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Abstract

By investigating model-independent bounds for exotic options in financial mathe-

matics, a martingale version of the Monge-Kantorovich mass transport problem was

introduced in [3, 24]. Further, by suitable adaptation of the notion of cyclical mono-

tonicity, [4] obtained an extension of the one-dimensional Brenier’s theorem to the

present martingale version. In this paper, we complement the previous work by extend-

ing the so-called Spence-Mirrlees condition to the case of martingale optimal transport.

Under some technical conditions on the starting and the target measures, we provide

an explicit characterization of the corresponding optimal martingale transference plans

both for the lower and upper bounds. These explicit extremal probability measures

coincide with the unique left and right monotone martingale transference plans in-

troduced in [4]. Our approach relies on the (weak) duality result stated in [3], and

provides, as a by-product, an explicit expression for the corresponding optimal semi-

static hedging strategies. We finally provide an extension to the multiple marginals

case.

1 Introduction

Since the seminal paper of Hobson [29], an important literature has developed on the topic

of robust or model-free superhedging of some path dependent derivative security with payoff

ξ, given the observation of the stochastic process of some underlying financial asset, together

with a class of derivatives. See [7, 11, 12, 13, 14, 15, 16, 18, 19, 31, 33, 39] and the survey

papers of Oblój [40] and Hobson [30]. In continuous-time models, these papers mainly focus
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on derivatives whose payoff ξ is stable under time change. Then, the key-observation was

that, in the idealized context where all T−maturity European calls and puts, with all possible

strikes, are available for trading, model-free superhedging cost of ξ is closely related to the

Skorohod Embedding problem. Indeed, the market prices of all T−maturity European calls

and puts with all possible strikes allow to recover the marginal distribution of the underlying

asset price at time T .

Recently, this problem has been addressed via a new connection to the theory of optimal

transportation, see [3, 24, 27, 1, 2, 20, 21]. Our interest in this paper is on the formulation of

a Brenier Theorem in the present martingale context. We recall that the Brenier Theorem

in the standard optimal transportation theory states that the optimal coupling measure is

the gradient of some convex function which identifies in the one-dimensional case to the so-

called Fréchet-Hoeffding coupling [6]. A remarkable feature is that this coupling is optimal

for the class of coupling cost functions satisfying the so-called Spence-Mirrlees condition.

We first consider the one-period model. Denote by X, Y the prices of some underlying

asset at the future maturities 0 and 1, respectively. Then, the possibility of dynamic trading

implies that the no-arbitrage condition is equivalent to the non-emptyness of the set M2

of all joint measures P on R+ × R+ satisfying the martingale condition EP[Y |X] = X.

The model-free subhedging and superhedging costs of some derivative security with payoff

c(X, Y ), given the marginal distributions X ∼ µ and Y ∼ ν, is essentially reduced to the

martingale transportation problems:

inf
P∈M2(µ,ν)

EP[c(X, Y )] and sup
P∈M2(µ,ν)

EP[c(X, Y )],

where M2(µ, ν) is the collection of all probability measures P ∈ M2 such that X ∼P µ,

Y ∼P ν. Our main objective is to characterize the optimal coupling measures which solve

the above problems. This provides some remarkable extremal points of the convex (and

weakly compact) set M2(µ, ν). In the absence of marginal restrictions, Jacod and Yor [35]

(see also Jacod and Shiryaev [34], Dubins and Schwarz [22], for the discrete-time setting)

proved that a martingale measure P ∈ M2 is extremal if and only if P-local martingales

admit a predictable representation. In the present one-period model, such extremal points

of M2 consist of binomial models. For a specific class of coupling functions c, the extremal

points of the corresponding martingale transportation problem turn out to be of the same

nature, and our main contribution in this paper is to provide an explicit characterization.

Our starting point is a paper by Hobson and Neuberger [32] who considered the specific

case of the coupling function c(x, y) := |x− y|, and provided a completely explicit solution

of the optimal coupling measure and the corresponding optimal semi-static strategy. In a

recent paper, Beiglböck and Juillet [4] address the problem from the viewpoint of optimal

transportation. By a convenient extension of the notion of cyclic comonotonicity, [4] in-

troduce the notion of left-monotone transference plan. They also introduce the notion of

left-curtain as a left-monotone transference plan concentrated on the graph of a binomial

map. The remarkable result of [4] is the existence and uniqueness of the left-monotone

transference plan which is indeed a left-curtain, together with the optimality of this joint
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probability measure for some specific class CBJ of coupling payoffs c(x, y). Notice that the

coupling measure of [32] is not a left-curtain, and CBJ does not contain the coupling payoff

|x− y|.
As a main first contribution, we provide an explicit description of the left-curtain P∗ of [4].

Then, by using the weak duality inequality,

- we provide a larger class C ⊃ CBJ of payoff functions for which P∗ is optimal,

- we identify explicitly the solution of the dual problem which consists of the optimal

semi-static superhedging strategy,

- as a by-product, the strong duality holds true.

Our class C is the collection of all smooth functions c : R× R −→ R, with linear growth,

such that cxyy > 0. We argue that this is essentially the natural class for our martingale

version of the Brenier Theorem.

We next explore the multiple marginals extension of our result. In the context of the

finite discrete-time model, we provide a direct extension of our result which applies to the

context of the discrete monitored variance swap. This answers the open question of optimal

model-free upper and lower bounds for this derivative security.

The paper is organized as follows. Section 2 provides a quick review of the Brenier Theorem

in the standard one-dimensional optimal transportation problem. The martingale version of

the Brenier Theorem is reported in Section 3. We next report our extensions to the multiple

marginals case in Section 6. Finally, Section 7 contains the proofs of our main results.

2 The Brenier Theorem in One-dimensional Optimal

Transportation

2.1 The two-marginals optimal transportation problem

Let X, Y be two scalar random variables denoting the prices of two financial assets at some

future maturity T . The pair (X, Y ) takes values in R2, and its distribution is defined by

some P ∈ PR2 , the set of all probability measures on R2.

We assume that T−maturity European call options, on each asset and with all possible

strikes, are available for trading at exogenously given market prices. Then, it follows from

Breeden and Litzenberger [5] that the marginal distributions of X and Y are completely

determined by the second derivative of the corresponding (convex) call price function with

respect to the strike. We shall denote by µ and ν the implied marginal distributions of X

and Y , respectively, `µ, rµ, `ν , rν the left and right endpoints of their supports, and Fµ, Fν
the corresponding cumulative distribution functions.

By definition of the problem, the probability measures µ and ν have finite first moment:∫
|x|µ(dx) +

∫
|y|ν(dy) < ∞, (2.1)

and although the supports of µ and ν could be restricted to the non-negative real line for

3



the financial application, we shall consider the more general case where µ and ν lie in PR,

the collection of all probability measures on R.

We consider a derivative security defined by the payoff c(X, Y ) at maturity T , for some

upper semicontinuous function c : R2 −→ R satisfying the growth condition:

c(x, y) ≤ ϕ(x) + ψ(y) for some ϕ, ψ : R −→ R, ϕ+ ∈ L1(µ), ψ+ ∈ L1(ν). (2.2)

The model-independent upper bound for this payoff, consistent with vanilla option prices of

maturity T , can then be framed as a Monge-Kantorovich (in short MK) optimal transport

problem:

P 0
2 (µ, ν) := sup

P∈P2(µ,ν)

EP[c(X, Y )
]

where P2(µ, ν) :=
{
P ∈ PR2 : X ∼P µ and Y ∼P ν

}
.

Here, for the sake of simplicity, we have assumed a zero interest rate. This can easily be

relaxed by considering the forwards of X and Y . Notice that c(X, Y ) is measurable by the

upper semicontinuity condition on c, and EP[c(X, Y )] is a well-defined scalar in R ∪ {−∞}
by Conditions (2.1) and (2.2).

In the original optimal transportation problem as formulated by Monge, the above maxi-

mization problem was restricted to the following subclass of measures.

Definition 2.1. A probability measure P ∈ P2(µ, ν) is called a transference map if P(dx, dy) :=

µ(dx)δ{T (x)}(dy), for some measurable map T : R −→ R.

The dual problem associated to the MK optimal transportation problem is defined by :

D0
2(µ, ν) := inf

(ϕ,ψ)∈D0
2

{
µ(ϕ) + ν(ψ)

}
,

where µ(ϕ) :=
∫
ϕdµ, ν(ψ) :=

∫
ψdν, and denoting ϕ⊕ ψ(x, y) := ϕ(x) + ψ(y):

D0
2 :=

{
(ϕ, ψ) : ϕ+ ∈ L1(µ), ψ+ ∈ L1(ν) and ϕ⊕ ψ ≥ c

}
.

The dual problem D0
2(µ, ν) is the cheapest superhedging strategy of the derivative security

c(X, Y ) using the market instruments consisting of T−maturity European calls and puts

with all possible strikes. The weak duality inequality

P 0
2 (µ, ν) ≤ D0

2(µ, ν)

is immediate. For an upper semicontinuous payoff function c, equality holds and an optimal

probability measure P∗ for the MK problem P 0
2 exists, see e.g. Villani [44].

In this paper, our main interest is on the following results of Rachev and Rüschendorf [42],

corresponding to the one-dimensional version of the Brenier theorem [6], which provides an

interesting characterization of P∗ in terms of the so-called Fréchet-Hoeffding pushing forward

µ to ν, defined by the map

T∗ := F−1
ν ◦ Fµ, (2.3)
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where F−1
ν is the right-continuous inverse of Fν :

F−1
ν (x) := inf{y : Fν(y) > x}.

In particular, the following result relates the MK optimal transportation problem P 0
2 to the

original Monge mass transportation problem for a remarkable class of coupling functions

c. We observe that the following result holds in a wider generality, in particular the set of

measures PT induced by a map T pushing forward µ to ν is dense in PR2 whenever µ is

atomless and the supports of µ and ν are contained in compact subsets. For the purpose of

our financial interpretation, this result characterizes the structure of the worst case financial

market that the derivative security hedger may face, and characterizes the optimal hedging

strategies by the functions ϕ∗ and ψ∗ defined up to an irrelevant constant by

ϕ∗(x) := c
(
x, T∗(x)

)
− ψ∗ ◦ T∗(x), ψ′∗(y) := cy

(
T−1
∗ (y), y

)
, x, y ∈ R. (2.4)

Theorem 2.2. (see e.g. [44], Theorem 2.44) Let c be upper semicontinuous with linear

growth. Assume that the partial derivative cxy exists and satisfies the Spence-Mirrlees con-

dition cxy > 0. Assume further that µ has no atoms, ϕ+
∗ ∈ L1(µ) and ψ+

∗ ∈ L1(ν). Then

(i) P 0
2 (µ, ν) = D0

2(µ, ν) =
∫
c
(
x, T∗(x)

)
µ(dx),

(ii) (ϕ∗, ψ∗) ∈ D0
2, and is a solution of the dual problem D0

2,

(iii) P∗(dx, dy) := µ(dx)δT∗(x)(dy) is a solution of the MK optimal transportation problem

P 0
2 , and is the unique optimal transference map.

Proof. We provide the proof for completeness, as our main result in this paper will be

an adaptation of the subsequent argument. First, it is clear that P∗ ∈ P(µ, ν). Then

EP∗ [c(X, Y )] ≤ P 0
2 (µ, ν). We now prove that

(ϕ∗, ψ∗) ∈ D0
2 and µ(ϕ∗) + ν(ψ∗) = EP∗ [c(X, Y )]. (2.5)

In view of the weak duality P 0
2 (µ, ν) ≤ D0

2(µ, ν), this would imply that P 0
2 (µ, ν) = D0

2(µ, ν)

and that P∗ and (ϕ∗, ψ∗) are solutions of P 0
2 (µ, ν) and D0

2(µ, ν), respectively.

Under our assumption that ϕ+
∗ ∈ L1(µ), ψ+

∗ ∈ L1(ν), notice that (2.5) is equivalent to:

0 = H0
(
x, T∗(x)

)
= min

y∈R
H0(x, y), where H0 := ϕ∗ ⊕ ψ∗ − c.

The first-order condition for the last minimization problem provides the expression of ψ′∗ in

(2.4), and the expression of ϕ∗ follows from the first equality. Since

H0
y (x, y) = cy

(
T−1
∗ (y), y

)
− cy(x, y) =

∫ T−1
∗ (y)

x

cxy(ξ, y)dξ,

it follows from the Spence-Mirrlees condition that T∗(x) is the unique solution of the first-

order condition. Finally, we compute that H0
yy

(
x, T∗(x)

)
T ′∗(x) = cxy

(
x, T∗(x)

)
> 0 by the

Spence-Mirrlees condition, where the derivatives are in the sense of distributions. Hence

T∗(x) is the unique global minimizer of H(x, .). tu

5



We observe that we may also formulate sufficient conditions on the coupling function c so

as to guarantee that the integrability conditions ϕ+
∗ ∈ L1(µ), ψ+

∗ ∈ L1(ν) hold true. See [44],

Theorem 2.44.

Remark 2.3 (Symmetry: anti-monotone rearrangement map). (i) Suppose that the coupling

function c satisfies cxy < 0. Then, the upper bound P 0
2 (µ, ν) is attained by the anti-monotone

rearrangement map

P∗(dx, dy) := µ(dx)δ{T ∗(x)}(dy), where T ∗(x) := F−1
ν ◦

(
1− Fµ(−x)

)
.

To see this, it suffices to rewrite the optimal transportation problem equivalently with modified

inputs:

c(x, y) := c(−x, y), µ(x) := µ
(
(−x,∞)

)
, ν := ν,

so that c satisfies the Spence-Mirrlees condition cxy > 0.

(ii) Under the Spence-Mirrlees condition cxy > 0, the lower bound problem is explicitly solved

by the anti-monotone rearrangement. Indeed, it follows from the first part (i) of the present

remark that:

inf
P∈P2(µ,ν)

EP[c(X, Y )
]

= − sup
P∈P2(µ,ν)

EP[− c(X, Y )
]

= −EP∗
[
− c(X, Y )

]
=

∫
c
(
x, T ∗(x)

)
µ(dx).

Remark 2.4. The Spence-Mirrlees condition is a natural requirement in the optimal trans-

portation setting in the following sense. The optimization problem is not affected by the

modification of the coupling function from c to c̄ := c + a ⊕ b for any a ∈ L1(µ) and

b ∈ L1(ν). Since cxy = c̄xy, it follows that the Spence-Mirrlees condition is stable for the

above transformation of the coupling function.

Example 2.5 (Basket option). Let c(x, y) = (x + y − k)+, for some k ∈ R (see [17, 38]

for multi-asset basket options). The result of Theorem 2.2 applies to this example as well,

as it is shown in [44] Chapter 2 that the regularity condition c ∈ C1,1 is not needed. The

upper bound is attained by the Fréchet-Hoeffding transference map T∗ := F−1
ν ◦ Fµ, and the

optimal hedging strategy is:

ψ∗(y) = (y − ȳ)+, ϕ∗(x) =
(
T∗(x) + x− k

)+ −
(
T∗(x)− ȳ

)+
,

where ȳ is defined by T∗(k − ȳ) = ȳ.

2.2 The multi-marginals optimal transportation problem

The previous results have been extended to the n−marginals optimal transportation problem

by Gangbo and Świȩch [25], Carlier [9], and Pass [41]. Let X = (X1, . . . , Xn) be a random

variable with values in Rn, representing the prices at some fixed time horizon of n financial

assets, and consider some upper semicontinuous payoff function c : Rn −→ R with linear

growth.
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Let µ1, . . . , µn ∈ PR be the corresponding marginal distributions, and µ := (µ1, . . . , µn).

The upper bound market price on the derivative security with a payoff function c is defined

by the optimal transportation problem:

P 0
n(µ) := sup

P∈Pn(µ)

EP[c(X)
]
, where Pn(µ) :=

{
P ∈ PRn : Xi ∼P µi, 1 ≤ i ≤ n

}
. (2.6)

Then, under convenient conditions on the coupling function c (see Pass [41] for the most

general ones), there exists a solution P∗ to the MK optimal transportation problem P 0
n(µ)

which is the unique optimal transference map defined by T i∗, i = 2, . . . , n:

P∗(dx1, . . . , dxn) = µ1(dx1)
n∏
i=2

δT i∗(x1)(dxi), where T i∗ = F−1
µi
◦ Fµ1 , i = 2, . . . , n.

The optimal upper bound is then given by

P 0
n(µ) =

∫
c
(
ξ, T 2

∗ (ξ), . . . , T n∗ (ξ)
)
µ1(dξ).

3 Martingale Transport Problem: Formulation and First

Intuitions

The main objective of this paper is to obtain a version of the Brenier theorem for the mar-

tingale transportation problem introduced by Beiglböck, Henry-Labordère and Penkner [3]

and Galichon, Henry-Labordère and Touzi [24]. A first result in this direction was obtained

by Hobson and Neuberger [32] in the context of the souping function c(x, y) = |x − y|.
The general case was considered by Beiglböck and Juillet [4] who introduced the martingale

version of the cyclic monotonicity condition in standard optimal transport, namely the mar-

tingale monotonicity condition, and showed existence and uniqueness of such a monotone

martingale measure, and its optimality for a class of coupling functions. Our result comple-

ments the last reference by an explicit extension of the Fréchet-Hoeffding optimal coupling.

We outline in Sections 5.4 and 5.6 the main differences with [4, 32].

3.1 Problem formulation

In the context of the financial motivation of Subsection 2.1, we interpret the pair of random

variables X, Y as the prices of the same financial asset at dates t1 and t2, respectively, with

t1 < t2. Then, the no-arbitrage condition states that the price process of the tradable asset

is a martingale under the pricing and hedging probability measure. We therefore restrict

the set of probability measures to:

M2(µ, ν) :=
{
P ∈ P2(µ, ν) : EP[Y |X] = X

}
.
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where µ, ν have finite first moment as in (2.1). This set of probability measures is clearly

convex, and the martingale condition implies that `ν ≤ `µ ≤ rµ ≤ rν . Throughout this

paper, we shall denote

δF := Fν − Fµ.

By a classical result of Strassen [43],M2(µ, ν) is non-empty if and only if µ � ν in sense of

convex ordering, i.e.

(i) µ, ν have the same mean:
∫
ξdδF (ξ) = 0,

(ii) and
∫

(ξ − k)+µ(dξ) ≤
∫

(ξ − k)+ν(dξ), for all k ∈ R. This condition can also be

expressed as:∫
[k,∞)

δF (ξ)dξ ≤ 0 or, equivalently,

∫
[−∞,k)

δF (ξ)dξ ≥ 0, for all k ∈ R, (3.1)

where the last equivalence follows from the first property (i).

Let c : R2 −→ R be an upper semicontinuous function satisfying the growth condition

(2.2), representing the payoff of a derivative security. In the present context, the model-

independent upper bound for the price of the claim can be formulated as the following

martingale optimal transportation problem:

P2(µ, ν) := sup
P∈M2(µ,ν)

EP[c(X, Y )
]
. (3.2)

Remark 3.1. When µ and ν have finite second moment, notice that EP[(X − Y )2] =

−EP[X2] + EP[Y 2] =
∫
ξ2dδF (ξ) for all P ∈ M2(µ, ν). Then, the quadratic case, which

is the typical example of coupling in the optimal transportation theory, is irrelevant in the

present martingale version.

We finally report the Kantorovich dual in the present martingale transport problem. Be-

cause of the possibility of dynamic trading the financial asset between times t1 and t2, the

set of dual variables is defined by:

D2 :=
{

(ϕ, ψ, h) : ϕ+ ∈ L1(µ), ψ+ ∈ L1(ν), h ∈ L0, and ϕ⊕ ψ + h⊗ ≥ c
}
, (3.3)

where ϕ⊕ ψ(x, y) := ϕ(x) + ψ(y), and h⊗(x, y) := h(x)(y − x). The dual problem is:

D2(µ, ν) := inf
(ϕ,ψ,h)∈D2

{
µ(ϕ) + ν(ψ)

}
, (3.4)

and can be interpreted as the cheapest superhedging strategy of the derivative c(X, Y ) by

dynamic trading on the underlying asset, and static trading on the European options with

maturities t1 and t2. Since µ, ν have finite first moment, and c satisfies the growth condition

(2.2), the weak duality inequality:

P2(µ, ν) ≤ D2(µ, ν) (3.5)

8



follows immediately from the definition of both problems. The strong duality result (i.e.

equality holds), together with the existence of a maximizer P∗ ∈M2(µ, ν) for the martingale

transportation problem P2(µ, ν), is proved in [3]. However, existence does not hold in general

for the dual problem D2(µ, ν). An example of non-existence is provided in [3]. In the present

paper, we shall obtain existence under a martingale version of the Spence-Mirrlees condition.

3.2 Monotone Martingale Transport Plans

Our objective in this paper is to provide explicitly the left-monotone martingale transport

plan, as introduced by Beiglböck and Juillet [4].

Definition 3.2. We say that P ∈M2(µ, ν) is left-monotone (resp. right-monotone) if there

exists a Borel set Γ ⊂ R×R such that P[(X, Y ) ∈ Γ] = 1, and for all (x, y1), (x, y2), (x′, y′) ∈
Γ with x < x′ (resp. x > x′), it must hold that y′ 6∈ (y1, y2).

Similar to [4], we shall consider probability measures µ, ν satisfying the following restric-

tion.

Assumption 3.3. The probability measures µ and ν have finite first moments, µ � ν in

convex order, and µ has no atoms.

Under this assumption, Theorem 1.5 and Corollary 1.6 of [4] state that there exists a

unique left-monotone martingale transport plan P∗ ∈M2(µ, ν), and that the graph of P∗ is

concentrated on two maps Td, Tu : R −→ R, Td(x) ≤ x ≤ Tu(x) for all x ∈ R, i.e.

P∗(dx, dy) = µ(dx)
[
q(x)δTu(x) + (1− q(x))δTd(x)

]
(dy), with q(x) =

x− Td(x)

(Tu − Td)(x)
. (3.6)

Remark 3.4. By the convex ordering condition (3.1), it follows that δF increases from and

to zero at the left and right boundaries of its support, respectively. Moreover, δF is upper-

semicontinuous by the continuity of Fµ in Assumption 3.3. Then the local suprema of δF

are attained by local maximizers in (`µ, rµ).

Let M(δF ) be the collection of all local maximizers of the function δF . Moreover for all

local maximizer m ∈M(δF ), we denote:

m− := sup
{
x < m : δF (x) < δF (m)

}
,

m+ := inf
{
x > m : δF (x) < δF (m)

}
.

(3.7)

The set:

M0(δF ) :=
{
m ∈M(δF ) : m = m+ and δF = δF (m) on [m−,m]

}
will play a crucial role in our characterization. Our construction will be performed under

the following additional assumption on the pair of measures (µ, ν).

Assumption 3.5. ν has no atoms, and M0(δF ) is a finite set of points.
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3.3 First Intuitions

In this subsection, we provide a construction of the left-monotone transport plan under the

simplifying condition

M(δF ) = M0(δF ) = {m1} for some `µ < m1 < rµ, (3.8)

so that δF is strictly increasing on (−∞,m1].

The definition of the left-monotone transport map suggests that Tu is non-decreasing and

Td non-increasing. This is a first guess which will be verified under our simplifying condition

(3.8). However, we emphasize that it will turn out to be wrong in the more general case

studied in Section 4, but will serve to guide our intuition.

As a first consequence of the non-increase of Td and the non-decrease of Tu, we see that

they have a countable number of discontinuities. Therefore, since µ has no atoms, we may

choose the maps Td and Tu to be right-continuous. In order to allow for a decreasing map

Td, we guess that there exists some bifurcation point m such that:

Td(x) = Tu(x) for x ≤ m, and

Td : (m,∞) 7−→ (−∞,m), non-increasing, Tu : (m,∞) 7−→ (m,∞) non-decreasing.

We denote by T−1
d , T−1

u the right-continuous generalized inverse of Td and Tu, respectively.

Since ν has no atoms, we observe that{
x′ : Tu(x

′) = Tu(x)
}

=
{
x′ : Td(x

′) = Td(x)
}

= {x}, µ− a.e. (3.9)

By the representation (3.6) of the left-monotone transport map, we have X ∼P µ, and the

martingale condition EP[Y |X] = X holds true. It remains to impose the mass conservation

condition Y ∼P ν, i.e. P[Y ∈ dy] = ν(dy).

(i) Mass conservation condition. We consider separately the domains on both sides of

the bifurcation point m.

• Upper support. Let y > m be a point of the support of ν. Then y := Tu(x) for some

x ≥ m, and

P[Y ∈ dy] = E
[
q(X)1{Tu(X)∈dy}

]
= q(x)dFµ(x),

by (3.9). Then, the mass conservation condition in this case is:

dFν(Tu) = qdFµ. (3.10)

• Lower support. Let y < m be a point of the support of ν. Then, y = Td(x) for some

x > m, and

P[Y ∈ dy] = dFµ(y) + E
[
(1− q(X))1{Td(X)∈dy}

]
= dFµ(y)− (1− q(x))dFµ(x),
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by (3.9), where the last minus sign is due to the decrease of Td on (m,∞). The mass

conservation condition is then:

dδF (Td) = −(1− q)dFµ. (3.11)

We are then reduced to the system of ODEs (3.10)-(3.11) on [m,∞), with the boundary

condition Tu(m) = Td(m) = m. Recall that we have to solve for the unknowns Tu, Td, and

also for the bifurcation level m.

(ii) Determining the bifurcation point. Subtracting (3.10) and (3.11), we get dFν(Tu) =

dFµ + dδF (Td). Integrating between m and x, and using the boundary condition Tu(m) =

Td(m) = m, we see that:

Fν(Tu) = Fµ + δF (Td) on [m,∞). (3.12)

We expect that Tu and Td be in one-to-one relation. Since Fν is non-decreasing, the last

equation allows indeed to express Tu in terms of Td by using the right-continuous inverse

F−1
ν . However, expressing Td in terms of Tu requires that m ≤ m1 so that Td takes values in

the domain where δF is strictly increasing, and thus has a continuous inverse δF−1. Then,

using again (3.12), it follows from the non-decrease of Fν , Tu, and δF |(−∞,m) that:

δF (x) ≤ Fν(Tu(x))− Fµ(x) = δF (Td(x)) ≤ δF (m) for all x ≥ m.

Consequently, the only possible choice for m ≤ m1 is

m = m1.

(iii) Solving for Td and Tu. We continue our derivation under the simplifying condition

(3.8). First, by (3.12), we express Tu in terms of Td:

Tu(x) = g
(
x, Td(x)

)
, x ≥ m, with g(x, y) := F−1

ν

(
Fµ(x) + δF (y)

)
, (3.13)

where we extend the definition of F−1
ν by setting F−1

ν = ∞ on (1,∞) and F−1
ν = −∞ on

(−∞, 0). Next, by the definition of q together with (3.10)-(3.11) and (3.13), we have

xdFµ = [qTu + (1− q)Td]dFµ = TudFν(Tu)− TddδF (Td)

= g(x, Td)
[
dFµ + dδF (Td)

]
− TddδF (Td).

We are then reduced to the ordinary differential equation:[
g(x, Td)− Td

]
dδF (Td) +

[
g(x, Td)− x

]
dFµ = 0 on [m,∞). (3.14)

Observing that

dx

∫ Td

m

[
g(x, ξ)− ξ

]
dδF (ξ) =

[
g(x, Td)− Td

]
dδF (Td) +

[ ∫ Td

m

dyg(x, y)
]
dFµ(x)

=
[
g(x, Td)− Td

]
dδF (Td) +

[
g(x, Td)− g(x,m)

]
dFµ(x),

11



we re-write (3.14) as:

dx

∫ Td

m

[
g(x, ζ)− ζ

]
dδF (ζ) +

[
g(x,m)− x

]
dFµ(x) = 0,

which provides by direct integration, and using the boundary condition Td(m) = m,

Gm(Td, x) = 0, for x ≥ m, (3.15)

where:

Gm(t, x) := −
∫ m

t

[
g(x, ζ)− ζ

]
dδF (ζ) +

∫ x

m

[
g(ξ,m)− ξ

]
dFµ(ξ), t ≤ m ≤ x. (3.16)

We finally verify that equation (3.15) defines uniquely Td(x) ∈ (−∞,m].

• First, the function t 7−→ Gm(t, x) is continuous and strictly increasing for x ≥ m ≥ t.

Indeed, the continuity is inherited from the continuity of δF . Next, for ζ ≤ m < x, it

follows that Fµ(x) > Fµ(ζ) or, equivalently, Fµ(x) + δF (ζ) > Fν(ζ). Then, g(x, ζ) =

F−1
ν (Fµ(x) + δF (ζ)) > ζ, and the strict increase of Gm in t is inherited from the strict

increase of δF on (−∞,m1).

• At t = m, we compute that Gm(m,x) =
∫ x
m

[
g(ξ,m) − ξ

]
dFµ(ξ) > 0 for x > m. The

last strict inequality follows from the fact that g(x,m) > x for all x > m, under our

simplifying condition (3.8), and the strict increase of Fµ at a right neighborhood of m.

• Finally, as t↘ −∞, we now show that Gm(−∞, x) < 0 for all x > m. Observe that

dxG
m(−∞, x) = −

[ ∫ m

−∞
dζg(x, ζ)

]
dFµ +

[
g(x,m)− x

]
dFµ

=
[
g(x,−∞)− x

]
dFµ =

[
F−1
ν ◦ Fµ(x)− x

]
dFµ.

Then,

Gm(−∞, x) = Gm(−∞,m) +

∫ x

m

[
F−1
ν ◦ Fµ(ξ)− ξ

]
dFµ(ξ) = γ(x)

where:

γ(x) :=

∫ F−1
ν ◦Fµ(x)

−∞
ξdFν(ξ)−

∫ x

−∞
ξdFµ(ξ), for x ∈ R. (3.17)

Notice that γ(−∞) = 0, and, since µ and ν have the same mean, γ(∞) = 0. We next

analyze the maximum of γ. Since dγ(x) = [F−1
ν ◦ Fµ(x) − x]dFµ(x), we may restrict

to a point x∗ ∈ Supp(µ) of local maximum of γ, so that F−1
ν

(
Fµ(x∗) −

)
≤ x∗ ≤

F−1
ν

(
Fµ(x∗)

)
, and therefore γ(x∗) =

∫ x∗
−∞ ξdδF (ξ) = −

∫
(x∗ − ξ)+dδF (ξ) < 0 by the

fact that µ 6= ν and µ � ν in the convex order.
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4 Explicit Construction of the left-monotone martin-

gale transport plan

4.1 Preliminaries

Recall the function g introduced in (3.13). In order to relax the simplifying condition (3.8),

we need to introduce, for a measurable subset A ∈ BR with δF increasing on A, the analogue

of (3.16):

Gm
A (t, x) := −

∫ m

t

[
g(x, ζ)− ζ

]
1A(ζ)dδF (ζ) +

∫ x

m

[
g(ξ,m)− ξ

]
dFµ(ξ), t ≤ m ≤ x. (4.1)

Notice that Gm
A is continuous in t, by the continuity of δF . Recall from Assumption 3.5 that

M0(δF ) is a finite set:

M0(δF ) = {m0
1, . . . ,m

0
n} for some −∞ < m0

1 < . . . ,m0
n <∞.

We also need to introduce the set

B0 := {x ∈ R : δF increasing on a right neighborhood of x}, x0 := inf B0,

Here, x ∈ B0 means that, for all ε > 0, we may find xε ∈ (x, x+ε) such that δF (xε) > δF (x).

Observe that

x0 < m0
1 and δF = 0 on (−∞, x0],

where the first inequality is a direct consequence of the definition of x0 and m0
1, and the

second property follows from the characterization (3.1) of the dominance µ � ν in the convex

order.

Recall the function γ of (3.17). Our construction uses recursively the following ingredients:

(I1) m0 ∈ {−∞} ∪M0(δF ), and A0 ⊂ B0 ∩ (−∞,m0) with δF > 0 on A0, satisfying

Gm0
A0

(−∞, .) = γ, and
∫ m0

−∞ 1A0φ(δF ) =
∫ m0

−∞ φ(δF ) for all non-decreasing map φ;

(I2) x̄0 ∈ B0 ∩ [m0,m
0
n) and t0 ∈ A0 satisfying δF (t0) = δF (x̄0) ≥ 0 and Gm0

A0
(t0, x̄0) = 0.

Lemma 4.1. Let m1 := min
[
M0(δF )∩ (x̄0,∞)

]
, and A1 :=

(
A0 \ [t0,m0]

)
∪ (x̄0,m1). Then,

(i) δF > 0 on A1, Gm1
A1

(−∞, .) = γ, and
∫ m1

−∞ 1A1φ(δF ) =
∫ m1

−∞ φ(δF ), for all non-decreasing

map φ;

(ii) for all x ≥ m1 with δF (x) ≤ δF (m1), there exists a unique scalar tm1
A1

(x) ∈ A1 such

that Gm1
A1

(
tm1
A1

(x), x
)

= 0;

(iii) tm1
A1

is decreasing µ−a.e. on
[
m1, x1

]
, where x1 := inf{x > m1 : g

(
x, tm1

A1
(x)
)
≤ x};

(iv) if x1 <∞, then x1 ∈ B0 ∩ [m1,m
0
n) \M0(δF ), and δF

(
tm1
A1

(x1)
)

= δF (x1) ≥ 0.

The proof of this lemma is reported in Subsection 7.1.
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4.2 Explicit construction

We start by defining:

Td(x) = Tu(x) = x for x ≤ x0, (4.2)

and we continue the construction of the maps Td, Tu along the following steps.

Step 1: Set m0 := −∞, A0 := ∅, x0 := inf B0, and t0 = −∞, and notice that (I1)−(I2)

are obviously satisfied by these ingredients. We may then apply Lemma 4.1, and obtain

m1 := m0
1, the smallest point on M0(δF ), and A1, x1, t1 := tm1

A1
(x1). Define the maps Td, Tu

on (x0, x1) by:

Td(x) = Tu(x) = x for x0 < x ≤ m1,

Td(x) := tm1
A1

(x), Tu(x) := g
(
x, Td(x)

)
for m1 ≤ x < x1.

(4.3)

If x1 =∞, this completes the construction, and we set mj = xj =∞ for al j > 1. See Figure

1 below for such an example. Otherwise, Lemma 4.1 guarantees that the new ingredients

(m1, A1, x1, t1) satisfy Conditions (I1)−(I2), and we may continue with the next step.

Step i: Suppose that the pair of maps (Td, Tu) is defined on (−∞, xi−1) for some quadruple

(mi−1, Ai−1, xi−1, ti−1) satisfying Conditions (I1)−(I2). We may then apply Lemma 4.1, and

obtain mi := min
[
M0(δF ) ∩ (xi−1,∞)

]
, and Ai, xi, ti := tmiAi (xi). Define the maps Td, Tu on

(xi−1, xi) by:

Td(x) = Tu(x) = x for xi−1 < x ≤ mi,

Td(x) := tmiAi (x), Tu(x) := g
(
x, Td(x)

)
for mi ≤ x < xi.

(4.4)

If xi =∞, this completes the construction, and we set mj = xj =∞ for all j > i. Otherwise,

Lemma 4.1 guarantees that the new ingredients (mi, Ai, xi, ti) satisfy Conditions (I1)−(I2),

and we may continue with the next step.

Since M0(δF ) is assumed to be finite, the last iteration can only have a finite number

of steps. We observe that we may extend to the case where M0(δF ) is countable, the

delicate case of an accumulation point of M0(δF ) could be addressed by means of transfinite

induction. We deliberately choose to avoid such technicalities in order to focus on the main

properties of the above construction.

Remark 4.2 (Some properties of Td). From the above construction of Td, we see that

(i) Td is right-continuous, and increasing on each interval (mi, xi), µ−a.e.

(ii) In general, the restriction of Td to ∪i≥0(mi, xi) fails to be non-decreasing. However, for

i 6= j, we have Td
(
(mi, xi)

)
∩ Td

(
(mj, xj)

)
= ∅. Consequently, the right-continuous inverse

T−1
d of Td is well defined.

(iii) Let I = (a, b) ⊂ Td([mi, xi]) be such that δF is flat on I, and δF increases at the right

of b and at the left of a. Then, whenever Td reaches the right endpoint b, it jumps from b to

a, i.e. ∆Td
(
T−1
d (b)

)
= a− b.
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Remark 4.3 (Some properties of Tu). From the above construction of Tu, we see that

(i) Tu is right continuous, Tu([mi, xi]) ⊂ [mi, xi], and Tu(x) > x for x ∈ (mi, xi) for all i.

(ii) Tu is nondecreasing, and strictly increasing µ−a.e. The last property will be clear from

Theorem 4.4 (ii) below, and implies that the right-continuous inverse T−1
u of Tu is well-

defined.

4.3 The left-monotone martingale transport plan

The last construction provides our martingale version of the Fréchet-Hoeffding coupling:

T∗(x, dy) := 1D(x)δ{x}(dy) + 1Dc(x)
[
q(x)δ{Tu(x)}(dy) + (1− q)(x)δ{Td(x)}(dy)

]
, (4.5)

where

D := ∪i≥0(xi−1,mi] and q(x) :=
x− Td(x)

Tu(x)− Td(x)
. (4.6)

We recall that our construction has a finite number of steps, N ≤ n say, due to our condition

that M0(δF ) is finite, and that the union in the definition of the set D is finite by our

convention that mj+1 = xj =∞ for all j ≥ N . Observe also from our previous construction

that Td(x) < x < Tu(x) on each (xi,mi). Therefore, q takes values in [0, 1].

Theorem 4.4. Let Assumptions 3.3 and 3.5 hold true. Then,

(i) the probability measure P∗(dx, dy) := µ(dx)T∗(x, dy) is the unique left-monotone transport

plan in M2(µ, ν);

(ii) moreover Tu and Td solve the following ODEs:

d(δF ◦ Td) = −(1− q)dFµ, d(Fν ◦ Tu) = qdFµ, whenever x ∈ [mi, xi) and Td(x) ∈ int(Ai).

The proof is reported in Section 7.1. We next comment on Assumtpion 3.5.

Remark 4.5. One could extend the above construction to the case where M0(δF ) is count-

able with no point of right accumulation, thus weakening the conditions of Assumption 3.5.

However, the condition that Fν has no atoms in this assumption is more difficult to by-pass

because then the ODE’s in Theorem 4.4 (ii) fail, in general, due to the fact that T−1
u ◦Tu(x)

and T−1
u ◦ Tu(x) are larger than {x}.

We conclude this subsection by the following remarkable property of Td which uses the

notation (3.7).

Proposition 4.6. Let Assumptions 3.3 and 3.5 hold true. Let i ≥ 1 be such that mi− = mi.

Then Td(mi) = mi. If in addition Fµ, Fν are twice differentiable near mi, then Td is also

differentiable on [mi,mi + h) for some h > 0, with right derivatives at mi:

T ′d(mi+) = −1/2 and T ′′d (mi) = +∞.
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Proof. We shall denote fµ := F ′µ, fν := F ′ν , δf := fν − fµ.

By construction, we have Td(mi) = mi and the differentiation of Gmi
Ai

(
Td(x), x

)
= 0 re-

produces the mass conservation condition (3.14). This ordinary differential equation shows

that Td inherits the differentiability of Fν and Fµ on (mi,mi + h) for some h > 0, with

T ′d(x) = −
g
(
x, Td(x)

)
− x

g
(
x, Td(x)

)
− Td(x)

fµ(x)

δf
(
Td(x)

) , x ∈ (mi,mi + h).

Let ε := x− Td(x), and recall that g(x, x) = x. Then, it follows from direct calculation that

g(x, Td)− x = −εδf
fν

(x) +
ε2

2

(δf ′
fν

+
(δf
fν

)2f ′ν
fν

)
(x) + o(ε2),

δf
(
Td(x)

)
= δf(x)− εδf ′(x) + o(ε).

where o is a continuous function with o(0) = 0. Then:

T ′d(x) =
− δf
fν

+ 1
2
ε
[
δf ′

fν
+
(
δf
fν

)2 f ′ν
fν

]
+ o(ε)

1− δf
fν

+ 1
2
ε
[
δf ′

fν
+
(
δf
fν

)2 f ′ν
fν

]
+ o(ε)

fµ
δf − εδf + o(ε)

(x), x ∈ (mi,mi + h).

Since fµ(mi) = fν(mi), this implies that:

T ′d(x) ∼x↘mi
−δf(x) + 1

2
εδf ′(x) + o(ε)

δf(x)− εδf(x) + o(ε)
=
−(x−mi) + 1

2
ε+ o(ε)

(x−mi)− ε+ o(ε)
, x ∈ (mi,mi + h),

where we recall that ε = Td(x) − x. Analyzing these dynamics near mi together with the

initial condition Td(mi) = mi, we conclude that T ′d(x) −→ −1/2 as x↘ mi.

Finally, we compute T ′′d (mi). By the ODE satisfied by Td and the smoothness of g, it

follows that T ′d is differentiable at any x > mi. We then differentiate the ODE satisfied

by Td, and use Taylor expansions as above. The result follows from direct calculation by

sending x↘ mi. tu

5 Martingale one-dimensional Brenier Theorem

5.1 Derivation of the optimal semi-static hedging strategy

We start by following the same line of argument as in the proof of Theorem 2.2. Our

objective is to construct a triple

(ϕ∗, ψ∗, h∗) ∈ D2 such that µ(ϕ∗) + ν(ψ∗) = EP∗ [c(X, Y )]. (5.1)

This will provide equality in (3.5) with the optimality of P∗ for the optimal transportation

problem P2 and the optimality of (ϕ∗, ψ∗, h∗) for the dual problem D2.

By the definition of the dual set D2, we observe that the requirement (5.1) is equivalent to

ϕ∗(X) + ψ∗(Y ) + h∗(X)(Y −X)− c(X, Y ) = 0, P∗ − a.s. for some function h∗, (5.2)
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and that the function ϕ∗ is determined from (ψ∗, h∗) by:

ϕ∗(x) = max
y∈R

H(x, y), where H(x, y) := c(x, y)− ψ∗(y)− h∗(x)(y − x), x, y ∈ R. (5.3)

Recall the set D defined in (4.6) on which we have Td(x) = Tu(x) = x, x ∈ D, and the

right-continuous inverse functions T−1
d , T−1

u defined in Remark 4.2 (ii) and Remark 4.3 (iii).

The perfect replication property (5.2) implies that h∗ may be chosen arbitrarily on D, and:

h∗(x) =
(c(x, .)− ψ∗) ◦ Tu(x)− (c(x, .)− ψ∗) ◦ Td(x)

(Tu − Td)(x)
for x ∈ Dc. (5.4)

Since Tu and Td are maximizers in (5.3), it follows from the first-order condition that

ψ′∗ ◦ Tu(x) = cy(x, Tu(x))− h∗(x), ψ′∗ ◦ Td(x) = cy(x, Td(x))− h∗(x), x ∈ Dc, (5.5)

and ψ′∗(x) = cy(x, x)− h∗(x) for x ∈ D. (5.6)

By evaluating the second equation in (5.5) at a point T−1
d (x) ∈ D, it follows from (5.6) that:

cy(x, x)− h∗(x) = cy(T
−1
d (x), x)− h∗ ◦ T−1

d (x), x ∈ D, (5.7)

so that it only remains to determine h∗ on Dc. Differentiating (5.4), and using (5.5), we see

that for x ∈ Dc:

h′∗ =
d

dx

{c(., Tu)−c(., Td)
Tu−Td

}
+
T ′u−T ′d
Tu−Td

ψ∗(Tu)−ψ∗(Td)
Tu−Td

+
T ′d
[
cy(., Td)− h∗]−T ′u

[
cy(., Tu)− h∗]

Tu−Td

Then, direct calculation leads to:

h′∗ =
cx(., Tu)− cx(., Td)

Tu − Td
on Dc, (5.8)

which determines h∗ up to irrelevant constants. Since Td and Tu take values in D and Dc,

respectively, and h∗ is determined by (5.7) and (5.8), we see that equation (5.5) determines

ψ∗ on R.

5.2 Main Result

The previous formal derivation suggest the following candidate functions for the semi-static

hedging strategy. Up to a constant, the dynamic hedging component h∗ is defined on each

continuity point by:

h′∗ =
cx(., Tu)− cx(., Td)

Tu − Td
on Dc, h∗ = h∗ ◦ T−1

d + cy(., .)− cy(T−1
d , .) on D. (5.9)

The payoff function ψ∗ is defined up to a constant on each continuity interval by:

ψ′∗ = cy(T
−1
u , .)− h∗ ◦ T−1

u on Dc, ψ′∗ = cy(T
−1
d , .)− h∗ ◦ T−1

d on D. (5.10)
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The corresponding function ϕ∗ is given by:

ϕ∗(x) = EP∗
[
c(X, Y )− ψ∗(Y )|X = x

]
(5.11)

= q(x)
(
c(x, .)− ψ∗

)
◦ Tu(x) +

(
1− q(x)

)(
c(x, .)− ψ∗

)
◦ Td(x), x ∈ R.

Finally, we define h∗ and ψ∗ from (5.9)-(5.10) by imposing that

the function c(., Tu)− ψ∗(Tu)− [c(., Td)− ψ∗(Td)]− (Tu − Td)h is continuous. (5.12)

The last requirement is obviously possible as the number of jumps of Td and Tu is finite,

due to our assumption that M0(δF ) is finite. Indeed, (5.12) determines ψ∗(Tu) from ψ∗(Td)

at discontinuity points, from left to right.

Theorem 5.1. Let µ, ν be as in Assumptions 3.3 and 3.5. Assume further that ϕ+
∗ ∈ L1(µ),

ψ+
∗ ∈ L1(ν), and that the partial derivative of the coupling function cxyy exists and cxyy > 0

on R× R. Then:

(i) (ϕ∗, ψ∗, h∗) ∈ D2,

(ii) the strong duality holds for the martingale transportation problem, P∗ is a solution of

P2(µ, ν), and (ϕ∗, ψ∗, h∗) is a solution of D2(µ, ν):∫
c
(
x, T∗(x, dy)

)
µ(dx) = EP∗

[
c(X, Y )] = P2(µ, ν) = D2(µ, ν) = µ(ϕ∗) + ν(ψ∗).

Remark 5.2 (Symmetry: the right-monotone martingale transport plan).

(i) Suppose that cxyy < 0. Then, the upper bound P2(µ, ν) is attained by the right-monotone

martingale transport map

P̄∗(dx, dy) := µ̄(dx)T̄∗(x, dy),

where T̄∗ is defined as in (4.5) with the pair of probability measures (µ̄, ν̄):

Fµ̄(x) := 1− Fµ(−x), and Fν̄(y) := 1− Fν(−y).

To see this, we rewrite the optimal transportation problem equivalently with modified inputs:

c̄(x, y) := c(−x,−y), µ̄
(
(−∞, x]

)
:= µ

(
[−x,∞)

)
, ν̄

(
(−∞, y]

)
:= ν

(
[−y,∞)

)
,

so that c̄xyy > 0, as required in Theorem 5.1. Note that the martingale constraint is preserved

by the map (x, y)→ (−x,−y).

(ii) Suppose that cxyy > 0. Then, the lower bound problem is explicitly solved by the right-

monotone martingale transport plan. Indeed, it follows from the first part (i) of the present

remark that:

inf
P∈M2(µ,ν)

EP[c(X, Y )
]

= − sup
P∈M2(µ,ν)

EP[− c(X, Y )
]

= EP̄∗
[
c(X, Y )

]
=

∫
c
(
x, T̄∗(x, dy)

)
µ(dx).

18



Remark 5.3. The martingale counterpart of the Spence-Mirrlees condition is cxyy > 0. We

now argue that this condition is the natural requirement in the present setting. Indeed, the

optimization problem is not affected by the modification of the coupling function from c to

c̄(x, y) := c(x, y)+a(x)+b(y)+h(x)(y−x) for any a ∈ L1(µ), b ∈ L1(ν), and h ∈ L0. Since

cxyy = c̄xyy, it follows that the condition cxyy > 0 is stable for the above transformation of

the coupling function.

Remark 5.4 (Comparison with Beiglböck and Juillet [4]). The remarkable notion of left-

monotone martingale transport was introduced by Beiglböck and Juillet [4], where existence

and uniqueness is proved.

1. We first show that their conditions on the coupling function fall in the context of our

Theorem 5.1:

• The first class of coupling functions considered in [4] is of the form c(x, y) =

h(y − x) for some differentiable function h whose derivative is strictly concave.

Notice that this form of coupling essentially falls under our condition cxyy > 0.

• The second class of coupling functions considered in [4] is of the form c(x, y) =

ψ(x)φ(y) where ψ is a non-negative decreasing function and φ a non-negative

strict concave function. This class also essentially falls under our condition that

cxyy > 0.

2. The proof of [4] does not use the dual formulation of the martingale optimal transport

problem. They rather extend the concept of cyclical monotonicity to the martingale

context, and provide an existence result without explicit characterization of the maps

(Td, Tu). Also, our derivation of the optimal semi-static hedging strategy (ϕ∗, ψ∗, h∗)

is new. We recall however that the result of [4] does not require our Assumption 3.5.

3. Our construction agrees with the example of two Log-normal distributions µ0 =

eN (−σ2
1/2,σ

2
1) and ν0 = eN (−σ2

2/2,σ
2
2), σ2

1 < σ2
2, illustrated in Figure 2 of [4]. By using

our construction, we reproduce the left-monotone transference map in Figure 1. In-

deed, in this case, x0 = −∞, δF has a unique local (and therefore global) maximizer

m1 of δF , and x1 = ∞. The left-monotone transport plan is explicitly obtained from

our construction after Step 1, i.e. no further steps are needed in this case.

Example 5.5. We provide an example where δF has two local maxima and the construction

needs two steps. Let µ and ν be defined by

µ1 = N (1, 0.5) and ν1(x) =
1

3

[
N (1, 2) +N (0.6, 0.1) +N (1.4, 0.3)

]
.

Clearly µ and ν have mean 1, and µ � ν. We also immediately check that δF has two local

maxima m1 = −0.15 and m2 = 0.72. Figure 2 below reports the maps Tu and Td as obtained

from our construction.
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Figure 1: Maps Td and Tu built from two log-normal densities with variances 0.04 and 0.32.

m1 = 0.731.
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Figure 2: δF has two local maxima (left), and Td, Tu corresponding to µ1, ν1 (right).
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Remark 5.6 (Comparison with Hobson and Neuberger [32]). Our Theorem 5.1 does not

apply to the coupling function c(x, y) = |x − y| considered by Hobson and Neuberger [32].

More importantly, the corresponding maps Thnu and Thnd introduced in [32] are both nonde-

creasing with Thnd (x) < x < Thnu (x) for all x ∈ R. So our solution (Td, Tu) is of a different

nature and in contrast with the above (Thnd , Thnu ), our left-monotone martingale transport

map T∗ does not depend on the nature of the coupling function c as long as cxyy > 0.

However, by following the line of argument of the proof of Theorem 5.1, we may recover

the solution of Hobson and Neuberger [32]. As a matter of fact, our method of proof is

similar to that of [32], as the dual problem D2 is exactly the Lagrangian obtained by the

penalization of the objective function by Lagrange multipliers.

5.3 Some examples

Example 5.7 (Variance swap). The coupling function in this case is c(x, y) =
(

ln(y/x)
)2

where µ and ν have support in (0,∞). In particular, it satisfies the requirement of Theorem

5.1 that cxyy > 0. Then, the optimal upper bound is given by

P2(µ, ν) =

∫ ∞
0

[
q(x)

(
ln
Tu(x)

x

)2

+ (1− q)(x)
(

ln
Td(x)

x

)2]
µ(dx), (5.13)

where q is set to an arbitrary value on D. In Figure 3, we have plotted ϕ∗, ψ∗ and h∗ with

marginal distributions µ0 = eN (−σ2
1/2,σ

2
1) and ν0 = eN (−σ2

2/2,σ
2
2), σ2

1 = .04 < σ2
2 = .32. We

recall that the corresponding maps Td, Tu are plotted in Figure 1. The expression for ψ∗ is

ψ′∗(x) =
2

x
ln

(
x

T−1
u (x)

)
+ 2

∫ T−1
u (x)

x0

ln
(
Tu(ξ)
Td(ξ)

)
ξ(Tu(ξ)− Td(ξ))

dξ.

In particular, ψ′′∗(x) = 2
x2

for all x ≤ m1.

Example 5.8. Consider the coupling function c(x, y) = −
(
y
x

)p
, p > 1, and let the measures

µ, ν be supported in (0,∞). This payoff function also satisfies the condition of Theorem 5.1

that cxyy > 0. The best upper bound is then given by

P2(µ, ν) = −
∫ ∞

0

[
q(x)

(Tu(x)

x

)p
+ (1− q)(x)

(Td(x)

x

)p]
µ(dx).

6 The n−Marginals Martingale Transport

In this section, we provide a direct extension of our results to the martingale transportation

problem under finitely many marginals constraint. Fix an integer n ≥ 2, and let X =

(X1, . . . , Xn) be a vector of n random variables denoting the prices of some financial asset

at dates t1 < . . . < tn. Consider the probability measures µ = (µ1, . . . , µn) ∈ (PR)n with

µ1 � . . . � µn in the convex order and∫
|ξ|µi(dξ) <∞ and

∫
ξµi(dξ) = X0, for all i = 1, . . . , n.
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Figure 3: Superreplication strategy for a 2-period variance swap given two log-normal den-

sities with variances 0.04 and 0.32.

Similar to the two-marginals case, we introduce the set

Mn(µ) :=
{
P ∈ Pn(µ) : X is a P−martingale

}
,

where Pn(µ) was defined in (2.6). In the present martingale version, we introduce the

one-step ahead martingale transport maps defined by means of the n pairs of maps (T id, T
i
u):

T i∗(xi, .) := 1Diδ{xi} + 1Dci
(
qi(xi)δT iu(xi) + (1− qi)(xi)δT id(xi)

)
, (6.1)

where qi(ξ) := (ξ − T id(ξ))/(T iu − T id)(ξ) for ξ ∈ Dc
i , and (Di, T

i
d, T

i
u)i=1,...,n−1 are defined as

in Subsection 4.2 with the pair (µi, µi+1).

The n−marginals martingale transport problem is defined by:

Pn(µ) = sup
P∈Mn(µ)

EP[c(X)],

where the map c : Rn −→ R is of the form

c(x1, . . . , xn) =
∑n−1

i=1 c
i(xi, xi+1)

for some upper semicontinuous functions ci : R×R −→ R with linear growth (or Condition

(2.2)), i = 1, . . . , n− 1.

The dual problem is defined by

Dn(µ) := inf
(u,h)∈Dn

n∑
i=1

µi(ui),
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where u = (u1, . . . , un) with components ui : R −→ R, and h = (h1, . . . , hn−1) with compo-

nents hi : Ri −→ R, taken from the set of dual variables:

Dn :=
{

(u, h) : (ui)
+ ∈ L1(µi), hi ∈ L0(Ri), and ⊕ni=1 ui +

∑n−1
i=1 h

⊗i
i ≥ c

}
.

Here, ⊕ni=1ui(x) =
∑

i≤n ui(xi) and h⊗
i

i (x) = hi(x1, . . . , xi)(xi+1 − xi).
Similar to the two-marginals problems, the weak duality inequality Pn(µ) ≤ Dn(µ) is

obvious, and we shall obtain equality in the following result under convenient conditions.

To derive the structure of the optimal hedging strategy, we shall consider the two-marginals

(µi, µi+1) problems with coupling functions ci. By Theorem 5.1, we have for i = 1, . . . , n−1:

P i
2(µi, µi+1) := sup

P∈M(µi,µi+1)

EP[ci(X, Y )] = inf
(ϕ,ψ,h)∈Di2

{µi(ϕ) + µi+1(ψ)} = µi(ϕ
∗
i ) + µi+1(ψ∗i ),

where Di2 is defined as in (3.3) with ci substituted to c, and (ϕ∗i , ψ
∗
i , h

∗
i ) ∈ Di2 are defined as

in (5.9)-(5.10)-(5.11) with ci substituted to c and (T iu, T
i
d) substituted to (Tu, Td). Finally,

we define:

u∗i (xi) := 1{i<n}ϕ
∗
i (xi) + 1{i>1}ψ

∗
i−1(xi), i = 1, . . . , n,

and u∗ :=
(
u∗1, . . . , u

∗
n

)
, h∗ :=

(
h∗1, . . . , h

∗
n−1

)
.

Theorem 6.1. Let (µi)1≤i≤n be probability measures on R without atoms, with µ1 � . . . � µn
in convex order, and M0(Fµi − Fµi−1

) finite for all 1 < i ≤ n. Assume further that

• ci have linear growth, that the cross derivatives cixyy exist and satisfy cixyy > 0,

• ϕ∗i , ψ∗i satisfy the integrability conditions (ϕ∗i )
+ ∈ L1(µi), (ψ∗i )

+ ∈ L1(µi+1).

Then, the strong duality holds, the probability measure P∗n(dx) = µ1(dx1)
∏n−1

i=1 T
i
∗(xi, dxi+1)

on Rn is optimal for the martingale transportation problem Pn(µ), and (u∗, h∗) is optimal

for the dual problem Dn(µ), i.e.

P∗n ∈Mn(µ), (u∗, h∗) ∈ Dn, and EP∗n [c(X)] = Pn(µ) = Dn(µ) =
∑n

i=1 µi(u
∗
i ).

Proof. Clearly, we have P∗n ∈ Mn(µ), which provides the inequality EP∗n [c(X)] ≤ Pn(µ).

We next observe that (u∗, h∗) ∈ Dn from our construction. Then Dn(µ) ≤
∑

i≤n µi(u
∗
i ) =

EP∗n [c(X)]. The required result follows from the weak duality inequality Pn(µ) ≤ Dn(µ).

tu

Remark 6.2. The optimal lower bound for a coupling function as in Theorem 6.1 is attained

by the mirror solution introduced in Remark 5.2.

Example 6.3 (Discrete monitoring variance swaps). This is a continuation of our Example

5.7. Suppose that (µi)1≤i≤n have support in (0,∞) with mean X0, satisfy the conditions of

Theorem 6.1. Let c(x1, . . . , xn) :=
∑n

i=1

(
ln xi

xi−1

)2
. Then:

Pn(µ) =

∫ (
ln

ξ

X0

)2

µ1(dξ) +
n−1∑
i=1

∫ ∞
0

[
qi(ξ)

(
ln
T iu(ξ)

ξ

)2

+ (1− qi)(ξ)
(

ln
T id(ξ)

ξ

)2]
µi(dξ).

This optimal bound depends on all the marginals. The optimal lower bound is attained by

our mirror solution, see Remark 6.2.
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Remark 6.4. In a related robust hedging problem, Hobson and Klimmek [31], derived an

optimal upper bound for a derivative c(x1, . . . , xn) =
∑n−1

i=1 c
0(xi, xi+1). The difference with

our problem above is that they are only given the marginal distribution µn for Xn. See

also Kahale [36]. We would like to emphasize that [31] assume the variance Kernel c0 to

satisfy the conditions c0(x, x) = c0
y(x, x) = 0, (x− y)cxy + cx > 0, together with our Spence-

Mirrlees condition cxyy > 0. In the context of our problem with finitely many given marginals

µ1, . . . , µn, notice that, apart from the Spence-Mirrlees condition, none of these requirements

are preserved by the transformation of Remark 5.3.

7 Proof of the main results

7.1 Construction of the left-monotone map

This section is devoted to the proof of Theorem 4.4.

Proof of Lemma 4.1 (i) That δF > 0 on A1 is obvious by construction. Also, for a non-

decreasing function φ, the equally
∫ m1

−∞ 1A1φ(δF ) =
∫ m1

−∞ φ(δF ) follows immediately from the

corresponding property verified by the pair (m0, A0), the definition of A1, and the fact that

δF (t0) = δF (x̄0).

We next verify that Gm1
A1

(−∞, .) = γ, where

Gm1
A1

(−∞, x) = −
∫ m1

−∞

[
g(x, ξ)− ξ

]
1A1(ξ)dδF +

∫ x

m1

[
g(ξ,m1)− ξ

]
dFµ(ξ).

By direct differentiation, we see that

dGm1
A1

(−∞, x) =
(
−
∫ m1

−∞
1A1(ζ)dζg(x, ζ) + g(x,m1)− x

)
dFµ(x) =

[
F−1
ν ◦Fµ(x)− x

]
dFµ(x),

where the last equality follows from the first part of (i). We then re-write

Gm1
A1

(−∞, x) = Gm1
A1

(−∞, x̄0) +

∫ x

x̄0

[
F−1
ν ◦ Fµ(ξ)− ξ

]
dFµ(ξ). (7.1)

Since A1 = A0 \ (t0,m0] ∪ [x1,m1], and Gm0
A0

(t0, x̄0) = 0, we compute that

Gm1
A1

(−∞, x̄0) = −
∫ t1

−∞

[
g(x̄0, ζ)− ζ

]
1A0(ζ)dδF (ζ) +Gm0

A0
(t0, x̄0)

−
∫ m1

x̄0

[
g(x̄0, ζ)− ζ

]
dδF (ζ) +

∫ x̄0

m1

[
g(ξ,m1)− ξ

]
dFµ(ξ)

= Gm0
A0

(−∞, x̄0)−
∫ m1

x̄0

[
g(x̄0, ζ)− ζ

]
dδF (ζ) +

∫ x̄0

m1

[
g(ξ,m1)− ξ

]
dFµ(ξ)

= Gm0
A0

(−∞, x̄0).
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Plugging this in (7.1), it follows from direct change of variable in the integral that

Gm1
A1

(−∞, x) = Gm0
A0

(−∞, x) = γ(x)

(ii) Since m1 ∈ M0(δF ), it follows from the definition of M0(δF ) that Fµ(x) > Fµ(ζ) for

all x > m1 and ζ ∈ A2. Since ν has no atoms, its right-continuous inverse F−1
ν is strictly

increasing, implying that g(x, ζ) − ζ > g(ζ, ζ) − ζ = F−1
ν ◦ Fν(ζ) − ζ. Moreover, since

δF is strictly increasing on A1, we see that Fν is strictly increasing in A1, and therefore

F−1
ν ◦ Fν(ζ) = ζ. Hence, g(x, ζ)− ζ > 0 on A1, and it follows that, for t < m1 ≤ x,

t 7−→ Gm1
A1

(t, x) is continuous, strictly increasing on A1, and flat on (−∞,m1] \ A1.

We next verify that Gm1
A1

(m1, x) :=
∫ x
m1

[
g(ξ,m1)−ξ

]
dFµ(ξ) > 0 as long as δF (m1) > δF (x).

Indeed, for ξ ∈ (m1, x), we have δF (m1) > δF (ξ), implying that g(ξ,m1) > F−1
ν ◦ Fν(ξ) by

the increase of F−1
ν . Notice that the right-continuous inverse F−1

ν satisfies F−1
ν ◦ Fν(ξ) ≥ ξ.

Then g(ξ,m1) > ξ, and we deduce that Gm1
A1

(m1, x) > 0 from the fact that Fµ is strictly

increasing on a right neighborhood of m1, by the definition of M0(δF ).

Then, in order to establish the existence and uniqueness of tm1
A1

(x), it remains to verify

that Gm1
A1

(−∞, x) = γ(x) < 0 for all x ≥ m1.

Since δF increases from zero at the left extreme of to support, and increases to zero at the

right extreme of its support, we see that γ(x) < 0 near both extremes of its support. Next,

let x∗ be any possible local maximizer of γ. Then, it follows from the first order condition

in the expression (7.1) that γ is flat off Supp(µ), and we may assume that x∗ is either an

interior point of Supp(Fµ) or x∗ is a left accumulation point of Supp(Fµ). In both cases, it

follows from the first order condition that

F−1
ν

(
Fµ(x∗)−

)
≤ x∗ ≤ F−1

ν

(
Fµ(x∗)

)
.

If F−1
ν is continuous at the point Fµ(x∗), then δF (x∗) = 0, and it follows that

γ(x∗) =

∫
(−∞,x∗]

ξdδF (ξ) = −
∫

(−∞,x∗]
(x∗ − ξ)dδF (ξ) = −

∫
(x∗ − ξ)+dδF (ξ).

By the convex-order property and the fact that µ 6= ν, this implies that γ(x∗) < 0.

In the alternative case that F−1
ν jumps at the point Fµ(x∗), notice that Fν is flat at the

right of F−1
ν ◦Fµ(x∗), and therefore the conclusion γ(x∗) < 0 holds true in this case as well.

(iii) Direct differentiation reveals that

dGm1
A1

(
tm1
A1

(x), x
)

= −
[
g(
(
tm1
A1

(x), x
)
− tm1

A1
(x)
]
d
{
δF ◦ tm1

A1

}
(x) +

[
g(x,m1)− x

]
dFµ(x).

The required result follows immediately from the restriction of tm1
A1

(x) to take values in a set

of increase of δ F .

(iv) Suppose x1 < ∞. Then, since the possible jumps of F−1
ν are positive, it follows from

the definition of x1 that g
(
x1, t

m1
A1

(x1)
)

= x1, and Fµ(x1) + δF
(
tm1
A1

(x1)
)

is a continuity point

of F−1
ν . Consequently, δF

(
tm1
A1

(x1)
)

= δF (x1), and

x1 = inf
{
x > m1 : δF

(
tm1
A1

(x)
)
≤ δF (x)

}
. (7.2)
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Since t1 := tm1
A1

(x1) ∈ A1, we see that x1 ∈ B0 is necessarily a point of (right-)increase of δF ,

and we have

- either t1 ∈ [x̄0,m1], implying that δF (x1) = δF (t1) ≥ δF (x̄0) ≥ 0,

- or t1 ∈ A0 \ (t0,m0], implying again that δF (x1) ≥ 0.

Finally, since δF increases to zero at the right extreme of its support, it follows from the fact

that x1 ∈ B0 and δF (x1) ≥ 0 that x1 ≤ mn, and by (7.2) together with the non-increase of

tm1
A1

, we see that x1 /∈M0(δF ). tu

Proof of Theorem 4.4 (i) By construction, the probability measure P∗ satisfies the left-

monotonicity property of Definition 3.2. In the rest of this proof, we verify that P∗ ∈
M2(µ, ν). In particular, by the uniqueness result of Beiglböck and Juillet [4] (Theorem 1.5

and Corollary 1.6), this would imply that P∗ is the unique left monotone transport plan.

First, by the definition of P∗ in (4.5), X ∼P∗ µ, and EP∗ [Y |X] = X. It remains to verify

that Y ∼P∗ ν. We argue as in the beginning of Section 7.1 considering separately the

following alternatives for any point y ∈ R:

Case 1: y = yd ∈ D∩B0 corresponds to some point x such that yd = Td(x), and we see from

the definition of P∗ that:

P∗[Y ∈ dy] = dFµ
(
Td(x)

)
− (1− q)dFµ(x) and dFν

(
Tu(x)

)
= qdFµ.

Since dFν(Tu) = qdFµ, and Tu(x) = g(x, Td(x)), this provides:

P∗[Y ∈ dy] = d{Fµ(Td)− Fµ + Fν(Tu)}(x) = dFν(y).

Case 2: y = yu ∈ Dc corresponds to some x such that yu = Tu(x). By the definition of P∗,
and the fact that dFν(Tu) = qdFµ, we see that:

P∗[Y ∈ dy] = qdFµ(x) = dFν(y).

Case 3: In the remaining alternative y ∈ D \ B0, we observe that the function δF is flat

near y, and there is no x 6= y such that Td(x) = y or Tu(x) = y. Then, it follows from the

definition of P∗ that:

P∗[Y ∈ dy] = dFµ(y) = dFν(y).

(ii) Differentiating the integral equation defined by GA at a continuity point of Td, we see

that:

0 = −
[
F−1
ν ◦ Fµ(x)− x

]
dFµ(x) +

[
g(x, Td(x))− F−1

ν ◦ Fµ(x)
]
dFµ(x)

+
[
g(x, Td(x))− Td(x)

]
dδF (Td(x))

=
[
g(x, Td(x))− x

]
dFµ(x) +

[
g(x, Td(x))− Td(x)

]
dδF (Td(x)).

Since Tu = g(., Td) this is the required ODE. The ODE for Tu is obtained by using the

relation Tu = g(., Td). tu
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7.2 Optimal semi-static strategy: proof of Theorem 5.1

Following the line of argument of the proof of Theorem 2.2, we see from the weak duality

(3.5) that

EP∗ [c(X, Y )] ≤ P2(µ, ν) ≤ D2(µ, ν).

Then, the proof of Theorem 5.1 is completed by the following result.

Lemma 7.1. Let µ, ν be as in Assumptions 3.3 and 3.5, and suppose that the payoff function

c satisfies cxyy > 0. Then ϕ∗ ⊕ ψ∗ + h⊗∗ ≥ c.

Proof (i) We first verify that the second order condition for a local maximum of H(x, .) is

satisfied on Dc. Differentiating (5.5), and using the expression of h′∗ in (5.9), we see that

Hyy(., Tu)dTu = cyy(., Tu)dTu − dψ′∗(Tu) =
cx(., Tu)− cx(., Td)

Tu − Td
dx− cxy(., Tu)dx

on Dc. Since cxyy > 0, this implies that Hyy(., Tu)T
′
u = cx(.,Tu)−cx(.,Td)

Tu−Td
− cxy(., Tu) < 0, and

by the non-decrease of Tu, it follows that Hyy(., Tu) < 0. Similarly,

Hyy(., Td)T
′
d =

[
cyy(., Td)− ψ′′∗ ◦ Td

]
T ′d =

cx(., Tu)− cx(., Td)
Tu − Td

− cxy(., Td) > 0,

on Dc, and by the non-increase of Td, this implies that Hyy(., Td) < 0.

(ii) We next show that y 7−→ H(., y) is increasing before Td, and decreasing after Tu. In

particular, this implies that:

ϕ∗(x) = max
y∈[Td(x),Tu(x)]

H(x, y) for all x ∈ R.

Set y := Tu(x), let mi be the local maximum from which (Td, Tu)(x) is constructed, and

consider an arbitrary y′ = Tu(x
′) > y for some x′ > x. We only report the proof for the case

x′ ∈ (mj, xj] for some j ≥ i; the remaining case x′ ∈ (xj,mj+1] for some j ≥ i is treated

similarly. Recalling that Hy(x, Tu(x)) = 0, we decompose

Hy(x, y
′) = Hy(x, y

′)−Hy(x,mj ∨ y) +

j∑
i+1

(Ak +Bk),

where the last sum is set to zero whenever i = j, and

Ak := Hy(x,mk)−Hy(x, xk−1), Bk := Hy(x, xk−1)−Hy(x,mk−1 ∨ Tu(x)).

We next compute from the expression of h∗ in (5.9) that:

Hy(x, y
′)−Hy(x,mj ∨ y) =

∫ y′

mj∨y

[
cyy(x, ξ

′)− ψ′′∗(ξ′)
]
dξ′

≤
∫ y′

mj∨y

[
cyy(x, ξ

′)− cyy(T−1
u (ξ′), ξ′)

]
dξ′

= −
∫ y′

mj∨y

∫ T−1
u (ξ′)

x

cxyy(ξ, ξ
′)dξdξ′ < 0,
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where the second inequality follows from the second order condition verified in (i). Similarly,

we compute that

Ak =

∫
(xk−1,mk]

[
cyy(x, ξ

′)− ψ′′∗(ξ′)
]
dξ′

≤
∫ mk

xk−1

[
cyy(x, ξ

′)− cyy(T−1
d (ξ′), ξ′)

]
dξ′

= −
∫ mk

xk−1

∫ T−1
d (ξ′)

x

cxyy(ξ, ξ
′)dξdξ′ < 0,

where we used again the second order condition verified in (i). Finally,

Bk =

∫ y

mk−1∨Tu(x)

[
cyy(x, ξ

′)− ψ′′∗(ξ′)
]
dξ′

≤
∫ y

mk−1∨Tu(x)

[
cyy(x, ξ

′)− cyy(T−1
u (ξ′), ξ′)

]
dξ′

= −
∫ y

mk−1∨Tu(x)

∫ T−1
u (y′)

x

cxyy(ξ, ξ
′)dξdξ′ < 0.

A similar argument also shows that Hy(x, y
′) < 0 for y′ < Td(x).

(iii) We next show that H(., Td) = H(., Tu). Denote δH := H(., Tu)−H(., Td), and compute:

δH ′ := cx(., Tu)− cx(., Td)− (Tu − Td)h′∗
+
[
cy(., Tu)− ψ′∗(Tu)− h∗

]
T ′u −

[
cy(., Td)− ψ′∗(Td)− h∗

]
T ′d

in the distribution sense. By definition of ψ∗ and h∗, it follows that δH ′ = 0 at any

continuity point. Since δH is continuous by our construction, see (5.12), this shows that

δH(x) = δH(mi) = 0, where mi is the local maximizer from which (Td, Tu)(x) is defined.

(iv) We finally show that Tu and Td are global maximizers of y 7−→ H(., y). Let x ∈ Dc, and

denote by m the local maximizer from which Td(x) and Tu(x) are constructed. For fixed

T = Tu(t) ∈
(
m,Tu(x)

)
, it follows from similar calculations as in the previous step that

∂x
{
H(., Tu)−H(., T )

}
= cx(., Tu)− cx(., T )− (T − Td)h′∗

= (Tu − T )
(cx(., Tu)− cx(., T )

Tu − T
− cx(., Tu)− cx(., Td)

Tu − Td

)
> 0

by the condition cxyy > 0. Then H(., Tu)−H(., T ) =
∫ .
t
∂x
{
H(., Tu)−H(., T )

}
> 0.

By a similar calculation, we also show that H
(
x, Td(x)

)
− H(x, T ) ≥ 0 for all T ∈

(Td(x),m). Since H(x, Tu(x)) = H(x, Td(x)) by the previous step, this completes the proof

that Td and Tu are global maximizers of y 7−→ H(., y). tu
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[6] Brenier, Y. : Décomposition polaire et réarrangement monotone des champs de vecteurs,

C. R. Acad. Sci. Paris Sci. Paris Série I Math., 305(19): 805-808, 1987.

[7] Brown, H., Hobson, D., Rogers, L.C.G. : Robust hedging of barrier options. Math.

Finance, 11(3):28517314, 2001.

[8] Carlier, G. : On a class of multidimensional optimal transportation problems, Journal

of convex analysis, Vol. 10 (2003), No. 2, 517-529.

[9] Carr, P. : Local variance Gamma option pricing model, presentation, IBCI conference,

Paris (April 2009).

[10] Carr, P. , Geman, H., Madan, D.B., Yor, M. : From local volatility to local Lévy
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[14] Cox, A. M. G., Oblój, J. : Robust hedging of double touch barrier options. SIAM J.

Financial Math., 2:14117182, 2011.
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