes the expectation operator conditional on (X0, Z0) = (x, z). Clearly,
the process (X,Z) takes values in the state space,

Δ := {(x, z); 0 ≤ x ≤ z},(2.8)

and we may rewrite this problem in the standard form of an optimal stopping
problem,

V (x, z) = inf
θ∈T0

Ex,z [g (Xθ, Zθ)] with g(x, z) := Ex,z [� (ZT0 − x)] , (x, z) ∈ Δ.(2.9)

Observing that Px,z[ZT0 ≤ u] = Px[Tu ≥ T0]1u≥z, we deduce from (2.5) that the
reward function g is given by

g(x, z) = �(z − x)

(
1− S(x)

S(z)

)
+ S(x)

∫ ∞

z

�(u− x)
S′(u)

S(u)2
du

= �(z − x) + S(x)

∫ ∞

z

�′(u− x)

S(u)
du, 0 < x ≤ z,(2.10)

where �′ is the generalized derivative of � and the last expression in (2.10) is obtained
by integration by parts together with the observation that for all x ≥ 0,∫ ∞

�(u− x)
S′(u)

S(u)2
du < ∞ iff

∫ ∞ �′(u− x)

S(u)
du < ∞.(2.11)

Proof of (2.11). Denote R := S−1, and assume x = 0, without loss of generality. Then

−
∫ A

z

�(u)R′(u)du = �(z)R(z)− �(A)R(A) +

∫ A

z

�′(u)R(u)du for A ≥ z > 0.(2.12)
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That
∫∞

�(u)R′(u)du = −∞ implies
∫∞

�′(u)R(u)du = ∞ follows immediately from

�R ≥ 0. Conversely, since R is nonincreasing,
∫ A

z �′(u)R(u)du ≥
(
�(A) − �(z)

)
R(A).

It follows from (2.12) that −
∫ A

z �(u)R′(u)du ≥ �(z)R(z) − �(z)R(A) −→ �(z)R(z)

when A → ∞, by (2.4). Then −
∫∞

�(u)R′(u)du < ∞ implies that limA→∞ �(A)
R(A) = 0, and therefore

∫∞
z

�′(u)R(u)du < ∞ by (2.12).
Remark 2.4. For the linear loss function �(x) = x, we have V = g. Indeed,

V (x, z) = Ex,z[ZT0 ] − W (x) with W (x) := supθ∈T0
ExXθ. Since α ≥ 0, Xt∧T0 is

a local supermartingale, bounded from below. By Fatou’s lemma, this implies that
ExXθ ≤ x for θ ≤ T0.

We now provide necessary and sufficient conditions on the loss function � which
ensure that V is finite on R+. Recall that V (0, z) = g(0, z) = �(z) is always finite.

Proposition 2.1. Assume that α ≥ 0; then (iii) ⇐⇒ (iii′) =⇒ (ii) =⇒ (i), where
(i) V (x, z) < ∞ for every 0 ≤ x ≤ z,
(ii) g(x, z) < ∞ for every 0 ≤ x ≤ z,
(iii)

∫∞
�′(u − x)S(u)−1du < ∞ for all x ≥ 0,

(iii)′
∫∞

�′(u)S(u)−1du < ∞.
If, in addition,

sup
u≥z

�(u)

�(u− x)
< ∞ for every (x, z) ∈ Δ,(2.13)

then all of the above items are equivalent to the following:
(i)′ V (x0, z0) < ∞ for some 0 < x0 ≤ z0,
(ii)′ g(x0, z0) < ∞ for some 0 < x0 ≤ z0.
The proof of this proposition, together with discussion of the conditions, is re-

ported in section 9.1.

3. A verification result. From now on, we assume∫ ∞
�′(u)S(u)−1du < ∞,(3.1)

so that, by Proposition 2.1, g and V are finite everywhere. Our general approach
to solving the optimal detection problem is to exhibit a candidate solution for the
corresponding dynamic programming equation,

max {−Lv, v − g} = 0 on Int(Δ), and
v(0, z) = �(z), vz(z, z) = 0 for z ≥ 0,(3.2)

where L is the second order differential operator

Lv(x) = v′′(x) − α(x)v′(x),(3.3)

and α is defined as in (2.2). Notice that LS = 0. We do not intend to prove directly
that V satisfies this differential equation. Instead, we shall guess a candidate solution
v of (3.2) and show that v indeed coincides with the value function V by a verification
argument.

In order to exhibit a solution of (3.2), we guess that there should exist a free
boundary γ(x) so that stopping is optimal in the region {z ≥ γ(x)}, while continuation
is optimal in the remaining region {z < γ(x)}. If such a stopping boundary exists,
then the above dynamic programming equation reduces to
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Lv(x, z) = 0, v(x, z) ≤ g(x, z) for 0 < z < γ(x),(3.4)

v(x, z) = g(x, z), Lg(x, z) ≥ 0 for z ≥ γ(x),(3.5)

v(0, z) = �(z),(3.6)

vz(z, z) = 0.(3.7)

The verification step requires that the value function be C1 and piecewise C2 in order
to allow for the application of Itô’s formula. We then complement the above system
by the continuity and the smoothfit conditions

v(x, γ(x)) = g(x, γ(x)) and vx(x, γ(x)) = gx(x, γ(x)).(3.8)

Our objective is to find a candidate v which satisfies (3.4)–(3.8) and an optimal
stopping boundary γ so as to apply the following verification result.

Theorem 3.1. Assume that (3.1) holds true. Let γ be continuous and let v
be a solution of (3.4)–(3.8), which is C1,0 and piecewise C2,1 w.r.t. (x, z) on Δ,
bounded from below, such that v ≤ g on Δ and v < g on the continuation region
{(x, z); 0 < x ≤ z and z < γ(x)}.

Then v = V and θ∗ = T0 ∧ inf{t ≥ 0; Zt ≥ γ(Xt)} is an optimal stopping time.
Moreover if τ is another optimal stopping time, then θ∗ ≤ τ a.s.
Proof. (i) We first prove that V ≥ v. Let θ ∈ T0, and for n ∈ N, define θn =

n ∧ θ ∧ inf{t ≥ 0; |Zt| ≥ n}. Then from the assumed regularity of v, we may apply
Itô’s formula to obtain:

v(x, z) = v(Xθn , Zθn)−
∫ θn

0

σ(Xt)
2

2
Lv(Xt, Zt)dt

−
∫ θn

0

vx(Xt, Zt)σ(Xt)dWt −
∫ θn

0

vz(Xt, Zt)dZt.

Using the fact that vz(Xt, Zt)dZt = vz(Zt, Zt)dZt = 0, Lv ≥ 0, and v ≤ g, this implies

v(x, z) ≤ Ex,zv(Xθn , Zθn)

≤ Ex,zg(Xθn , Zθn) = Ex,z[EXθn ,Zθn
�(ZT0 −Xθn)] = Ex,z�(ZT0 −Xθn).(3.9)

Clearly, as n → ∞, θn → θ a.s. Notice that 0 ≤ �(ZT0 −Xθn) ≤ �(ZT0) ∈ L
1(P) by

(3.1). Then it follows from the dominated convergence theorem that

v(x, z) ≤ Ex,z�(ZT0 −Xθ) for all θ ∈ T0.

(ii) That V ≤ v for z ≥ γ(x) is immediate. We now prove that V ≤ v for
z < γ(x). Let θ∗ = T0 ∧ inf{t ≥ 0; Zt ≥ γ(Xt)}. By the assumed regularity of v, we
have Lv(Xt, Zt) = 0 for t ∈ [0, θ∗), and by the same calculation as in (i), we see that

v(x, z) = Ex,zv(Xθn , Zθn) with θn = n ∧ θ∗ ∧ inf{t ≥ 0; |Zt| ≥ n}.(3.10)

Since v is bounded from below and v ≤ g, we have |v| ≤ c+g for some constant c. Since
0 ≤ �(ZT0 − Xθn) ≤ �(ZT0) ∈ L

1(P) by (3.1), the sequence (E[�(ZT0)|Xθn , Zθn ])n is
uniformly integrable. This property is then inherited by the sequences (g(Xθn , Zθn))n
and (v(Xθn , Zθn))n. Then, sending n → ∞ in (3.10), it follows from the continuity of
γ that

v(x, z) = Ex,zv(Xθ∗ , Zθ∗) = Ex,z

[
v(Xθ∗ , γ(Xθ∗))1{θ∗<T0} + v(0, ZT0)1{θ∗=T0}

]
= Ex,z

[
g(Xθ∗ , γ(Xθ∗))1{θ∗<T0} + �(ZT0)1{θ∗=T0}

]
= Ex,z

[
�(ZT0 −Xθ∗)

]
≥ V (x, z).
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(iii) Finally we show the minimality of θ∗. Assume to the contrary that there exists
τ satisfying P[τ < θ∗] > 0 and Ex,z�(ZT0 −Xτ ) = infθ Ex,z�(ZT0 −Xθ) = V (x, z).

On {τ < θ∗}, we have by assumption V (Xτ , Zτ ) < g(Xτ , Zτ ), while we always
have V (Xτ , Zτ ) ≤ g(Xτ , Zτ ). This leads to the following contradiction:

V (x, z) = Ex,z�(ZT0 −Xτ ) = Ex,zg(Xτ , Zτ ) > Ex,zV (Xτ , Zτ ) ≥ V (x, z),

where the last inequality follows immediately from the definition of V .
In the rest of this paper, our objective is to exhibit functions γ and v satisfying

the assumptions of the previous theorem. For the quadratic loss function, this is the
content of our main theorem, Theorem 6.1. In view of (3.5), the stopping region
satisfies

{(x, z) : z ≥ γ(x)} ⊂ Γ+ := {(x, z) : Lg(x, z) ≥ 0} .(3.11)

We therefore need to study the structure of the set Γ+.
In the subsequent sections we shall first focus on quadratic loss functions. For

general loss functions, we shall provide some conditions which guarantee that the
structure of the solution agrees with that of the quadratic case; see section 8.

4. The set Γ+ for a quadratic loss function. Throughout this section as
well as sections 5 and 6, we consider the quadratic loss function

�(x) :=
1

2
x2 for x ≥ 0,

and we assume that the coefficient α satisfies the following additional condition:

either ∃K ≥ 0, for x ≥ K, α′(x) = 0, or, as x → ∞, α′′(x) = ◦
(
[α2]′(x)

)
.(4.1)

Since α is positive on (0,∞) by (2.2), we immediately check that (3.1) holds true,
so that g and V are finite on Δ. In order to study the set Γ+ defined by (3.11), we
compute that

Lg(x, z) = 1 + α(x)(z − x) −
(
2S′(x) − α(x)S(x)

) ∫ ∞

z

du

S(u)
, (x, z) ∈ Δ,(4.2)

which takes values in R ∪ {−∞}. Since α ≥ 0 and S is increasing, ∂
∂zLg(x, z) ≥

2S′(x)
S(z) > 0, so it follows that for every fixed x ≥ 0, the function z �−→ Lg(x, z)

is strictly increasing on [x,∞). Now since
∫∞
z

du
S(u) → 0 when z → ∞, we see that

limz→∞ Lg(x, z) > 0 for any x ≥ 0. This shows that Γ+ �= ∅ and that Γ+ = Epi(Γ) :=
{(x, z) ∈ Δ; z ≥ Γ(x)}, where

Γ(x) := inf {z ≥ x : Lg(x, z) ≥ 0}.(4.3)

Moreover, Γ+\graph(Γ) = Int(Γ+) ⊂ {(x, z) ∈ Δ; Lg(x, z) > 0} and Γ is continuous.
Let

Γ0 := Γ(0) and Γ∞ := sup{x > 0, Lg(x, x) < 0} ∈ (0,+∞].(4.4)

By direct computation, we see that for x > 0,

∂2

∂x2
Lg(x, z) = −2α′(x) + α′′(x)(z − x)− (α2(x)S′(x) − α′′(x)S(x))

∫ ∞

z

du

S(u)
< 0

by the concavity, the nondecrease, and the positivity of α on (0,∞). This implies
that the function Γ is U -shaped in the sense of Proposition 4.2(i). We first isolate
some asymptotic results that will be needed.
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Proposition 4.1. Under (2.2), we have the following asymptotics, as z → ∞:

(i) S(z) ∼ S′(z)

α(z)
;

(ii)

∫ ∞

z

du

S(u)
∼ 1

S′(z)
,

∫ ∞

z

u

S(u)
du ∼ z

S′(z)
, and

∫ ∞

z

u− z

S(u)
∼ 1

α(z)S′(z)
.

Proof. See section 9.2.

Proposition 4.2. Under conditions (2.2), we have the following:
(i) Γ is decreasing on [0, ζ] and increasing on [ζ,+∞) for some constant ζ ≥ 0;
(ii) limx→+∞ Γ(x) − x = 0;
(iii) 0 < Γ0 < Γ∞, where Γ0 and Γ∞ are as defined in (4.4).
Proof. (i) We first show that for x1 < x3, λ ∈ (0, 1), and x2 = λx1 + (1 −

λ)x3, we have Γ(x2) < max(Γ(x1),Γ(x3)). Assume to the contrary that Γ(x2) ≥
max(Γ(x1),Γ(x3)); then from the strict concavity of Lg w.r.t. x and its nondecrease
w.r.t. z, we see that

Lg(x2,Γ(x2)) > λLg(x1,Γ(x2)) + (1 − λ)Lg(x3,Γ(x2))

≥ λLg(x1,Γ(x1)) + (1 − λ)Lg(x3,Γ(x3)) ≥ 0,

By the continuity of Lg, Lg(x2,Γ(x2)) > 0 implies that Γ(x2) = x2, which is in
contradiction with Γ(x2) ≥ Γ(x3) ≥ x3 > x2. Since Γ(x) ≥ x, this implies (i).

(ii) For an arbitrary a > 0, it follows from Proposition 4.1 that

Lg(z − a, z) = 1 + aα(z − a)− e−
∫

z
z−a

α(u)du + ◦(1)

where ◦(1) → 0 as z → ∞. Notice that limz→∞ e−
∫

z
z−a

α(u)du < 1. Then Lg(z−a, z) >
0 for z large enough, and therefore 0 ≤ Γ(z)− z < a.

(iii) To see that Γ0 = Γ(0) > 0, we first observe that S(x) ∼ x as x → 0 implies
that

∫∞
0

du
S(u) = ∞, and therefore Lg(x, z) < 0 on Δ for z sufficiently small. In

particular, for sufficiently small z > 0 we have Lg(0, z) < 0. Then Γ0 > 0, and by
continuity of Lg, Lg(0,Γ0) = 0. Using Remark 2.2(ii) and the fact that Lg(0,Γ0) = 0,
we compute

Lg(Γ0,Γ0) = 1− (2S′ − αS)(Γ0)

∫ ∞

Γ0

du

S(u)

< 1− 2

∫ ∞

Γ0

du

S(u)
= Lg(0,Γ0)− α(0)Γ0 = −α(0)Γ0 ≤ 0.

By continuity of Lg, this implies that Γ∞ > Γ0.
Remark 4.1. If z ≤ Γ0, then Lg(0, z) ≤ 0, and therefore by adapting the proof

of Proposition 4.2(iii), we see that Lg(z, z) < 0 for z ≤ Γ0.
Remark 4.2. The fact that Γ0 < Γ∞ implies, in the quadratic case, that the

increasing part of Γ will never be reduced to a subset of the diagonal, or, in other
words, that Γ(ζ) > ζ.

Figures 1(a) and 1(b) exhibit the two possible shapes of the function Γ and the
location of Γ+. Notice that in both cases, Γ∞ can be finite or infinite. We refer the
reader to section 7 for examples of both cases.

We now give a result, stronger than Proposition 4.2(ii) above, concerning the
behavior of Γ at infinity. Recall that Γ∞ was defined by (4.4).

Proposition 4.3. Let the coefficient α satisfy conditions (2.2) and (4.1). Then
(i) there exists Γmax > 0 such that
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Fig. 1. The two possible shapes of Γ.

- either for any x ≥ Γmax, Γ(x) > x,
- or for any x ≥ Γmax, Γ(x) = x;

(ii) if in addition limx→∞ α(x) = ∞, then Γ∞ < ∞.
Proof. (i) By the definition of the scale function (2.3), for x > 0,

S(x) = A(x) +
S′(x)

α(x)
,

where A(x) := S(1)− S′(1)

α(1)
−
∫ x

1

(
1

α

)′
(u)S′(u)du.(4.5)

Since A is nondecreasing, we may define A∞ := limx→∞ A(x) ∈ R ∪ {+∞}.
Case 1: A∞ < ∞. We first observe that

α = α∞ and A = A∞ are constant on [K,∞) for some K ≥ 0.(4.6)

By Condition (4.1), we need only verify this under the condition α′′ = ◦
(
(α2)′

)
.

By (2.2) and Remark 2.2(i), α is concave and nondecreasing. Then, if (4.6) does
not hold, it follows that α′(x) > 0 for all x, and we compute that A′′ =

(
αα′′ +

α2α′ − 2(α′)2
)
S′/(α3) ∼ α′S′/α > 0 by the fact that α′′ = ◦

(
(α2)′

)
and by Remark

2.2(ii). This implies that A is nondecreasing and strictly convex for large x, which is
in contradiction with A∞ < ∞.

Since S(x) → ∞ as x → ∞, (4.5) implies that limx→∞
α(x)
S′(x) = 0. Then, for

x ≥ K, we compute, from (4.5) and the fact that S′′ = αS′,∫ ∞

x

du

S(u)
=

∫ ∞

x

du

A∞ + (S′/α)(u)
=

∫ ∞

x

(S′′/(S′)2)(u)
du

1 +A∞(S′′/(S′)2)(u)
.

By a Taylor expansion, together with the boundedness of α/S′ = S′′/(S′)2 on [x,∞),
this provides ∫ ∞

x

du

S(u)
=

1

S′(x)2

(
S′(x)− 1

2
A∞α∞ +A∞α∞ ◦ (1)

)
.

By Proposition 4.1(i), this provides

Lg(x, x) = 1−
(
2S′(x) − α(x)S(x)

) ∫ ∞

x

du

S(u)
=

A∞α∞

2S′(x)

(
1 + ◦(1)

)
.
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By the definition of the function Γ, this implies that

Γ(x) = x whenever A∞ ≥ 0, and Γ(x) > x whenever A∞ < 0.

Case 2: A∞ = ∞. In this case, α′(x) > 0 for all x ≥ 0.
Set β := 1/α. Since S′′ = αS, it follows from an integration by parts that∫ x

1

β′(u)S′(u)du =

∫ x

1

(ββ′)(u)α(u)S′(u)du

= [(ββ′)(u)S′(u)]
x
1 −

∫ x

1

(
ββ′)′(u)S′(u)du.

By Remark 2.2 and (4.1), we observe that (ββ′)′ = ◦(β′), and therefore∫ x

1

β′(u)S′(u)du = β(x)β′(x)S′(x) + ◦ (β(x)β′(x)S′(x)) .

Plugging this into (4.5), we see that

S(x) = β(x)S′(x)
(
1− β′(x) + ◦

(
β′(x)

))
.

By a Taylor expansion, together with β′(x) → 0 and α = S′′/S′, this implies that∫ ∞

x

du

S(u)
=

∫ ∞

x

S′′

(S′)2
(
1 + β′ + ◦(β′)

)
=

1

S′(x)
+

∫ ∞

x

S′′

(S′)2
β′(1 + ◦(1)

)
.

Integrating by parts and using (4.1) together with the observation that β′′ = ◦(αβ′),
we also compute∫ ∞

x

S′′

(S′)2
β′ =

β′(x)

S′(x)
+

∫ ∞

x

β′′

S′(u)
=

β′(x)

S′(x)
+ ◦

(
β′(x)

S′(x)

)
.

Hence,

Lg(x, x) = 1−
(
2S′(x)− α(x)S(x)

) ∫ ∞

x

du

S(u)

= 1−
(
1 + β′(x) + ◦

(
β′(x)

))(
1 + β′(x) + ◦

(
β′(x)

))
= −2β′(x) + ◦

(
β′(x)

)
.

Since β′ = (1/α)′ < 0, this implies that for large x, Lg(x, x) > 0, and therefore
Γ(x) = x.

(ii) We now assume that limx→∞ α(x) = ∞, and we intend to prove that A∞ =
∞, which would imply that Γ∞ < ∞ by Case 2 above. Let x ≥ 1. Since α is
nondecreasing, we have

S′(x) = e
∫

x
0

α(u)du ≥ e
∫ x
x−1

α(u)du ≥ eα(x−1).

Since α′ is nonincreasing and nonnegative, α′ is bounded on [1,∞). Therefore,
there exists K > 0 such that 0 ≤ α(x) − α(x − 1) ≤ K, so that S′(x) ≥ eα(x)−K for
x ≥ 1.

On the other hand, limx→∞ α(x) = ∞ implies that α(x)2 = ◦(eα(x)−K), which

means that S′(x)
α(x)2 → ∞. Finally, as x → ∞, we get

α′(x) = ◦
(
− β′(x)S′(x)

)
.

Since α is not bounded, the left-hand side is not integrable at infinity, so the right-hand
side is also not integrable. In other words,

∫∞
1

(1/α)′(u)S′(u)du = −A∞ = −∞.
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5. The stopping boundary in the quadratic case. We now turn to the
characterization of the stopping boundary γ. Following Proposition 4.2(i), we define

Γ↓ = Γ|[0,ζ] and Γ↑ = Γ|[ζ,∞)

as the restrictions of Γ to the intervals [0, ζ] and [ζ,∞).

5.1. The increasing part of the stopping boundary γ. Our objective is to
find a solution v of (3.4)–(3.8) on {(x, z) ∈ Δ; x < z < γ(x)}. First, by (3.4), v is of
the form

v(x, z) = A(z) +B(z)S(x).

We first guess that the free boundary γ is continuous and increasing near the diagonal.
Then, denoting its inverse by γ−1, the continuity and smoothfit conditions (3.8) imply
that

v(x, z) = g(γ−1(z), z) +
gx(γ

−1(z), z)

S′(γ−1(z))
[S(x)− S(γ−1(z))].

Finally, the Neumann condition (3.7), together with (2.10) and the specific form of
the loss function �, implies that the boundary γ satisfies the following ODE:

γ′ =
Lg(x, γ)

1− S(x)
S(γ)

.(5.1)

In what follows, we take this ODE (with no initial condition!) as a starting point
to construct the boundary γ. Notice that this ODE has infinitely many solutions,
as the Cauchy–Lipschitz condition is locally satisfied whenever (5.1) is complemented
with the condition γ(x0) = z0 for any 0 < x0 < z0. This feature is similar to that in
Peskir [11]. The following result selects an appropriate solution of (5.1).

Proposition 5.1. Let the coefficient α satisfy conditions (2.2) and (4.1). Then,
there exists a continuous function γ defined on R+ with graph {(x, γ(x)) : x ∈ R+} ⊂
Δ such that

(i) on the set {x > 0 : γ(x) > x}, γ is a C1 solution of ODE (5.1);
(ii) {(x, γ(x)) : x ≥ ζ} ⊂ Γ+, and {(x, γ(x)) : x > ζ and γ(x) > x} ⊂ Int(Γ+);
(iii) if Γ∞ < ∞, then γ(x) = x for all x ≥ Γ∞;
(iv) γ(x)− x −→ 0 as x → ∞.
The remaining part of this section is dedicated to the proof of this result. We

first introduce some notation. We recall from Remark 4.2 that the graph of Γ↑ is not
reduced to the diagonal, and therefore

b := inf{x ≥ 0 : Γ(x) = x} ∈ (ζ,∞],(5.2)

where b may take infinite value. We also introduce

D− := {x > ζ : Lg(x, x) < 0} ⊃ (ζ, b),(5.3)

and for all x0 ∈ D−,

d(x0) := sup{x ≤ x0 : Lg(x, x) ≥ 0} and u(x0) := inf{x ≥ x0; Lg(x, x) ≥ 0},
(5.4)
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with the convention that d(x0) = 0 if {x ≤ x0 : Lg(x, x) ≥ 0} = ∅ and u(x0) = ∞
if {x ≥ x0 : Lg(x, x) ≥ 0} = ∅. Since Lg is continuous and x0 ∈ D−, d(x0) < x0 <
u(x0) ≤ ∞. Notice that if x0 ∈ (ζ, b), then d(x0) = 0.

Let x0 ∈ D− be an arbitrary point. For all z0 > x0, we denote by γz0
x0

the maximal
solution of the Cauchy problem complemented with the condition γ(x0) = z0, and we
denote by

(
�z0x0

, rz0x0

)
the associated (open) interval. Notice that since the right-hand

side of ODE (5.1) is locally Lipschitz on the set {(x, γ), 0 < x < γ}, the maximal
solution will be defined as long as 0 < x < γ.

The following result provides more properties on the maximal solutions.
Lemma 5.2. Assume that α satisfies conditions (2.2) and let x0 ∈ D− be fixed.
(i) For all z > x0, �

z
x0

≤ d(x0), and if �zx0
> 0, then Lg(�zx0

, �zx0
) ≥ 0;

(ii) for all z ∈ (x0,Γ(x0)], Lg(x, γ
z
x0
(x)) < 0 for any x ∈ (x0, r

z
x0
);

(iii) for z sufficiently large, we have rzx0
= +∞.

Before proceeding to the proof of this result, we turn to the main construction of
the stopping boundary γ. Let
(5.5)
Z(x0) :=

{
z > x0 : Lg

(
x, γz

x0
(x)

)
< 0 for some x ∈

[
x0, r

z
x0

)}
, z∗(x0) := supZ(x0).

Moreover, whenever z∗(x0) < ∞, we denote

γ∗
x0

:= γz∗(x0)
x0

, �∗x0
:= �z

∗(x0)
x0

, r∗x0
:= rz

∗(x0)
x0

, and I∗x0
:=

(
�∗x0

, r∗x0

)
.(5.6)

Lemma 5.3. Assume that α satisfies conditions (2.2), and let x0 be arbitrary in
D−. Then

(i) z∗(x0) ∈ (Γ(x0),∞),
(
d(x0), u(x0)

)
⊂ I∗x0

, and the corresponding maximal
solution γ∗

x0
has a positive derivative on the interval I∗x0

∩ (ζ,∞).
(ii) For x0, x1 ∈ D−, we have

• either I∗x0
∩ I∗x1

= ∅,
• or I∗x0

= I∗x1
and γ∗

x0
= γ∗

x1
.

Proof. (i) By Lemma 5.2(iii), there exists a = a(x0) such that for any z ≥ a,
rzx0

= ∞. If Lg
(
x1, γ

z
x0
(x1)

)
< 0 for some x1 ≥ x0, then by (5.1), γz

x0
is decreasing

in a neighborhood of x1 and as long as
(
x, γz

x0
(x)

)
∈ Int(Γ−). Since x1 ≥ x0 > ζ,

Γ is increasing on [x1,∞) so that γz
x0

is decreasing on [x1, r
z
x0
), which implies that

rzx0
< ∞. Therefore Z(x0) is bounded by a, and z∗(x0) < ∞. Since x0 ∈ D−, we

have Γ(x0) ∈ Z(x0), and therefore z∗(x0) ≥ Γ(x0). We next assume to the contrary
that z∗(x0) = Γ(x0) and work toward a contradiction.

Notice that D− is an open set as a consequence of the continuity of the function
Lg. Then there exists ε > 0 such that (x0, x0+2ε) ⊂ D−∩ (x0, r

∗
x0
) and d(x) = d(x0)

for any x ∈ (x0, x0+ ε). Let xε := x0+ ε and zε := Γ(xε) > Γ(x0). By Lemma 5.2(ii),
γ∗
x0

is decreasing on (x0, r
∗
x0
) so that γ∗

x0
(xε) < γ∗

x0
(x0) = Γ(x0) < Γ(xε) = γzε

xε
(xε).

Since by Lemma 5.2(i) we have �z
ε

xε
≤ d(x0) < x0, together with the one-to-one

property of the flow, it follows that z∗ = γ∗
x0
(x0) < γzε

xε
(x0). Therefore, by Lemma

5.2(ii), γzε
xε
(x0) ∈ Z(x0), which contradicts the maximality of z∗.

A similar argument proves that (x, γ∗
x0
(x)) ∈ Int(Γ+) for x ∈ I∗x0

∩ [ζ,∞), which
implies r∗x0

≥ u(x0) (possibly infinite). Using (5.1), we see that γ∗
x0

has a positive
derivative on the same interval. Finally, Lemma 5.2(i) implies that �∗x0

≤ d(x0).
(ii) Let x0 < x1 in D−, and assume that there exists x2 ∈ I∗x0

∩ I∗x1
. We prove

below that γ∗
x0
(x2) = γ∗

x1
(x2). Then the one-to-one property of the flow and the

maximality of I∗ imply that I∗x0
= I∗x1

and γ∗
x0

= γ∗
x1
.

To see that γ∗
x0
(x2) = γ∗

x1
(x2), first assume to the contrary that γ∗

x0
(x2) < γ∗

x1
(x2).

Then, the one-to-one property of the flow implies that γ∗
x0

< γ∗
x1

on I∗x0
∩ I∗x1

, and
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therefore the maximality of I∗x1
implies that I∗x0

⊂ I∗x1
. By the definition of z∗(x1)

and the continuity of the flow with respect to initial data, there exists z < z∗(x1) such
that γ∗

x0
(x2) < γz

x1
(x2) < γ∗

x1
(x2) and z ∈ Z(x1). For the same reasons as before, we

have I∗x0
⊂ (�zx1

, rzx1
) and γ∗

x0
< γz

x1
< γ∗

x1
on I∗x0

. Therefore γz
x1
(x0) ∈ Z(x0), while

γz
x1
(x0) > z∗(x0) = γ∗

x0
(x0), which is impossible. A similar argument can be used if

γ∗
x0
(x2) > γ∗

x1
(x2).

We are now ready for the following proof.
Proof of Proposition 5.1. We first define γ and then prove the announced

properties.
1. Let

D :=
⋃

x0∈D−
I∗x0

⊃ D−.(5.7)

By Lemma 5.3, for any x and y in D−, we have either I∗x = I∗y or I∗x ∩ I∗y = ∅.
Therefore, there exists a subset D−

0 of D− such that D =
⋃

x0∈D−
0
I∗x0

, and for any

x, y ∈ D−
0 , x �= y implies that I∗x ∩ I∗y = ∅.

We now define the function γ on R+ \ {0} by

γ(x) :=

{
γ∗
x0
(x) if x ∈ I∗x0

, for some x0 ∈ D−
0 ,

x otherwise.
(5.8)

By Lemma 5.3, this definition does not depend on the choice of D−
0 .

2. We first prove that γ is continuous on R+. This is nontrivial only at the
endpoints �∗x0

and r∗x0
, x0 ∈ D−. Recalling that γ is increasing on I∗x0

, we see that
both limits exist. By the maximality of I∗(x0), it is immediate that limr∗x0

γ = r∗x0

and, whenever �∗x0
> 0, lim�∗x0

γ = �∗x0
. If �∗x0

= 0, which is the case for x0 ∈ (ζ, b), then

the limit also exists and is in fact positive since Lg(x, γ(x)) < 0 for any x > 0 such
that γ(x) < ζ. Setting γ(0) := limx→0 γ(x), we obtain a continuous function γ on R+.

3. Proposition 5.1(i) follows immediately from Lemma 5.3. To prove (ii), we first
notice that {x ≥ ζ : γ(x) = x} = R+ \ D ⊂ R+ \ D− so that Lg(x, x) ≥ 0 on the
set {x ≥ ζ : γ(x) = x}. On the set {x > ζ : γ(x) > x}, since γ has a positive
derivative and satisfies (5.1), we have Lg(x, γ(x)) > 0. Finally, since for x0 ∈ (ζ, b),
where b was defined by (5.2), d(x0) = 0, Lemma 5.3 and the continuity of Lg imply
that Lg(ζ, γ(ζ)) ≥ 0.

4. We next prove (iii). Assume Γ∞ < ∞ and let x0 ∈ D− be arbitrary. Then
by the continuity of Lg, Lg(Γ∞,Γ∞) = 0, and therefore x0 < Γ∞. Assume that
r∗x0

> Γ∞, and let us work toward a contradiction. Then by continuity of the flow
with respect to the initial data, there exists ε > 0 such that for any z ∈

(
z∗(x0) −

ε, z∗(x0)
)
, the function γz

x0
is defined on [x0,

Γ∞+r∗x0

2 ]. By Lemma 5.2(ii), we deduce
that (x, γz

x0
(x)) ∈ Γ+ on the same interval. By the definition of Γ∞ and recalling that

∂
∂zLg > 0, we get that z �∈ Z(x0). By the arbitrariness of z in (z∗(x0) − ε, z∗(x0)),
this contradicts the definition of z∗(x0).

5. We finally prove (iv). First, the claim is obvious when D is bounded, as
γ(x) = x for x ≥ supD. We then concentrate on the case where D is not bounded.
From Proposition 4.3, either D− is bounded or Lg(x, x) < 0 for any x ∈ [Γmax,∞),
and by Lemma 5.3, r∗x0

≥ u(x0). In both cases, there exists x0 ∈ D− such that
r∗x0

= ∞. To complete the proof, we now intend to show that, for a > 0 and x > x0

large enough, γ(x) ≤ x+ a.
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Using Proposition 4.1, we compute

Lg(x, x+ a) = 1 + aα(x) − e−
∫ x+a
x

α(u)du + ◦(1).(5.9)

- If limx→∞ α(x) = ∞, then, for any ε > 0, we get that Lg(x, x+ a) > 1 + ε for
x large enough.

- If limx→∞ α(x) = M > 0, then Lg(x,x+a)

1− S(x)
S(x+a)

= 1−e−aM+aM
1−e−aM + ◦(1) so that for any

ε ∈
(
0, aM

1−e−aM

)
, we get that Lg(x,x+a)

1− S(x)
S(x+a)

> 1 + ε for x large enough.

In both cases, we can find a sufficiently small ε > 0 such that Lg(x,x+a)

1− S(x)
S(x+a)

> 1 + ε

for any sufficiently large x, say x ≥ x1. We now assume that γ(x1) > x1 + a and
work toward a contradiction. Since γ(x) > x on [x0,+∞), using the continuity of the
flow with respect to the initial data, we can find z < z∗(x0) such that γz

x0
(x) > x on

[x0, x1] and γz
x0
(x1) > x1 + a. Using (5.9) together with (5.1), we therefore have for

x ∈ [x1,+∞)

γz
x0
(x) − γz

x0
(x1) ≥ (1 + ε)(x− x1)

and so γz
x0
(x) > (1 + ε)(x− x1) + x1 + a ≥ x+ a

so that rz = ∞, and the same holds for any y ∈ [z, z∗(x0)], which contradicts the
definition of z∗(x0) as supZ(x0).

We finally turn to the proof of Lemma 5.2. Let

Γ− := {(x, z) ∈ Δ : Lg(x, z) ≤ 0} .(5.10)

Proof of Lemma 5.2(i). The right-hand side of (5.1) is locally Lipschitz as long as
0 < x < γz

x0
(x). Now γz

x0
is nonincreasing if (x, γz

x0
(x)) ∈ Γ−. Therefore, since

d(x0) < x0 < u(x0) and Γ(x) > x for any x ∈ D− ⊃
(
d(x0), u(x0)

)
, the minimality of

�zx0
implies that �zx0

≤ d(x0) and that �zx0
�∈ D−.

(ii) Since x0 > ζ, the function Γ is increasing on [x0,+∞), while by (5.1), for
any z > x0, γz

x0
is nonincreasing as long as (x, γx0(x)) ∈ Γ−. Therefore for any

z ∈ (x0,Γ(x0)), (x, γ
z
x0
(x)) remains in Int(Γ−) on

[
x0, r

z
x0

)
.

Assume now that z = Γ(x0). Since Γ(x0) > x0, Γ satisfies Lg(x,Γ(x)) = 0 in
a neighborhood of x0. Since ∂

∂zLg > 0 on Δ, while ∂
∂xLg(x,Γ(x)) < 0 as soon as

Γ(x) > x, the implicit functions theorem implies that Γ is C1 with positive derivative
in a neighborhood of x0. If z = Γ(x0), (γ

z
x0
)′(x0) = 0 by (5.1), and therefore γ′−Γ′ is

negative in a neighborhood of x0, and we can conclude as in the case z < Γ(x0) that(
x, γz

x0
(x)

)
∈ Int(Γ−) on

(
x0, r

z
x0

)
.

(iii) Let ε > 0 be given. From Proposition 4.1(ii), we see that

Lg(x, (1 + ε)x) = 1 + εxα(x) − S′(x)

S′((1 + ε)x)
+ ◦(1)

= 1 + εxα(x) − e−
∫

x+εx
x

α(v)dv + ◦(1) as x → ∞.

Since xα(x) → +∞, this implies that

Lg(., (1 + ε).) ≥ 1 + 3ε on [A,∞) for some A ≥ 0.(5.11)

In particular, (A, (1 + ε)A) ∈ Int(Γ+). Let D := max((1 + ε)A,Γ0). Since Γ is
U-shaped, it follows that [0, A]× [D,∞) ⊂ Γ+. Since γz

x0
is nondecreasing as long as
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(x, γz
x0
(x)) ∈ Int(Γ+), by (5.1) it follows that rzx0

> A and γz
x0
(A) > (1 + ε)A for all

z ≥ D.
In order to complete the proof, we now show that

γz
x0
(x) ≥ (1 + ε)x for all x ≥ A and z ≥ D.

To see this, assume to the contrary that γz
x0
(ξ) ≤ (1 + ε)ξ for some ξ > A and define

x1 := inf{x > A; γz
x0
(x) = (1 + ε)x)}.

By continuity of γz
x0
, we have A < x1 ≤ ξ, and therefore Lg(x1, (1 + ε)x1) ≥ 1 + 3ε

by (5.11). Since Lg is also continuous, there is a neighborhood O of (x1, (1 + ε)x1)
such that for (x, z) ∈ O, Lg(x, z) ≥ 1 + 2ε. We then deduce that there exists η > 0
such that

(γz
x0
)′(x) ≥ Lg(x, γz(x)) ≥ 1 + 2ε for any x ∈ [x1 − η, x1 + η],

and then, for x ∈ (x1 − η, x1) ∩ [A,∞),

γz
x0
(x) ≤ γz

x0
(x1)− (1 + 2ε)(x1 − x) = (1 + ε)x1 − (1 + 2ε)(x1 − x) < (1 + ε)x.

Since γz
x0
(A) > (1 + ε)A, this contradicts the definition of x1.

5.2. The decreasing part. The problem now is that there is no reason for the
function γ constructed in the previous section to be entirely in Γ+ since it can cross
graph(Γ↓). In section 7, numerical computations suggest that this is indeed the case
in the context of an Ornstein–Uhlenbeck process. In fact, in general the boundary
is made of two parts, as shown in Figure 2. Therefore we need to consider the area
that lies between the axis {x = 0} and graph(γ). While the previous part of γ is
characterized by the ODE (5.1) because of the Neumann condition, here we must
take into account the Dirichlet condition (3.6).

Fig. 2. On the left part, the graph of γ is inside Int(Γ−) and γ is decreasing.
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Therefore, we consider the following problem for a fixed z > 0: Find x(z) such
that f

(
x(z), z

)
= 0, where

(5.12) f(x, z) := g(x, z)− gx(x, z)
S(x)

S′(x)
− z2

2
.

Proposition 5.4. Assume that α satisfies conditions (2.2) and that Γ↓ is not
degenerate (i.e., ζ > 0). Then there exists x∗ > 0 and a function γ↓ defined on [0, x∗],
which is C0 on [0, x∗], C1 with negative derivative on (0, x∗), and such that

(i) for all x ∈ [0, x∗], f(x, γ↓(x)) = 0;
(ii) for all x ∈ (0, x∗), (x, γ↓(x)) ∈ Int(Γ+);
(iii) γ↓(0) = Γ0;
(iv) (x∗, γ↓(x

∗)) ∈ graph(Γ↑).
Proof. By direct calculation and the fact that LS = 0, we have

for all (x, z) ∈ Δ,
∂

∂x

(
gx(x, z)

S′(x)

)
=

Lg(x, z)

S′(x)
.(5.13)

Then by direct differentiation of (5.12), we get

fx(x, z) = gx(x, z)− S(x)
Lg(x, z)

S′(x)
− gx(x, z) = −S(x)

Lg(x, z)

S′(x)
.

Therefore fx(x,Γ
0) < 0. Since for all z, f(0, z) = 0, we deduce that f(x,Γ0) < 0

for all x ∈
(
0,Γ−1

↑ (Γ0)
]
. On the other hand, if z < Γ0, then f(x, z) > 0 for any

x ∈ (0,Γ−1
↓ (z)], where Γ−1

↓ (z) > 0.

By continuity of f , there exists ε > 0 and x > 0 such that for any z ∈
(
Γ0−ε,Γ0

]
,

f(x, z) < 0. Therefore there exists x ∈
(
Γ−1
↓ (z),Γ−1

↑ (z)
]
satisfying f(x, z) = 0. Let z0

be in such a neighborhood and let x0 ∈
(
Γ−1
↓ (z0),Γ

−1
↑ (z0)

]
satisfying f(x0, z0) = 0.

By definition, (x0, z0) ∈ Int(Γ+).
We consider now the following Cauchy problem:

γ′
↓(x) =

Lg(x, γ↓(x))S(x)

S(x) − xS′(x) − (S(x))2

S(γ↓)

,(5.14)

with the additional condition γ↓(x0) = z0. ODE (5.14) is obtained by a formal
derivation of the equation f(x, γ(x)) = 0. Indeed, assuming that γ is C1, we see that

fx(x, γ(x)) + γ′(x)fz(x, γ(x)) = 0.

We compute

fz(x, z) = gz(x, z)− gxz(x, z)
S(x)

S′(x)
− z

= z − x− S(x)

S(z)
(z − x) +

S(x)

S′(x)

(
1 +

S′(x)(z − x)

S(z)
− S(x)

S(z)

)
− z

= −x+
S(x)

S′(x)
− (S(x))2

S′(x)S(z)
.

Thus we get

γ′
[
−xS′(x) + S(x)− (S(x))2

S(γ)

]
= S(x)Lg(x, γ).
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As long as x > 0, S(x) − xS′(x) − (S(x))2

S(γ↓)
≤ S(x) − xS′(x) < 0, so the Cauchy

problem is well defined (since 0 < x0 ≤ z0). The maximal solution will be defined on
an interval (x−, x+), with x0 ∈ (x−, x+). We also have γ′

↓ < 0 as long as (x, γ↓(x)) ∈
Int(Γ+) and (x0, z0) ∈ Int(Γ+), so we have graph(γ↓) ∩ Γ �= ∅.

Since ∂
∂zLg > 0, ∂2

∂x2Lg < 0 and Lg(x,Γ(x)) = 0 on [0, ζ], the implicit functions
theorem implies that Γ↓ is C

1 with negative derivative. We also have that if (xΓ, zΓ) ∈
graph(γ↓) ∩ Γ, then γ′

↓(xΓ) = 0. Therefore (xΓ, zΓ) ∈ graph(Γ↑). This implies that
x− = 0, and we can define x∗ = inf{x ≥ x0, (x, γ↓(x)) ∈ Γ}. γ↓ is defined on (0, x∗+ε)
for a certain ε > 0 and on (0, x∗), (x, γ↓(x)) ∈ Int(Γ+). Using (5.14), we see that γ′

↓
is negative on (0, x∗).

By construction f(x, γ↓(x)) = constant = f(x0, z0) = 0, (x, γ↓(x)) ∈ Γ+ and
(x∗, γ↓(x

∗)) ∈ graph(Γ↑).
Finally, since γ↓ is decreasing it has a limit at 0. The fact that (x, γ↓(x)) ∈ Γ+

implies that γ↓(0) ≥ Γ0, and if we had γ↓(0) > Γ0, then by continuity of γ↓, there
would exist x ∈ (0,Γ−1

↑ (Γ0)] such that f(x,Γ0) = 0, which is impossible. So we have
the result.

The function γ↓ defined in the previous proposition will be the second part of our
boundary. We denote by γ↑ the boundary constructed in the previous paragraph. We
now check that the two boundaries γ↑ and γ↓ do intersect. This is provided in the
following proposition.

Proposition 5.5. We have that either γ↑ is increasing on [0,+∞), or |graph(γ↓)∩
graph(γ↑)| = 1. In the first case, we write x̄ = 0 and z̄ = γ↑(0). In the second case,
we write (x̄, z̄) = graph(γ↓) ∩ graph(γ↑). In both cases, we have (x̄, z̄) ∈ Γ+ and
{(x, γ↑(x)); x > x̄ and γ↑(x) > x} ⊂ Int(Γ+).

Proof. γ↑ is increasing as long as Lg(x, γ↑(x)) > 0. By Proposition 5.1, if we do not
have γ↑ increasing on [0,+∞), then there exists x0 ≤ ζ such that Lg(x0, γ↑(x0)) =
0 while γ↑ is increasing on (x0,+∞). Since Γ↓ is decreasing on (0, ζ) while γ↑ is
increasing as long as (x, γ↑(x)) ∈ Int(Γ+), (x, γ↑(x)) ∈ Γ− on (0, x0).

On the other hand, γ↓ is defined on [0, x∗], decreasing, continuous, and (x, γ↓(x)) ∈
Int(Γ+) on (0, x∗). Therefore we have |graph(γ↓) ∩ graph(γ↑)| = 1; this intersection
is in Γ+, and by construction the last property is immediate.

If γ↑ is increasing on [0,+∞), then (x, γ↑(x)) ∈ Γ+ for all x > 0, so by continuity
of γ↑ and since Γ+, is a closed set, it is still true for x = 0.

From now on, we denote by γ the concatenation of γ↓ and γ↑, which is continuous
and piecewise C1:

γ(x) =

{
γ↓(x) if x < x̄,

γ↑(x) if x ≥ x̄.

We also introduce

φ↓ = γ−1
↓ and φ↑ = γ−1

↑ .(5.15)

Notice that Proposition 5.1 (respectively, Proposition 5.4) implies that φ↑ (resp., φ↓) is
C1 on {z > z̄, φ↑(z) < z} (resp., on (z̄,Γ0)), with positive (resp., negative) derivative.

Notice also that if γ↓ is degenerate, then γ = γ↑.
Remark 5.1. Notice that, if x̄ > 0, γ is not differentiable at the point x̄. Indeed,

assuming to the contrary that x̄ > 0 and γ is differentiable at x̄, it follows from the
increase of γ↑ and the decrease of γ↓ that γ′(x̄) = 0. By ODE (5.1) satisfied by
γ↑, we see that Lg(x̄, z̄) = 0, so that z̄ = Γ(x̄). Following the proof of Proposition
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5.5, this also implies that x̄ = ζ, the point where the minimum of Γ is attained. By
differentiating (5.1) and using γ′(x̄) = 0, we compute that the second derivative of γ at

the right of x̄ is given by γ′′(x̄+) =
∂
∂xLg(ζ,γ(ζ))

S(γ(ζ))−S(ζ) . However, it follows from Proposition

4.2 that ∂
∂xLg(ζ, γ(ζ)) < 0, implying that γ′′(x̄+) < 0. This is in contradiction with

the nondecrease of γ at the right of x̄.

6. Definition of v and verification result. We now have all the ingredients to
define our candidate function v and to prove that it coincides with the value function
V defined by (2.7).

We first decompose Δ into four disjoint sets. We define

A1 = {(x, z), x ∈ [0, x̄], and z̄ < z < γ(x)},
A2 = {(x, z), x ≥ x̄, and z̄ < z < γ(x)},
A3 = {(x, z), 0 ≤ x ≤ z ≤ z̄},
A4 = {(x, z), x ≥ 0, and z ≥ γ(x)}.

(A1, A2, A3, A4) is a partition of Δ. Notice that if (x, z) ∈ A2, then by Proposition
5.1(iii), x ≤ Γ∞, and recall that x̄ < z̄ were defined in Proposition 5.5, while φ↓ and
φ↑ were defined by (5.15). Notice also that A2 is not necessarily connected.

We refer to Figure 3 for a better understanding of the different areas. Let

K :=

∫ ∞

z̄

u

S(u)
du− gx(x̄, z̄)

S′(x̄)
;(6.1)

we define v in the following way:

v(x, z) =
z2

2
+ gx(φ↓(z), z)

S(x)

S′(φ↓(z))
if(x, z) ∈ A1,(6.2)

v(x, z) = g(φ↑(z), z) + gx(φ↑(z), z)
S(x)− S(φ↑(z))

S′(φ↑(z))
if(x, z) ∈ A2,(6.3)

v(x, z) =
z2

2
+ S(x)

[∫ ∞

z

u

S(u)
du−K

]
if(x, z) ∈ A3,(6.4)

v(x, z) = g(x, z) if(x, z) ∈ A4.(6.5)

The main result of this section is the following.
Theorem 6.1. Let the coefficient α satisfy conditions (2.2) and (4.1). Let γ

be given by Proposition 5.1 and v be defined by (6.2)–(6.5). Then v = V , and θ∗ =
inf{t ≥ 0;Zt ≥ γ(Xt)} is an optimal stopping time.

Moreover, if τ is another optimal stopping time, then θ∗ ≤ τ a.s.
Proof. From Proposition 5.1, Lemmas 6.2 and 6.3, and Propositions 6.4 and 6.5,

v and γ satisfy the assumptions of Theorem 3.1.
We first prove that v has the required regularity.
Lemma 6.2. v is C0 w.r.t. (x, z), C1 w.r.t. x, and piecewise C2,1 w.r.t. (x, z).

More precisely, except on ∪i=j

(
Cl(Ai) ∩ Cl(Aj)

)
, it is C2,1.

Proof. From the definition of v, φ↓, and φ↑, it is immediate that v can be extended
as a C2,1 function on any Cl(Ai).

Let us denote by vi the expression of v on Cl(Ai). Since φ↓ satisfies (5.12), it is
immediate that v is C0 w.r.t. (x, z) and C1 w.r.t. x on the boundary (v1 with v4 and
v2 with v4). On z = z̄, it is easy to check that the expressions of v2 and v3 coincide. It
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Fig. 3. The different areas.

is also true for v1 and v3 since φ↓ satisfies (5.12) and x̄ = φ↓(z̄). It is straightforward
that it is also C1 and even C2 w.r.t. x.

We now show that v satisfies the boundary conditions.

Lemma 6.3. For all z ≥ 0, v(0, z) = z2

2 and vz(z, z) = 0.

Proof. Since S(0) = 0, v(0, z) = z2

2 is immediate.
For (z, z) ∈ Int(A4), since gz(z, z) = 0, we have vz(z, z) = 0. For (z, z) ∈ Int(A3)

it is immediate that vz(z, z) = 0. For (z, z) ∈ Int(A2), since γ↑ satisfies ODE (5.1),

φ′
↑(z)Lg(φ↑(z), z) = 1− S(φ↑(z))

S(z) . We then compute

vz(z, z) = gz(φ↑(z), z) + gxz
S(z)− S(φ↑(z))

S′(φ↑(z))
+ φ′

↑(z)Lg(φ↑(z), z)
S(z)− S(φ↑(z))

S′(φ↑(z))

= −
(
1− S(φ↑(z))

S(z)

)
S(z)− S(φ↑(z))

S′(φ↑(z))
+

(
1− S(φ↑(z))

S(z)

)
S(z)− S(φ↑(z))

S′(φ↑(z))
= 0.

To complete the proof, we need to show that vz(z̄, z̄) = 0 and vz(Γ
∞,Γ∞) = 0 if

Γ∞ < ∞. The previous computations and the definition of v on A3 and A4 show that
at those points, vz(z, z) has right and left limits that are both equal to 0, so we have
the result.

Proposition 6.4. Let the coefficient α satisfy conditions (2.2) and (4.1). Then
the function v is bounded from below and limz→∞ v(z, z)− g(z, z) = 0.

Proof. If Γ∞ < ∞, it is immediate since in this case, by Proposition 5.1(iii), v = g
outside a compact set, v is continuous and g is nonnegative. So let us focus on the
case Γ∞ = ∞. If (4.1) is satisfied, by Proposition 4.3, we know that α is bounded.
We write α ≤ M .

We first prove that v is bounded from below and that v(z, z) − g(φ↑(z), z) → 0
as z → ∞. A1 is bounded because of the definition of γ↓, and A3 is bounded by
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definition. Since v = g on A4 and g ≥ 0, we need only check that v is bounded from
below on A2.

On the set {(x, γ↑(x)); x ∈ [x̄,∞)}, v = g, and for (x, z) ∈ A2, we have

v(x, z) = g(φ↑(z), z) + gx(φ↑(z), z)
S(x)− S(φ↑(z))

S′(φ↑(z))
.(6.6)

In particular, we see that for each z, v(., z) is monotonic on [φ↑(z), z]. Therefore,
since v(φ↑(z), z) ≥ g(φ↑(z), z) ≥ 0, it is sufficient to check that v is bounded from
below on the diagonal {(z, z); z ∈ [x̄,∞)}.

We compute

gx(φ↑(z), z) = −(z − φ↑(z)) + S′(φ↑(z))

∫ ∞

z

u− φ↑(z)

S(u)
du− S(φ↑(z))

∫ ∞

z

du

S(u)
.

From Proposition 5.1 we know that limx→∞ γ↑(x)−x = 0, so that limz→∞ z−φ↑(z) =
0. Using Proposition 4.1, the fact that φ↑(z) < z since Γ∞ = ∞, and the increase of
S′, we have, as z → ∞,

S′(φ↑(z))

∫ ∞

z

u− φ↑(z)

S(u)
du

= S′(φ↑(z))

(∫ ∞

z

u− z

S(u)
du+

∫ ∞

z

z − φ↑(z)

S(u)
du

)

= S′(φ↑(z))

(
1

α(z)S′(z)
+

z − φ↑(z)

S′(z)
+ ◦

(
1

S′(z)

))
= O(1),

S(φ↑(z))

∫ ∞

z

du

S(u)
∼ S′(φ↑(z))

α(φ↑(z))S′(z)
= O(1)

so that gx(φ↑(z), z) = O(1).
Since α ≤ M and S′ is increasing,

S′(z) = S′(φ↑(z))e
∫ z
φ↑(z)

α(u)du ≤ S′(φ↑(z))e
M(z−φ↑(z)),

so that

S(z)− S(φ↑(z)) ≤ (z − φ↑(z))S
′(z)(6.7)

≤ (z − φ↑(z))S
′(φ↑(z))e

M(z−φ↑(z)),

and therefore 0 ≤ S(z)−S(φ↑(z))
S′(φ↑(z))

≤ (z − φ↑(z))e
M(z−φ↑(z)) = ◦(1).

Since v is continuous and g ≥ 0, by (6.6) we see that v is bounded from below
and v(z, z)− g(φ↑(z), z) → 0.

Finally, we show that g(z, z)− g(φ↑(z), z) → 0. Indeed, we compute

g(z, z)− g(φ↑(z), z) = − (z − φ↑(z))
2

2
+
(
S(z)− S(φ↑(z))

) ∫ ∞

z

u− z

S(u)
du

− S(φ↑(z))

∫ ∞

z

z − φ↑(z)

S(u)
du.

Using Proposition 4.1(ii) and (6.7), we get(
S(z)− S(φ↑(z))

)∫ ∞

z

u− z

S(u)
du ∼ S(z)− S(φ↑(z))

α(z)S′(z)

≤ z − φ↑(z)

α(z)
= ◦(1).
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Using again Proposition 4.1, we also get

S(φ↑(z))

∫ ∞

z

z − φ↑(z)

S(u)
du ∼ (z − φ↑(z))

S′(φ↑(z))

α(φ↑(z))S′(z)
= ◦(1),

and as a consequence,

g(z, z)− g(φ↑(z), z) = ◦(1).

Therefore we finally have limz→∞ v(z, z)− g(z, z) = 0.
The final property of v required by the verification Theorem 3.1 is the following.
Proposition 6.5. Let the coefficient α satisfy conditions (2.2) and (4.1). Then

v ≤ g on Δ and v < g on the continuation region {(x, z) ∈ Δ; x > 0 and z < γ(x)}.
Proof. We analyze separately the different subsets A1, A2, A3.
On A1: For z̄ < z < Γ0 and 0 ≤ x < φ↓(z), we have

v(x, z)− g(x, z) =
z2

2
+ gx(φ↓(z), z)

S(x)

S′(φ↓(z))
− g(x, z),

vx(x, z)− gx(x, z) = gx(φ↓(z), z)
S′(x)

S′(φ↓(z))
− gx(x, z)

= S′(x)

∫ φ↓(z)

x

Lg(u, z)

S′(u)
du,

where we used (5.13) for the last equality.
For z̄ ≤ z < Γ0, (0, z) ∈ Γ− while (φ↓(z), z) ∈ Γ+, so we can a priori have three

behaviors for v(., z)− g(., z):
- it is increasing on [0, φ↓(z)],
- or it is decreasing on [0, φ↓(z)],
- or it is decreasing on [0, δ) and increasing on (δ, φ↓(z)] for a certain δ ∈ (0, φ↓(z)).
Since v(0, z) = g(0, z) and v(φ↓(z), z) = g(φ↓(z), z), only the last behavior can

occur and v ≤ g on A1. Moreover, v < g, except if x = 0 or x = φ↓(z).
On A2: For x > φ↑(z) and z̄ < z < Γ∞, we compute

v(x, z)− g(x, z) = g(φ↑(z), z) + gx(φ↑(z), z)
S(x)− S(φ↑(z))

S′(φ↑(z))
− g(x, z).

So, similarly,

vx(x, z)− gx(x, z) = −S′(x)

∫ x

φ↑(z)

Lg(u, z)

S′(u)
du.(6.8)

Here again only three behaviors are a priori possible, for (v − g)(., z):
- increasing on [φ↑(z), z],
- decreasing on [φ↑(z), z],
- decreasing on [φ↑(z), δ) and increasing on (δ, z] for a certain δ ∈ (φ↓(z), z).
Since v(φ↑(z), z) = g(φ↑(z), z), we need only consider v(z, z)− g(z, z).
We write n(z) = v(z, z)− g(z, z). Since vz(z, z) = gz(z, z) = 0,

∂

∂z
(v(z, z)− g(z, z)) = n′(z) = vx(z, z)− gx(z, z)

= −S′(z)

∫ z

φ↑(z)

Lg(u, z)

S′(u)
du.
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We find the same expression as before, with x = z. First, if n′(z) ≤ 0, we have∫ z

φ↑(z)
Lg(u,z)
S′(u) du ≥ 0, which implies that for any x ∈ (φ↑(z), z),

∫ x

φ↑(z)
Lg(u,z)
S′(u) du >

0. Therefore from (6.8), (v − g)(., z) is decreasing on [φ↑(z), z], and since (v −
g)(φ↑(z), z) = 0, we get n(z) < 0 if φ↑(z) < z.

Assume now that there exists z ∈ [z̄,Γ∞) such that n(z) ≥ 0 and φ↑(z) < z.
Then, from the previous argument, n′(z) > 0. Since n is continuous, this implies that
n is increasing on any connected subset of {z′ ≥ z, φ↑(z

′) < z′} that contains z. Let
a := inf{z′ > z; φ↑(z

′) = z′}. If a < ∞, the definition of φ↑ implies v(a, a) = g(a, a),
which contradicts n(a) > 0, and if a = ∞, Proposition 6.4 gives limz→∞ n(z) = 0, so
again this is impossible. As a consequence, n(z) < 0 if φ↑(z) < z. Therefore v ≤ g on
A2 and v < g, except if x = φ↑(z).

On A3: Recall the definition of K given by (6.1). For x ≤ z ≤ z̄, we have

v(x, z)− g(x, z) =
z2

2
−KS(x)− (z − x)2

2
+ xS(x)

∫ +∞

z

du

S(u)
,

so vz(x, z)− gz(x, z) = x

(
1− S(x)

S(z)

)
.

The latter expression is nonnegative and positive if x �= 0. Since v and g are contin-
uous, the result for A1 and A2 tells us that v(., z̄) ≤ g(., z̄) so that v ≤ g on A3 and
v < g if x �= 0.

7. Examples.

7.1. Brownian motion with negative drift. We first observe that the prob-
lem is degenerate for a standard Brownian motion. Indeed, in this case, α(x) = 0
and S(x) = x. Since (2.11) will never be satisfied for a nondecreasing and convex
function �, Proposition 2.1 tells us that V and g will be infinite if � satisfies (2.13).
Moreover, for any 0 < x ≤ z and any convex and nondecreasing function �, we have
the following:

(i) Ex,zT0 = +∞,
(ii) Ex,zZT0 = Ex,z(ZT0)

2 = +∞,
(iii) V and g are infinite everywhere except for x = 0.
Point (i) is a classical result, (ii) comes directly from (2.10), and (iii) comes from

(ii) and arguments similar to the proof of Proposition 2.1.
We now consider the following diffusion for constant μ < 0 and σ > 0:

dXt = μdt+ σdWt.

Therefore α(x) = − 2μ
σ2 = α > 0, S(x) = eαx−1

α , and S′(x) = eαx.
We have an interesting homogeneity result for this process, which allows us to

assume that α = 1. In the following statement, we denote by γα the corresponding
boundary, given by Theorem 6.1.

Proposition 7.1. Let α > 0 be given, and consider the quadratic loss function

�(x) = x2

2 . Then

γα(z) =
γ1(αz)

α
.

Proof. Let X be a drifted Brownian motion with parameter αX = α, and define
X̄ = αX . The dynamics of X̄ is

dX̄t = αdXt = αμdt+ ασdWt
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Fig. 4. γ for a Brownian motion with negative drift and �(x) = x2

2
.

so that αX̄ = −2μα
σ2α2 = 1. Let Z̄ be the corresponding running maximum, started

from αz. Then Z̄ = αZ, T0(X) = T0(X̄) = T0, and for any θ,

Ekx,kz(Z̄T0 − X̄θ)
2 = α2

Ex,z(ZT0 −Xθ)
2.

This equality implies that if τ is optimal for one problem, it is also optimal for the
other one. Together with the minimality of θ∗, it means that

Zt = γα(Xt) ⇔ Z̄t = γ1(X̄t) ⇔ αZt = γ1(kXt),

which completes the proof.

In the quadratic case �(x) = x2

2 , we have Lg(x, z) = 1+α(z−x)+(1+eαx) ln(1−
e−αz).

We can see that ∂
∂xLg < 0, so that Γ is increasing (i.e. ζ = 0). Moreover, for any

x ∈ (0, 1), ln(1 − x) < −x so that for z > 0, Lg(z, z) < −e−αz < 0, which implies
Γ∞ = +∞.

Figure 4 is a numerical computation of γ for �(x) = x2

2 . Since Γ is increasing,
γ is necessarily increasing too (γ↓ is degenerate). Even though it does not affect the
shape because of Proposition 7.1, this plot was computed for α = 1.

7.2. The CIR–Feller process. Let b ≥ 0, μ < 0, and σ > 0; then the dynamics
of X is

dXt = μXtdt+ σ
√
b+XtdWt.

Here, α(x) = α x
x+b with α > 0. In the degenerate case b = 0, we are reduced

to the context of the Brownian motion with negative drift. We then focus on the
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case b > 0 with a quadratic loss function �(x) = x2

2 . Proceeding as in the proof of
Proposition 4.3, we can see that Γ∞ < ∞, unlike in the case b = 0.

Moreover, as x → 0, α(x) ∼ αx
b , α′(x) ∼ α

b so that we can see that for any z > 0,
∂
∂xLg > 0 for x small enough, which means that Γ↓ is not degenerate, or equivalently,
that ζ > 0.

7.3. Ornstein–Uhlenbeck process. The dynamics of X is now given by

dXt = μXtdt+ σdWt

so that α(x) = αx, S′(x) = eα
x2

2 .
This case and the Brownian motion with negative drift case can be seen as the

extreme cases of our framework. Indeed, here α(x) = αx is the “most increasing”
concave function, while α(x) = α is the “least nondecreasing” function.

As for the Brownian motion with negative drift, we have a homogeneity result for

this process, for �(x) = x2

2 , which allows us to assume that α(x) = x.

Proposition 7.2. Let α(x) = αx with α > 0 and �(x) = x2

2 . Then the corre-
sponding boundary γα satisfies

γα(z) =
γ1(z

√
α)√

α
.

Proof. We follow the proof in the case of a Brownian motion with negative drift.
Let X be a process with αX(x) = αx. Then the process X̄ =

√
αX is such that

αX̄ = 1. Denote by Z̄ the corresponding running maximum process. Then Z̄ =
√
αZ,

T0(X) = T0(X̄) = T0, and for any θ,

E√
αx,

√
αz(Z̄T0 − X̄θ)

2 = αEx,z(ZT0 −Xθ)
2.

Then by the minimality of θ∗ we have

Xt = γα(Zt) ⇔ X̄t = γ1(Z̄t) ⇔
√
αXt = γ1(

√
αZt),

which provides the required result.

Then, again in the case �(x) = x2

2 , we show that Γ is decreasing in a neighborhood
of 0 so that ζ > 0 and that Γ∞ < +∞.

Proposition 7.3. For an Ornstein–Uhlenbeck process;
• Lg(x,Γ0) > 0 for x > 0 in a neighborhood of 0, and therefore Γ↓ is not

degenerate;
• Lg(z, z) > 0 in a neighborhood of +∞, and therefore Γ∞ < +∞.
Proof. Since α(x) → ∞ as x → ∞, Proposition 4.3 implies that Γ∞ < ∞.
If x is small, we have S(x) ∼ x, S′(x) = 1 + S′′(0)x + ◦(x) = 1 + ◦(x), and by

definition of Γ0,
∫∞
Γ0

du
S(u) =

1
2 . Therefore, as x → 0, we can write

Lg(x,Γ0) = 1 + αxΓ0 − 1 + ◦(x).

Since α > 0 and Γ0 > 0 by Proposition 4.2, Lg(x,Γ0) > 0 for x > 0 and sufficiently
small.

Finally, Figure 5 is a numerical computation of the boundary γ for �(x) = x2

2 .
While we do not prove it, we can see that γ is, in this case, decreasing first and then
increasing. Although it does not affect the shape because of Proposition 7.2, it was
computed for α = 1.
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Fig. 5. γ for an Ornstein–Uhlenbeck process with �(x) = x2

2
.

8. Extension to general loss functions. Except for sections 2 and 3, the

previous analysis considered only the case of the quadratic loss function �(x) = x2

2 .
In fact, as the reader has probably noticed, the quadratic loss function plays a special
role here, since �(3) = 0, inducing a substantial simplification of the analysis of the
set Γ+ and the asymptotic behavior of Lg.

Unfortunately, we were not able to extend some crucial properties established
in the quadratic case. Therefore, this section can be seen as a first attempt for the
present more general framework. In particular, the case of a general loss function
introduces the possibility that the free boundary γ is decreasing until it reaches the
diagonal, a case which was not possible for a quadratic loss function.

8.1. Additional assumptions and shape of Γ. Recall from section 3 that we
assume (3.1) holds true. Moreover, if � is not the quadratic loss function, we require
the following technical assumptions:

� is C3, �′ > 0, �′′ > 0, �(3) ≥ 0 and �, �′, �′′ satisfy (3.1),(8.1)

K1 := sup
y≥0

�(3)(y)

�′′(y)
< ∞ and lim

x→∞
α(x) > K1,(8.2)

K2 := sup
y≥0

�′′(y)

�′(y)
< ∞ and lim

x→∞
α(x) > K2.(8.3)

Notice that (8.1)–(8.3) are satisfied for exponential loss functions �(x) = λex with
λ > 0 or for power loss functions of the form λ(x + ε)p with ε > 0 and p ≥
2. They are mainly needed in order to derive asymptotic expansions similar to
Proposition 4.1.
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Let us now compute

Lg(x, z) = �′′(z − x) + α(x)�′(z − x)− (2S′(x)− α(x)S(x))

∫ ∞

z

�′′(u− x)

S(u)
du

+ S(x)

∫ ∞

z

�(3)(u − x)

S(u)
du.

Since �′′(x) > 0 for x > 0 and �(3) ≥ 0, for any x ≥ 0, z �→ ∂
∂zLg(x, z) is increasing.

Moreover, we have �′(x) → ∞ as x → ∞ so that for any x ≥ 0, limz→∞ Lg(x, z) > 0.
As a consequence, Γ+ �= ∅, and the definition of Γ in (4.3) can be extended.

The main problem is that Lg is no longer concave w.r.t. x, and it is not clear how
to show that Γ is U -shaped. In fact Propositions 4.2(i) and 4.3 are crucial, but we
are unable to prove them in general. Therefore we assume the following conditions:

∃ζ ≥ 0 such that Γ is decreasing on [0, ζ] and increasing on [ζ,+∞),(8.4)

if lim
x→∞

α(x) = ∞, then Γ∞ < ∞.(8.5)

Unfortunately, we failed to derive conditions directly on � and α that guarantee that
these conditions hold true.

In the present context, notice that in contrast to Proposition 4.2(iii), Γ0 may
be larger than Γ∞. This means that we have a new possibility for the shape of γ:
γ↑(x) = x for every x ≥ x̄.

8.2. The increasing part of the boundary. In order to determine the in-
creasing part of the free boundary, ODE (5.1) is replaced by

γ′ =
Lg(x, γ)

�′′(γ − x)
(
1− S(x)

S(γ)

) .(8.6)

Since �′′ > 0, the Cauchy problem is well defined for any x0 > 0 and γ(x0) > x0, and
the maximal solution is defined as long as γ(x) > x.

In order to extend Proposition 5.1, the asymptotic results of Proposition 4.1 must
be adapted; see section 9.3. Using Proposition 9.1, we can easily adapt the proofs of
Lemmas 5.2 and 5.3 and show that they still hold true. However, in order to adapt
the proof of Proposition 5.1, we make the following assumption:

either α(x) → ∞ as x → ∞,(8.7)

or in Proposition 9.1(ii), for any a > 0 and ϕ(z) = z − a, δ ≡ 1.(8.8)

This additional assumption is made in order to prove that for sufficiently large x,

Lg(x, x+ a)

�′′(a)
(
1− S(x)

S(x+a)

) > 1 + ε,

while the other arguments of the proof remain exactly the same.

8.3. The decreasing part and the definition of v. Now we examine the
decreasing part of γ. Equation (5.12) is replaced by

g(x(z), z)− gx(x(z), z)
S(x(z))

S′(x(z))
− �(z) = 0.(8.9)
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The proof of Proposition 5.4 can be extended almost immediately by replacing
ODE (5.14) with

γ′(x) =
Lg(x, γ)S(x)

(�′(γ − x)− �′(γ))S′(x) + �′′(γ − x)S(x)
(
1− S(x)

S(γ)

) ,
and noticing that, since �(3) ≥ 0, for any x and γ, there exists y ∈ (γ−x, γ) such that

(�′(γ − x)− �′(γ))S′(x)+ �′′(γ − x)S(x)

(
1− S(x)

S(γ)

)

= −x�′′(y)S′(x) + �′′(γ − x)S(x)

(
1− S(x)

S(γ)

)
≤ �′′(γ − x)(S(x) − xS′(x)).

Then, Proposition 5.5 still holds, except how a new case can occur; that is, γ↓(x
∗) = x∗

and x∗ ≥ Γ∞, which implies Γ0 > Γ∞.
Remark 8.1. In the new case stated above, the condition x∗ ≥ Γ∞ is not a priori

a consequence of γ↓(x
∗) = x∗, since there is no reason in general for the set Int(Γ−)

to be connected.
Finally, Theorem 6.1 can be proved in the same way for a general loss function,

using the asymptotic expansions of Proposition 9.1, where v is defined by formulas
generalizing (6.2) to (6.5).

9. Appendix.

9.1. Proof of Proposition 2.1.
Proof. The implications (iii) =⇒ (iii)′, (ii) =⇒ (i), (i) =⇒ (i)′ and (ii) =⇒ (ii)′

are immediate. Since � is nondecreasing and nonnegative, we also have (iii)′ =⇒ (iii).
Using (2.10) and (2.11), we get (iii) =⇒ (ii).

Assume now that Condition (2.13) holds true. The implications (ii)′ =⇒ (ii)
=⇒ (iii) follow immediately from the definition of g in (2.10) together with condition
(2.13) and the nondecrease of �.

We conclude the proof by showing that (i)′ =⇒ (iii). Let (i)′ hold true and assume
to the contrary that

∫∞
�′(u−x)S(u)−1du = ∞ for all x ≥ 0. For arbitrary 0 < x ≤ z

and θ ∈ T0, we have from (2.10) that

E[�(ZT0 −Xθ)|Xθ, Zθ] = g(Xθ, Zθ) = �(Zθ)1{Xθ=0} +∞1{Xθ>0}.

• If P({θ �= T0}) > 0, then

J(θ, x, z) :=Ex,z�(ZT0 −Xθ) = Ex,zE[�(ZT0 −Xθ)|Xθ, Zθ]

≥Ex,z1{θ =T0}E[�(ZT0 −Xθ)|Xθ, Zθ] = +∞.

• Alternatively, if θ = T0 a.s., then J(θ, x, z) = J(T0, x, z) = �(z) + S(x)
∫∞
z

�′(u)S(u)−1du = +∞.
By arbitrariness of 0 < x ≤ z and θ ∈ T0, this shows that V = +∞ every-

where.
Notice that if (2.11) holds for x = 0, then (2.10) is also valid for x = 0.
Remark 9.1. Without assuming (2.13), (i) and (ii) can hold true while (iii)

does not. Indeed, consider for example a process with scale function S(x) = ex
2

and the loss function �(x) =
∫ x

0
eu

2

du. Then
∫∞
z

�′(u)S(u)−1du = +∞, while for
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x > 0,
∫∞
z

�′(u − x)S(u)−1du = ex
2+2xz

2x so that (i) and (ii) are satisfied (recall that
V (0, z) = g(0, z) = �(z)).

Remark 9.2. Condition (2.13) is satisfied by power and exponential loss functions
�(x) = xp for some p ≥ 1, or eηx for some η > 0. Without condition (2.13), (i)′ =⇒
(i) or (ii)′ =⇒ (ii) are not true in general. Consider for instance the process with scale

function S(x) = ex
2

and, for ε > 0, the loss function �(x) =
∫ x

0 e(u+ε)2du. Then if x ≤
ε,

∫∞
z �′(u−x)S(u)−1du = ∞, while if x > ε,

∫∞
z �′(u−x)S(u)−1du = e(x−ε)2+2(x−ε)z

2(x−ε) .

So g(x, z) < ∞ iff x > ε or x = 0. In other words (ii)′ is true while (ii) is false.
Adapting the proof of (i)′=⇒(iii) by considering the set {Xθ ∈ (0, ε)}, which has a
nonzero probability if x ∈ (0, ε) and θ is not a.s. equal to T0, we see that we also have
(i)′ but not (i) (so that V (x, z) < ∞ iff x ≥ ε or x = 0).

Remark 9.3. From the previous proof, we also observe that we have (g = +∞
everywhere except for x = 0) implies (V = +∞ everywhere except for x = 0). This
statement does not require condition (2.13).

9.2. Proof of Proposition 4.1.
Proof. Recall that

(
1
α

)′ → 0 at infinity as stated in Remark 2.2(ii). The below
limits and equivalents are considered when z → +∞.

(i) As S(z) → +∞, S(z) =
∫ z

0
e
∫

u
0

α(v)dv ∼
∫ z

1
e
∫

u
0

α(v)dv. Integrating by parts, we
get

∫ z

1

e
∫

u
0

α(v)dv =

[
e
∫ u
0

α(v)dv

α(u)

]z

1

−
∫ z

1

(
1

α

)′
(u)e

∫
u
0

α(v)dvdu.

Since
(
1
α

)′ → 0,
∫ z

1

(
1
α

)′
(u)e

∫
u
0

α(v)dvdu = ◦
( ∫ z

1 e
∫

u
0

α(v)dv
)
so that S(z) ∼ S′(z)

α(z) .

(ii) Using (i) and integrating by parts, we get∫ ∞

z

du

S(u)
∼

∫ ∞

z

α(u)

S′(u)
du =

∫ ∞

z

α(u)e−
∫

u
0

α(v)dvdu =
1

S′(z)
;

∫ ∞

z

udu

S(u)
∼

∫ ∞

z

uα(u)

S′(u)
du =

z

S′(z)
+

∫ ∞

z

1

S′(u)
du.

But uα(u) → ∞ as u → ∞ so that∫ ∞

z

1

S′(u)
du = ◦

(∫ ∞

z

uα(u)

S′(u)
du

)
,

and therefore ∫ ∞

z

udu

S(u)
∼ z

S′(z)
.

Finally, by integrating by parts twice, we get∫ ∞

z

u− z

S(u)
du ∼

∫ ∞

z

(u− z)α(u)

S′(u)
du =

∫ ∞

z

1

S′(u)
du

=

∫ ∞

z

α(u)

α(u)S′(u)
du =

1

α(z)S′(z)
+

∫ ∞

z

(
1

α

)′
(u)

1

S′(u)
du.

As
(
1
α

)′
(u) → 0 as u → ∞, we get the result.
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9.3. Asymptotic results for a general loss function.
Proposition 9.1. Assume (8.1)–(8.3). Let ϕ be a measurable function such

that 0 ≤ ϕ(z) ≤ z for all z (large enough). Then we have the following asymptotic
behaviors as z → ∞:

(i) There exists a bounded function δ (depending on ϕ) satisfying δ(z) ≥ 1 for z
large enough and such that∫ ∞

z

�′′(u − ϕ(z))

S(u)
du ∼ δ(z)

�′′(z − ϕ(z))

S′(z)
;

(ii) there exists a bounded function ν satisfying ν(z) ≥ 1 for z large enough and
such that ∫ ∞

z

�′(u − ϕ(z))

S(u)
du ∼ ν(z)

�′(z − ϕ(z))

S′(z)
.

Moreover if lim
x→∞

α(x) = ∞, then for any function ϕ, δ and ν are constant and

equal to 1.
Proof. (i) The proof is close to the proof of Proposition 4.1(ii). First, as ϕ is

measurable and satisfies 0 ≤ ϕ(z) ≤ z, the expressions make sense and the integrals
exist. Then, using Proposition 4.1(i) and integrating by parts, we have∫ ∞

z

�′′(u− ϕ(z))

S(u)
du ∼

∫ ∞

z

α(u)�′′(u− ϕ(z))

S′(u)
du =

∫ ∞

z

α(u)e−
∫ u
0

α(v)dv�′′(u− ϕ(z))du

=
�′′(z − ϕ(z))

S′(z)
+

∫ ∞

z

�(3)(u− ϕ(z))

S′(u)
du.

According to assumption (8.1), all of the terms above are nonnegative. Moreover,
using (8.2) we get ∫ ∞

z

�(3)(u− ϕ(z))

S′(u)
du ≤ K1

∫ ∞

z

�′′(u − ϕ(z))

S′(u)
du,

while

∫ ∞

z

α(u)�′′(u− ϕ(z))

S′(u)
du ≥ α(z)

∫ ∞

z

�′′(u− ϕ(z))

S′(u)
du (> 0),

so that

A := lim sup
z→∞

∫∞
z

�(3)(u−ϕ(z))
S′(u) du∫∞

z
α(u)�′′(u−ϕ(z))

S′(u) du
< 1,

which means that, for z large enough, there exists a certain k(z) ∈
[
0, 1+A

2

)
such that

∫ ∞

z

�(3)(u− ϕ(z))

S′(u)
du

= k(z)

∫ ∞

z

α(u)�′′(u− ϕ(z))

S′(u)
du+ ◦

(∫ ∞

z

α(u)�′′(u − ϕ(z))

S′(u)
du

)
.

As ϕ(z) < z if z > 0, �′′(z − ϕ(z)) > 0, and this implies that

(1− k(z))

∫ ∞

z

α(u)�′′(u− ϕ(z))

S′(u)
du ∼ �′′(z − ϕ(z))

S′(z)
.
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Setting δ(z) = 1
1−k(z) ∈

[
1, 2

1−A

]
, we have the result. We also see that if α(x) → ∞

as x → ∞, then k(z) = 0, so δ(z) = 1.
(ii) This follows along the lines of (i), replacing �′′ by �′ and using (8.3) instead of

(8.2).
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