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Abstract

We extend the martingale version of the one-dimensional Brenier’s theorem (Fréchet-

Hoeffding coupling, see [16, 30]) established in Henry-Labordère and Touzi [21] to the

infinitely-many marginals case. In short, their results give an explicit characterization

of the optimal martingale transference plans as well as the optimal dual components

of a two marginals discrete-time martingale transportation (MT) problem for a large

class of reward functions. We consider here the limiting continuous-time case, which

leads to an infinitely-many marginals MT problem. By approximation technique, we

show that for a class of reward functions, the optimal martingale transference plan

is provided by a pure downward jump local Lévy model. In particular, it provides a

new construction of the martingale peacock process (PCOC “Processus Croissant pour

l’Ordre Convexe,” see Hirsch, Profeta, Roynette and Yor [24]), and a new remarkable

example of discontinuous fake Brownian motions. Further, as in [21], we also provide a

duality result together with dual optimizer in explicit form. Finally, as an application

to financial mathematics, our results give the model-independent optimal lower and

upper bounds for variance swaps.

1 Introduction

The classical optimal transportation (OT) problem was initially formulated by Monge in

his treatise “Théorie des déblais et des remblais”. Let µ0, µ1 be two probability measures

on Rd, c : Rd × Rd → R be a cost function, then the transportation problem consists

in minimizing the transportation cost
∫
Rd c(x, T (x))µ0(dx) among all transference plans,

i.e. all measurable functions T : Rd → Rd such that µ1 = µ0 ◦ T−1. The problem was

later relaxed by Kantorovich to minimizing the value EP[c(X0, X1)] among all probability

measures P such that X0 ∼P µ0 and X1 ∼P µ1. The last formulation is easily seen to admit

optimal solutions and has the same value as that of Monge’s original problem when the
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probability measure µ0 has no atoms. As for Monge’s original problem, the existence of an

optimal solution and its characterization has been obtained later when the cost function

satisfies the so-called Spence-Mirrless condition, known as Brenier’s theorem. We refer to

Rachev and Ruschendorf [47] and Villani [50] for a detailed presentation.

The theory has been extended to the multiple marginals case by Gangbo and Świȩch [18],

Carlier [8], Olkin and S.T. Rachev [41], Knott and Smith [36], Rüschendorf and Uckelmann

[48], Heinich [20], and Pass [43, 44, 45], etc. We also refer to the full-marginals case

addressed by Pass [46].

Recently, a martingale transportation (MT) problem was introduced in Beiglböck, Henry-

Labordère and Penkner [3] and in Galichon, Henry-Labordère and Touzi [17]. Given two

probability measures µ0 and µ1, one considers all (discrete- or continuous-time) martingales

(or general stochastic dynamics) X such that X0 ∼ µ0 and X1 ∼ µ1, which minimizes a

path-dependent cost function. With later developments (see e.g. [2, 5, 12, 13, 49] etc.),

some duality results are established, numerical resolutions of the dual problem are proposed

and the applications in probability theory and financial mathematics are developed.

This new transportation problem is in fact motivated by the computation of arbitrage-free

model-independent bounds of exotic options consistent with market prices of vanilla options.

As explained in Breeden and Litzenberger [6], marginal distributions of the underlying

stock can be recovered from the market values of vanilla options for all strikes. Then

by considering all martingales satisfying the marginal distribution constraints, one can

obtain the arbitrage-free model-independent bound for exotic options. Based on the fact

that any martingale can be represented as a time-changed Brownian motion, this problem

was initially studied through the Skorokhod Embedding Problem (SEP) approach, see e.g.

[10, 25, 26, 39] etc., which consists in finding a stopping time τ of Brownian motion B such

that Bτ follows a given distribution.

In view of the extension to the multi-marginals case, the MT approach is more natural

than the SEP. Moreover, its dual formulation can be naturally interpreted as the minimum

superhedging (or maximum subhedging) price for exotic options, and is better suited for

possible numerical resolutions.

In the one-dimensional case d = 1, for a discrete-time MT problem, Beiglböck and Juil-

let [4] introduced a left/right monotone martingale transference plan induced by a bino-

mial model, and show that it is in fact unique and is the optimal transference plan for a

large class of cost/reward functions. Henry-Labordère and Touzi [21] provide an explicit

construction of this left/right monotone martingale transference plan, which extends the

Fréchet-Hoeffding coupling in standard one-dimensional optimal transport. Moreover, they

obtained an explicit expression of the solution of the dual problem, and hence by the duality

result, they showed the optimality of their constructed transference plan for a large class

of cost/reward functions. An immediate extension to the multiple marginals case follows

for a family of cost/reward functions.

In this paper, we are interested in the continuous-time case, as the limit of the multiple

marginals MT problem. Concretely, we are given a family of probability measures (µt)0≤t≤1

on R which is non-decreasing in convex ordering, i.e. t 7→ µt(φ) is non-decreasing for every

convex function φ. Then for every time discretization of the interval [0, 1], we obtain a finite
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number of marginal distributions along the discretization. Following the construction in

[21], there is a binomial model fitted to the corresponding multiple marginal distributions,

which is of course optimal for a class of cost/reward functions. Two natural questions can

then be addressed. The first is whether the discrete binomial process converges when the

time step converges to zero, and the second is whether the limit continuous-time process

is optimal for a corresponding MT problem with infinitely-many marginals, when the limit

exists.

Given a continuous family of marginal distributions which is non-decreasing in convex

ordering, a stochastic process fitting all the marginals is called a peacock process (or PCOC

“Processus Croissant pour l’Ordre Convexe” in French) in Hirsch, Profeta, Roynette and

Yor [24]. It follows by Kellerer’s theorem that a process is a peacock if and only if there

is a martingale with the same marginal distributions at each time, it is then interesting to

construct such martingales associated with a given peacock (or equivalently with a given

family of marginal distributions). In particular, when the marginal distributions are given

by those of a Brownian motion, such a martingale is called a fake Brownian motion. Some

examples of martingale peacock (or fake Brownian motion) have been provided by Albin

[1], Fan, Hamza and Klebaner [14], Hamza and Klebaner [19], Hirsch et al. [23], Hobson

[27], Oleszkiewicz [40], Pagès [42] etc.

Our procedure gives a new construction of martingales associated with peacock processes,

and in particular a discontinuous fake Brownian motion. Moreover, our constructed mar-

tingale is optimal among all martingales with given marginal distributions for a large class

of cost/reward functions, i.e. it solves a martingale transportation problem.

The rest of the paper is organized as follows. In Section 2, we recall the martingale ver-

sion of Brenier’s theorem for a discrete-time MT problem in two marginals case as well as

its extension in multi-marginals case, established in Henry-Labordère and Touzi [21]. In

Section 3, we formulate a continuous-time MT problem under full marginals constraints.

The problem is next solved in Section 4. Namely, by taking the limit of the optimal martin-

gale measure for the multi-marginals MT problem, we obtain a continuous-time martingale

fitted to the given marginals, or equivalently, a martingale associated with peacock pro-

cesses. From a point of view of the forward Kolmogorov-Fokker-Planck (KFP) equation,

this martingale peacock is related to a local Lévy process. Under additional conditions,

we prove that this limit martingale is a local Lévy process and solves the infinitely-many

marginals MT problem for a class of cost/reward functions. In particular, we provide an

explicit characterization of this optimal solution as well as the dual optimizer. As an ap-

plication in finance, we provide an optimal robust hedging strategy for the variance swap

option. In Section 5, we discuss some examples of extremal peacock processes following our

construction, including a discontinuous fake Brownian motion and a self-similar martingale.

Finally, we complete the proofs of our main results in Section 6, where the main idea is to

approximate the infinitely-many marginals case by the multi marginals case.
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2 Discrete-time martingale transportation

This section recalls from [21] the martingale version of the one-dimensional Brenier theorem.

The corresponding result in the standard optimal transport theory is known as the Fréchet-

Hoeffding coupling [16, 30], see also Rachev and Ruschendorf [47].

2.1 The two marginals case

Let µ0, µ1 be two probability measures on R with finite first moments, such that µ0 � µ1 in

convex ordering, i.e. µ0(φ) ≤ µ1(φ) for every convex function, where µ(φ) :=
∫
R φ(x)µ(dx)

for every probability measure µ and one-sided integrable function φ. Denote by F0 (resp.

F1) the cumulative distribution function of µ0 (resp. µ1), and δF := F1 − F0, we assume

in addition that µ0 and µ1 have no atoms (i.e. F0 and F1 are continuous on R) and the

function x 7→ δF (x) has at most countable local maximizers, where the set of all local

maximum points admits no accumulation points in [−∞,∞).

Denote the set of all martingale measures with marginals µ0 and µ1 by

M2(µ0, µ1) :=
{
P ∈ PR2 : X0 ∼P µ0, X1 ∼P µ1 and EP[X1|X0] = X0

}
.

The two-marginals MT problem is then given by

P2(µ0, µ1) := sup
P∈M2(µ0,µ1)

EP[c(X0, X1)
]
, (2.1)

where c : R2 → R is a reward function such that c(x, y) ≤ a(x) + b(y) for some a ∈ L1(µ0)

and b ∈ L1(µ1).

The dual formulation of the MT problem (2.1) turns out to be

D2(µ0, µ1) := inf
(ϕ,ψ,h)∈D2

{µ0(ϕ) + µ1(ψ)}, (2.2)

where the collection D2 of dual components is defined, with notations (ϕ ⊕ ψ)(x, y) :=

ϕ(x) + ψ(y) and h⊗(x, y) := h(x)(y − x), by

D2 :=
{

(ϕ,ψ, h) : ϕ+ ∈ L1(µ0), ψ+ ∈ L1(µ1), h ∈ L0 and ϕ⊕ ψ + h⊗ ≥ c
}
.

As a financial interpretation, D2(µ0, µ1) is the minimum superhedging cost for the path-

dependent derivative payoff defined by c(X0, X1) by static and dynamic trading strategies

(ϕ,ψ, h). Moreover, under mild conditions, a strong duality (i.e. P2(µ0, µ1) = D2(µ0, µ1))

is proved in Beiglböck, Henry-Labordère and Penkner [3].

An explicit construction of the solution to the last MT problem (2.1) and the correspond-

ing dual problem (2.2) is provided in [21], under the condition cxyy > 0. Let m1 be the

smallest local maximizer of δF , x0 := inf{x ∈ R : δF strictly increasing at x}, we define

the two right-continuous functions Tu, Td : R → R and a sequence (xk,mk+1)k≥0 by the

following procedure: Let

Ak := (x0,mk] \
(
∪i<k

{
Td([mi, xi)) ∪ [mi, xi)

})
= (x0,mk] \

{
∪i<k

(
Td(xi), xi

]}
;
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g(x, y) := F−1
1

(
F0(x)+δF (y)

)
, for every x > mk, t

Ak(x,mk) is the unique point in Ak such

that ∫ x

−∞

[
F−1

1 (F0(ξ))− ξ
]
dF0(ξ) +

∫
A∩(−∞,tA(x,m)]

(
g(x, ξ)− ξ

)
dδF (ξ) = 0; (2.3)

xk := inf
{
x > mk : g

(
x, tAk(x,mk)

)
≤ x

}
, mk+1 := inf

{
m ≥ xk : m is a local maximizer of δF

}
and

Td(x) := tAk(x,mk), Tu(x) := g(x, Td(x)) for mk ≤ x < xk.

Denote D0 := ∪k≥1(xk−1,mk], it turns out that, under the condition that F0 and F1 are

continuous, Tu(x) ∈ Dc
0 and Td(x) ∈ D0 for every x ∈ Dc

0. Moreover, both functions are

continuous except on points (xk)k≥1 and
(
T−1
d (xk−)

)
k≥1

, where T−1
d denotes the right-

continuous version of the inverse function of Td.

Remark 2.1. In the case δF has only one local maximizer m1, we have D0 = (−∞,m1]

and Dc
0 = (m1,∞), Td maps from Dc

0 to D0 and Tu maps from Dc
0 to Dc

0.

Remark 2.2. In [21], the functions Tu and Td are obtained by solving the ODE

d(δF ◦ Td) = −(1− q)dF0, d(F1 ◦ Tu) = qdF0, where q(x) :=
x− Td(x)

Tu(x)− Td(x)
,(2.4)

on the continuity domain of Td.

With the two functions Tu and Td, one can then construct a discrete-time martingale

(X∗0 , X
∗
1 ) satisfying the marginal constraints (µ0, µ1) as follows: (i) X∗0 is a random variable

of distribution µ0; (ii) conditioned on X∗0 ∈ D0, we have X∗1 := X∗0 ; (iii) conditioned on

X∗0 ∈ Dc
0, X∗1 takes the value Tu(X∗0 ) with probability q(X∗0 ) and the value Td(X

∗
0 ) with

probability 1− q(X∗0 ). In other words, the above construction gives a probability kernel T∗
from R to R,

T∗(x, dy) := 1D0(x)δx(dy) + 1Dc0(x)
[
q(x)δTu(x)(dy) + (1− q(x))δTd(x)(dy)

]
. (2.5)

Further, they construct a dual component (a superhedging strategy) (ϕ∗, ψ∗, h∗) ∈ D2. The

dynamic strategy h∗ and static strategy ψ∗ are defined, up to a constant, by

h′∗(x) =
cx(x, Tu(x))− cx(x, Td(x))

Tu(x)− Td(x)
, for x ∈ Dc

0, (2.6)

h∗(x) := h∗
(
T−1
d (x)

)
+ cy(x, x)− cy

(
T−1
d (x), x

)
, for x ∈ D0,

ψ′∗ = cy
(
T−1
u , ·

)
− h∗ ◦ T−1

u on Dc
0, ψ′∗ = cy

(
T−1
d , ·

)
− h∗ ◦ T−1

d on D0,

and

ϕ∗(x) := q(x)
(
c(x, Tu(x))− ψ∗(Tu(x))

)
+ (1− q(x))

(
c(x, Td(x))− ψ∗(Td(x))

)
, ∀x ∈ R,

where we set q(x) := 1 for x ∈ D0. Moreover, h∗, ψ∗ are chosen such that

c(·, Tu(·))− ψ∗(Tu(·))− c(·, Td(·)) + ψ∗(Td(·))−
(
Tu(·)− Td(·)

)
h∗(·) (2.7)

is a continuous function.
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Theorem 2.3. [21, Theorem 3.13] Suppose that the partial derivative cxyy exists and cxyy >

0 on R× R. Then,

(i) the probability P∗(dx, dy) := µ0(dx)T∗(x, dy) ∈M2(µ0, µ1) and (ϕ∗, ψ∗, h∗) ∈ D2;

(ii) the martingale transference plan P∗ solves the primal problem (2.1) and (ϕ∗, ψ∗, h∗)

solves the dual problem (2.2); moreover, we have the duality

EP∗[c(X0, X1)
]

= P2(µ0, µ1) = D2(µ0, µ1) = µ0(ϕ∗) + µ1(ψ∗).

Remark 2.4. By symmetry, one can also consider the c.d.f. F̃i(x) := 1− Fi(−x), x ∈ R,

i = 0, 1,, and construct a right monotone martingale transference plan which solves the

minimization transportation problem (see more discussions in Remark 3.14 of [21]).

2.2 The multi-marginals case

The above result are easily extended, in Section 4 of [21], to the multi-marginals case when

the reward function is given by c(x) :=
∑n

i=1 c
i(xi−1, xi), ∀x ∈ Rn+1. More precisely, with

n + 1 given probability measures (µ0, · · · , µn) ∈ (PR)n+1 such that µ0 � · · · � µn in the

convex ordering, the problem consists in maximizing

E
[
c(X0, · · · , Xn)

]
= E

[ n∑
i=1

ci(Xi−1, Xi)
]

(2.8)

among all martingales (X0, · · · , Xn) satisfying the marginal distribution constraints (Xi ∼
µi, i = 0, · · · , n). For every (µi−1, µi), we construct the corresponding functions (T id, T

i
u) as

well as T i∗ and (ϕi∗, ψ
i
∗, h

i
∗) as in (2.5, 2.6). Assume cixyy > 0 for every 1 ≤ i ≤ n, it follows

that the optimal martingale measure is given by P∗n(dx) = µ0(dx0)Πn
i=1T

i
∗(xi−1, dxi), and

(ϕi∗, ψ
i
∗, h

i
∗)1≤i≤n is an optimal superhedging strategy, i.e. for all (x0, · · · , xn) ∈ Rn+1,

c(x0, · · · , xn) ≤
n∑
i=1

(
ϕi∗(xi−1) + ψi∗(xi)

)
+

n∑
i=1

hi∗(xi−1)
(
xi − xi−1

)
.

3 Continuous-time martingale transport under full marginals

constraints

We now introduce a continuous-time martingale transportation (MT) problem under full

marginals constraints, as the limit of the multi-marginals MT recalled in Section 2.2 above.

Namely, given a family of probability measures µ = (µt)t∈[0,1], we consider all continuous-

time martingales satisfying the marginal constraints, and optimize w.r.t. a class of reward

functions. To avoid the problem of integration, we define, for every random variable ξ, the

expectation E[ξ] := E[ξ+]− E[ξ−] with the convention ∞−∞ = −∞.

Let Ω := D([0, 1],R) denote the canonical space of all càdlàg paths on [0, 1], X the

canonical process and F = (Ft)0≤t≤1 the canonical filtration generated by X. We denote

byM∞ the collection of all martingale measures on Ω, i.e. the collection of all probability

measures on Ω under which the canonical process X is a martingale. By Karandikar [34],
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there is an non-decreasing process ([X]t)t∈[0,1] defined on Ω which coincides with the P-

quadratic variation of X, P-a.s. for every martingale measure P ∈ M∞. Denote also by

[X]c· the continuous part of the non-decreasing process [X]·.

Given a family of probability measures µ = (µt)0≤t≤1, denote by M∞(µ) ⊂ M∞ the

collection of all martingale measures on Ω such that Xt ∼P µt for all t ∈ [0, 1]. In particular,

following Kellerer [35] (see also Hirsch and Roynette [22]),M∞(µ) is nonempty if and only if

the family (µt)0≤t≤1 admits finite first order moment, is non-decreasing in convex ordering,

and t 7→ µt is right-continuous. Suppose that every µt is supported on the smallest interval

[l(t), r(t)], where (l, r) : [0, 1]→ (R ∪ {−∞})× (R ∪ {+∞}) satisfy −∞ ≤ l(t) < r(t) ≤ ∞.

Denote also

l0 := l(0), l1 := l(1), r0 := r(0), r1 := r(1).

Similar to Hobson and Klimmek [28], our continuous-time MT problem is obtained as

a continuous-time limit of the multi-marginals MT problem, by considering the limit of

the reward function
∑n

i=1 c(xti−1 ,xti) as in (2.8), where (ti)1≤i≤n is a partition of the

interval [0, 1] with mesh size vanishing to zero. For this purpose, we formulate the following

assumption on the reward function.

Assumption 3.1. The reward function c : R2 → R is in C3(R2) and satisfies

c(x, x) = cy(x, x) = 0 and cxyy(x, y) > 0, ∀(x, y) ∈ (l1, r1)× (l1, r1). (3.1)

Further, to obtain the convergence, we also need to use the technique of pathwise Itô’s

analysis introduced in Föllmer [15], which is also used in Hobson and Klimmek [28] and

Davis, Oblój and Raval [11] (see in particular their Appendix B).

Definition 3.2 (Föllmer [15]). Let (πn)n≥1 be a sequence of partitions of [0, 1], i.e. πn =

(0 = tn0 < · · · < tnn = 1), such that |πn| := max1≤k≤n |tnk − tnk−1| → 0 as n → ∞. A càdlàg

path x : [0, 1]→ R has a finite quadratic variation along (πn)n≥1 if the sequence of measures

on [0, 1], ∑
1≤k≤n

(
xtnk − xtnk−1

)2
δ{tk−1}(dt),

converges weakly to a measure [x]F on [0, 1]. We then denote [x]Ft := [x]F ([0, t]) which is

clearly a non-decreasing process, and by [x]F,c· its continuous part.

The following convergence result follows the same line of proof as in Lemma 7.4 of Hobson

and Klimmek [28].

Lemma 3.3. Let Assumption 3.1 hold true. Then for every path x ∈ Ω with finite quadratic

variation [x]F along a sequence of partition (πn)n≥1, we have

n−1∑
k=0

c(xtnk ,xt
n
k+1

) → 1

2

∫ 1

0
cyy(xt,xt)d[x]F,ct +

∑
0≤t≤1

c(xt− ,xt).

7



Notice that [x]F depends on the sequence of partitions (πn)n≥1 and it is not defined for

every path x ∈ Ω. Therefore, we also use the non-decreasing process [x] introduced in

Karandikar [34] which is defined for every x ∈ Ω and coincides “almost surely” with the

“quadratic variation” in the martingale case.

Motivated by the last convergence result, we introduce a reward function

C(x) :=
1

2

∫ 1

0
cyy(xt,xt)d[x]ct +

∑
0≤t≤1

c(xt− ,xt), for all x ∈ Ω,

where the integral and the sum are defined as the difference of the positive and negative

parts, under the convention ∞ − ∞ = −∞. We then formulate a continuous-time MT

problem under full marginals constraints by

P∞(µ) := sup
P∈M∞(µ)

EP[C(X·)
]
. (3.2)

Remark 3.4. (i) Under the condition c(x, x) = cy(x, x) = 0 in Assumption 3.1, we have

|c(x, x + ∆x)| ≤ K(x)∆x2 for all ∆x ∈ [−1, 1] with some positive function K(x) which is

locally bounded. Therefore, the sum
∑

0≤t≤1 c(Xt− , Xt) is in fact finite for almost every

path, under every martingale measure P ∈M∞.

(ii) Let us fix a martingale probability P ∈ M∞, under which the canonical process X is

a martingale and hence
∑

tk∈πn
(
Xtk − Xtk−1

)2
converges in probability to its quadratic

variation. By considering a sub-sequence of (πn)n≥1, it follows that P-almost every path

admits finite quadratic variation, denoted by [X]F , along this sub-sequence in sense of

Definition 3.2. It follows that [X] = [X]F , P-a.s.

Now, let us introduce the dual formulation of the above MT problem (3.2). We first

introduce the class of admissible dynamic and static strategies. Denote by H0 the class of

all locally bounded processes H : [0, 1]×Ω→ R which are predictable w.r.t. the canonical

filtration F. Then for every H ∈ H0 and under every martingale measure P ∈ M∞, one

can define the integral, denoted by H · X, of H w.r.t. the martingale X (see e.g. Jacod

and Shiryaev [32] Chapter I.4). Define

H :=
{
H ∈ H0 : H ·X is a P-supermartingale for every P ∈M∞

}
.

For the static strategy, we denote by M([0, 1]) the space of all finite signed measures on

[0, 1] which is a Polish space under the weak convergence topology, and by Λ the class of all

measurable maps λ : R→ M([0, 1]) which admits a representation λ(x, dt) = λ0(t, x)γ(dt)

for some locally bounded, measurable function λ0 : [0, 1]× R → R and finite non-negative

measure γ on [0, 1]. We then denote

Λ(µ) :=
{
λ ∈ Λ : µ(|λ|) <∞

}
, where µ(|λ|) :=

∫ 1

0

∫
R

∣∣λ0(t, dx)
∣∣µt(dx)γ(dt).

We also introduce a family of random measures δX = (δXt )0≤t≤1 on R, induced by the

canonical process X, by δXt (dx) := δXt(dx). In particular, we have

δX(λ) =

∫ 1

0
λ(Xt, dt) =

∫ 1

0
λ0(t,Xt)γ(dt).
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Then the collection of all superhedging strategies is given by

D∞(µ) :=
{

(H,λ) ∈ H × Λ(µ) : δX(λ) + (H ·X)1 ≥ C(X·), P− a.s., ∀P ∈M∞
}
,

and our dual problem is defined by

D∞(µ) := inf
(H,λ)∈D∞(µ)

µ(λ). (3.3)

4 Main results

We will first provide, in Section 4.1, an approximation construction of P ∈ M∞(µ) for a

given family of µ = (µt)0≤t≤1, which leads to a local Lévy process characterization. Under

further conditions, we show that the local Lévy process solves the continuous-time MT

problem (3.2) and we give also the optimal solution to the dual problem (3.3) together

with a strong duality in Section 4.2. The corresponding proofs are postponed to Section

6. Finally, as an application in finance, we compute the optimal arbitrage-free lower and

upper bounds of a variance swap in Section 4.3.

4.1 Construction of martingales with given marginals

4.1.1 On the left-monotone martingale transport

For every t ∈ [0, 1], let us denote by F (t, ·) the cumulative distribution function of the

probability measure µt on R. We first make the following assumption on the marginals µ.

Assumption 4.1. (i) The marginal distributions µ = (µt)t∈[0,1] are non-decreasing in

convex ordering and have finite first order.

(ii) The distribution function F ∈ C4
b (E) with E := {(t, x) : t ∈ [0, 1], x ∈ (l(t), r(t))},

and its density function f(t, x) := ∂xF (t, x) satisfies infx∈[−K,K]∩(l(t),r(t)) f(t, x) > 0 for all

K > 0 large enough.

Notice that under Assumption 4.1, the function l (resp. r): [0, 1] → R defined before

Assumption 3.1 is clearly continuous and non-increasing (resp. non-decreasing) on [0, 1]

whenever it is finite. Moreover, the continuity of the density function f implies that t 7→ µt
is continuous, and hence M∞(µ) is nonempty under the above Assumption 4.1.

Before introducing our continuous-time martingale transference plan, we consider the

discrete case. For t ∈ [0, 1) and ε ∈ (0, 1− t), denote

δεF (t, x) := F (t+ ε, x)− F (t, x) and δεf(t, x) := f(t+ ε, x)− f(t, x).

Our Assumption 4.2 below states that x 7→ δεF (t, x) has at most countably-many local

maximizers and the collection of all local maximizers admits no accumulation points in

[−∞,∞). Then by considering the two marginals µt and µt+ε, one obtains a unique left-

monotone martingale measure following the construction recalled in Section 2. Suppose

that the construction gives a sequence of points
(
xεk(t),m

ε
k+1(t)

)
k≥0

as well as the functions

T εu(t, ·) and T εd (t, ·) following the procedure below equation (2.3). Similarly, denote Dε(t) :=

9



∪k≥1

(
xεk−1(t),mε

k(t)
]

andAεk(t) :=
(
xε0(t),mε

k(t)
)
\
{
∪i<k

(
T εd (t, xεi (t)), x

ε
i (t)
]}

. In particular,

we notice that for every x ∈
[
mε
k(t), x

ε
k(t)

)
, T εd (t, x) ∈ Aεk(t) is uniquely determined by∫ x

−∞

[
F−1

(
t+ε, F (t, ξ)

)
−ξ
]
f(t, ξ)dξ+

∫
(−∞,T εd (t,x)]∩Aεk(t)

[
gεt (x, ξ)−ξ

]
δεf(t, ξ)dξ = 0, (4.1)

and T εu(t, x) := gεt
(
x, T εd (t, x)

)
, where F−1 denotes the inverse function of x 7→ F (t, x) and

gεt (x, y) := F−1
(
t + ε, F (t, x) + δεF (t, y)

)
. Similarly, (T εd )−1 denotes the right-continuous

version of the inverse function of x 7→ T εd (t, x). We also introduce the jump size function

Jεu(t, x) := T εu(t, x)− x, Jεd(t, x) := x− T εd (t, x),

and

yεk(t) :=
(
T εd
)−1(

t, xεk−1(t)−
)
, zεk(t) := T εd

(
t, xεk(t)−

)
.

Notice that we have mε
k(t) < xεk(t), and T εd (t, ·) and T εu(t, ·) are both right-continuous, and

continuous except at the points
(
xεk(t)

)
k≥1

and
(
yεk(t)

)
k≥1

.

Our main result below shows a convergence result to a continuous-time limit which has

a similar structure. We suppose that x 7→ ∂tF (t, x) has at most countably-many local

maximizers with no accumulation points in [−∞,∞). Let x0(t) := l(t) and m1(t) be the

first local maximizer, we then define a sequence of points
(
mk(t), xk(t), yk(t), zk(t)

)
k≥1

by

the following procedure:

mk(t) := inf
{
m > xk−1(t) : m is a local maximizer of x 7→ ∂tF (t, x)

}
, (4.2)

xk(t) := inf
{
x > mk(t) : ∂tF (t, x) ≥ ∂tF (t, Td(t, x−))

}
, yk(t) := T−1

d

(
t, xk−1(t)−

)
, (4.3)

and zk(t) := Td
(
t, xk(t)−

)
, where for every x ∈ [mk(t), xk(t)), Td(t, x) is the unique solution

(see Lemma 4.3 below) of∫ x

Td(t,x)
(x− ξ)∂tf(t, ξ)dξ = 0 in Ak(t) :=

(
x0(t),mk(t)

]
\
{
∪i<k

(
Td(t, xi(t)), xi(t)

] }
. (4.4)

Similarly, we denote

D(t) := ∪k≥1

(
xk−1(t),mk(t)

]
, D :=

{
(t, x) : t ∈ [0, 1], x ∈ D(t)

}
,

and Dc,◦(t) := int
(
D(t)c

)
\ {yk(t), k ≥ 1}.

We also define jd(t, x) and ju(t, x), for every t ∈ [0, 1] and x ∈ Dc(t), by

jd(t, x) := x− Td(t, x) and ju(t, x) :=
∂tF

(
t, Td(t, x)

)
− ∂tF (t, x)

f(t, x)
. (4.5)

In particular, ju(t, ·) and jd(t, ·) are both positive and both continuous on Dc,◦(t).

In order to guarantee the convergence of T εd and T εu towards their natural limits (described

by jd and ju), we need an additional assumption on the marginal distributions.
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Figure 1: An illustration of (mk, xk, yk, zk) for some fixed t ∈ [0, 1]. The figure on the left

is the function x 7→ ∂tF (t, x). The figure on the right is the functions x 7→ Td(t, x) and

x 7→ x + ju(t, x), which are constructed to be right-continuous. We notice that there is a

local maximizer of ∂tF (t, x) between m1 and m2, which is not involved in the construction

of jd and ju.

Assumption 4.2. (i) For every t ∈ [0, 1) and ε ∈ (0, 1 − t), the maps x 7→ δεF (t, x) and

x 7→ ∂tF (t, x) have at most countably-many local maximizers, with no accumulation points

in [−∞,∞).

(ii) The functions
(
mε
k, x

ε
k, y

ε
k, z

ε
k

)
k≥1

and
(
mk, xk, yk, zk

)
k≥1

are all uniformly continuous

in t with the same modulus ρ0 and
(
mε
k, x

ε
k, y

ε
k, z

ε
k

)
→
(
mk, xk, yk, zk

)
pointwise (and hence

uniformly) as ε→ 0 for all k ≥ 1.

Lemma 4.3. Let Assumptions 4.1 and 4.2 (i) hold true. Then

(i) for all k ≥ 1, t ∈ [0, 1], xk(t) > mk(t) is well-defined by (4.3), and for all x ∈
(mk(t), xk(t)), the equation (4.4) has a unique solution Td(t, x) in Ak(t).

(ii) on every interval (mk(t), xk(t)), the map x 7→ Td(t, x) is strictly decreasing.

4.1.2 Construction of martingales with given marginals

In this subsection, we provide a first part of the main results of the paper, which gives an

approximation construction of continuous-time martingales satisfying full marginals con-

straints, as well as a local Lévy process characterization.

We recall that Ω := D([0, 1],R) is the canonical space of càdlàg paths, which is a Polish

space (separable, complete metric space) equipped with the Skorokhod topology; and X

is the canonical process. Let (πn)n≥1 be a sequence, where every πn = (tnk)0≤k≤n is a

partition of the interval [0, 1], i.e. 0 = tn0 < · · · < tnn = 1. Suppose in addition that

|πn| := max1≤k≤n(tnk − tnk−1)→ 0. Then for every partition πn, by considering the marginal

distributions (µtnk )0≤k≤n, one obtains a (n+1)-marginals MT problem as recalled in Section

11



2.2, which consists in maximizing

E
[ ∑

0≤k≤n−1

c(Xn
k , X

n
k+1)

]
among all discrete-time martingales satisfying the marginal distribution constraints. To

simplify the notation, we suppose without loss of generality that the partition is uniform

and |πn| = ε with ε = 1
n . It is clear that under Assumptions 3.1, 4.1 and 4.2, the optimal

martingale measure, denoted by P∗,n, is provided by the left-monotone transference plan

recalled in Section 4.1.1. More precisely, let Ω∗,n := Rn+1 be the canonical space of discrete-

time process, X∗,n = (X∗,nk )0≤k≤n be the canonical process, under P∗,n, X∗,n is a discrete-

time martingale and at the same time a Markov chain, characterized by T εu(tnk , ·) and

T εd (tnk , ·) in (4.1). By abuse of notation, we extend the Markov chain X∗,n to a continuous-

time càdlàg process, denoted by X∗,n = (X∗,nt )0≤t≤1, by setting X∗,nt := X∗,nk whenever

t ∈ [tnk , t
n
k+1). Let Pn := P∗,n ◦ (X∗,n)−1 denote the probability measure on Ω, induced by

X∗,n under P∗,n.

Our first result is the convergence of (Pn)n≥1 as |πn| → 0.

Proposition 4.4. Let Assumptions 4.1 and 4.2 (i) hold true. Then the sequence
(
Pn
)
n≥1

is tight (w.r.t. the Skorokhod topology on Ω); moreover, every limit probability measure P0

satisfies P0 ∈ M∞(µ), i.e. the canonical process X is a martingale fitted to the marginal

distributions µ = (µt)0≤t≤1 under P0.

Remark 4.5. (i) The result in Proposition 4.4 provides an approximation construction of

martingales fitted to infinitely-many marginals, or equivalently the martingales associated

with some peacock process.

(ii) Jakubowski [33] introduced the so-called S-topology on the canonical space Ω, which

is coarser than the classical Skorokhod topology, and under which the associated tightness

of probability measures on Ω is easier to be verified. Using the technique of S-topology,

we can also obtain a martingale peacock by convergence without the technical condition in

Assumption 4.1 (ii). However, to characterize the limit martingale as in Theorem 4.11

below, we need to use the standard localization technique as in Jacod and Shiryaev [32],

which is our main reason to keep on using the Skorokhod topology on Ω. We shall investigate

the use of S-topology in martingale transport in our future works.

We next provide a point of view from the forward Kolmogorov-Fokker-Planck (KFP)

equation. Recall that Dc,◦(t) is defined below (4.4), and denote D◦(t) := Td(t,D
c,◦(t)).

Lemma 4.6. Under Assumptions 4.1 and 4.2, the density function f(t, x) satisfies

∂tf(t, x) = −1{x∈D(t)}
juf

jd(1− ∂xjd)
(
t, T−1

d (t, x)
)
− 1{x∈Dc(t)}

(juf
jd
− ∂x(juf)

)
(t, x), (4.6)

for all t ∈ [0, 1) and x ∈ D◦(t) ∪Dc,◦(t).

The first order PDE (4.6)can be viewed as a KFP forward equation of the following SDE:

dXt = − 1{Xt−∈Dc(t)}jd(t,Xt−)(dNt − νtdt), νt := ju
jd

(t,Xt−)1{Xt−∈Dc(t)}, (4.7)
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where (Nt)0≤t≤1 is a jump process with unit jump size and with predictable compensated

process (νt)0≤t≤1. Notice that this pure jump process is in the spirit of the local Lévy

models introduced in Carr, Geman, Madan and Yor [9]. However, the intensity process

(νt)0≤t≤1 in our context is state-dependent.

Proposition 4.7. Let Assumptions 4.1 and 4.2 hold true. Suppose that the SDE (4.7)

has a weak solution X̂ which is a martingale whose marginal distribution admits a density

function f X̂(t, x) ∈ C1([0, 1]×R). Suppose in addition that E
[∣∣X̂1

∣∣p] <∞ for some p > 1,

and for every t ∈ [0, 1), there is some ε0 ∈ (0, 1− t) such that

E
[ ∫ t+ε0

t
ju(s, X̂s)1X̂s∈Dc(s)ds

]
< ∞. (4.8)

(i) Then, the density function f X̂ of X̂ defined in (4.7) satisfies the KFP equation (4.6).

(ii) Consequently, if uniqueness holds for the KFP equation (4.6), the pure jump process X̂

is a martingale with marginals X̂t ∼ µt for all t ∈ [0, 1].

4.2 Optimality of the local Lévy process

For the optimality of the local Lévy process (4.7), we formulate another more restrictive

assumption on the marginal distributions. The main technical reason for this condition

is that ju and jd have generally discontinuous points under the multiple local maximizer

conditions in Assumption 4.2.

Assumption 4.8. (i) There is some constant ε0 > 0 such that, for all t ∈ [0, 1] and

0 < ε ≤ ε0 ∧ (1 − t), x 7→ δεF (t, x) (resp. x 7→ ∂tF (t, x)) has only one local maximizer

(which is hence the global maximizer) on
(
l(t+ ε), r(t+ ε)

)
(resp.

(
l(t), r(t)

)
), denoted by

mε(t) (resp. m(t)).

(ii) Denote m0(t) := m(t), then (t, ε) 7→ mε(t) is continuous (hence uniformly continuous

with continuity modulus ρ0) on {(t, ε) : 0 ≤ ε ≤ ε0, 0 ≤ t ≤ 1− ε}.
(iii) For every t ∈ [0, 1], we have ∂txf(t,m(t)) < 0.

Remark 4.9. Part (i) of the above assumption is in fact very similar to the Dispersion

Assumption 2.1 in Hobson and Klimmek [29], i.e. it implies that {x : δεf(t, x) ≥ 0}
lies in an interval on R. An example which satisfies both Assumptions 4.1 and 4.8 is the

marginals (µt)t∈[δ,1+δ] of the Brownian motion for some δ > 0, where f(t, x) = 1√
2πt
e−

x2

2t ,

mε(t) = −
√

t(t+ε)
ε log(1 + ε/t) and m(t) = −

√
t. See also Section 5 for more discussions.

4.2.1 On the optimal dual component

In preparation, let us introduce the candidates of the optimal dual components for the

dual problem (3.3), under Assumption 4.8. For ease of presentation, let us suppose that

l(t) = −∞ and r(t) =∞. First, let us consider the discrete-time two marginals MT problem

associated with initial distribution µt, terminal distribution µt+ε and reward function c :

R × R → R. As recalled in Section 2, under Assumption 4.8, the optimal superhedging
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strategy (ϕε, ψε, hε) is explicitly given as follows:

∂xh
ε(t, x) :=

cx(x, T εu(t, x))− cx(x, T εd (t, x))

T εu(t, x)− T εd (t, x)
, x ≥ mε(t),

hε(t, x) := hε
(
t, (T εd )−1(t, x)

)
− cy

(
(T εd )−1(t, x), x

)
, x < mε(t).

Denote (T ε)−1(t, x) := (T εu)−1(t, x)1x≥mε(t) + (T εd )−1(t, x)1x<mε(t), ψ
ε is defined by

∂xψ
ε(t, x) = cy

(
(T ε)−1(t, x), x

)
− hε

(
t, (T ε)−1(t, x)

)
,

and

ϕε(t, x) :=
x− T εd (t, x)

T εu(t, x)− T εd (t, x)

(
c
(
x, T εu(t, x)

)
− ψε

(
t, T εu(t, x)

))
+

T εu(t, x)− x
T εu(t, x)− T εd (t, x)

(
c
(
x, T εd (t, x)

)
− ψε

(
t, T εd (t, x)

))
.

Clearly, hε and ψε are unique up to a constant. More importantly, hε and ψε can be chosen

continuous on [0, 1)×R so that (2.7) holds true, since T εu and T εd are both continuous under

Assumption 4.8.

We shall see later that Assumption 3.1 on the reward function c implies that the continuous-

time limit of the optimal dual components is given as follows. The function h∗ : [0, 1]× R
is defined, up to a constant, by

∂xh
∗(t, x) :=

cx(x, x)− cx(x, Td(t, x))

jd(t, x)
, when x ≥ m(t), (4.9)

h∗(t, x) := h∗
(
t, T−1

d (t, x)
)
− cy

(
T−1
d (t, x), x

)
, when x < m(t). (4.10)

Finally, ψ∗ : [0, 1]× R→ R is defined, up to a constant, by

∂xψ
∗(t, x) := − h∗(t, x), (t, x) ∈ [0, 1]× R.

Lemma 4.10. Let Assumptions 4.1 and 4.8 hold true. Then jd(t, x)1x>m(t), ju(t, x)1x>m(t)

and ju
jd

(t, x)1x>m(t) are all locally Lipschitz in x. Consequently, suppose in addition that

Assumption 3.1 holds true, then ψ∗ ∈ C1,1([0, 1]× R), i.e. ∂tψ
∗ and ∂xψ

∗ are both contin-

uous.

To introduce a dual static strategy in Λ, we let γ∗(dt) := δ{0}(dt) + δ{1}(dt) +Leb(dt) be

a finite measure on [0, 1], where Leb(dt) denotes the Lebesgue measure on [0, 1]; we define

λ∗0 and λ
∗
0 by λ∗0(0, x) := ψ∗(0, x), λ∗0(1, x) := ψ∗(1, x), λ

∗
0(0, x) := |ψ∗(0, x)|, λ∗0(1, x) :=

supt∈[0,1] |ψ∗(t, x)|; and for all (t, x) ∈ (0, 1)× R,

λ∗0 := ∂tψ
∗ + 1Dc

(
∂xψ

∗ju + ν[ψ∗ − ψ∗(., Td) + c(., Td)]
)
,

λ
∗
0 :=

∣∣∂tψ∗ + 1Dc
(
∂xψ

∗ju + ν[ψ∗ − ψ∗(., Td)]
)∣∣+ 1Dcν|c(., Td)|,

where we recall that Dc = {(t, x) : x > m(t)}. Finally, we denote λ∗(x, dt) := λ∗0(t, x)γ∗(dt)

and λ
∗
(x, dt) := λ

∗
0(t, x)γ∗(dt).
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4.2.2 Optimality of the local Lévy process

Under the one maximizer condition of Assumption 4.8, we now strengthen the result of

Propositions 4.4 and 4.7. We recall that the family (Pn)n≥1 is induced by the discrete-time

left-monotone martingale transferences (see the beginning of Section 4.1.2).

Theorem 4.11. Suppose that Assumptions 4.1 and 4.8 hold true, then Pn → P0, where P0

is the unique weak solution of the SDE

Xt = X0 −
∫ t

0
1{Xs−>m(s)}jd(s,Xs−)(dNs − νsds), νs :=

ju
jd

(s,Xs−)1Xs−>m(s),(4.11)

and (Ns)0≤s≤1 is a jump process with unit jump size and with predictable compensated

process (νs)0≤s≤1.

Our next result is the optimality of the above local Lévy process (4.11), as well as that of

the dual component introduced in and below (4.9). Similar to [21] and [29], we obtain in

addition a strong duality for the MT problem (3.2) and (3.3). Let H∗ be the F-predictable

process on Ω defined by H∗t := h∗(t,Xt−).

Theorem 4.12. Let Assumptions 3.1, 4.1 and 4.8 hold true, suppose in addition that

µ(λ
∗
) =

∫ 1
0

∫
R λ
∗
0(t, x)µt(dx)γ∗(dt) < ∞. Then the martingale transport problem (3.2) is

solved by the local Lévy process (4.11). Moreover, (H∗, λ∗) ∈ D∞(µ) and we have the duality

EP0[
C(X·)

]
= P∞(µ) = D∞(µ) = µ(λ∗),

where the optimal value is given by

µ(λ∗) =

∫ 1

0

∫ r(t)

m(t)

ju(t, x)

jd(t, x)
c
(
x, x− jd(t, x)

)
f(t, x) dx dt.

Remark 4.13. The proofs of Theorems 4.11 and 4.12 are reported later in Section 6, the

main idea is to use the approximation technique, where we need in particular the continuity

property of the characteristic functions in Lemma 4.10. This is also the main reason for

which we restrict to the one maximizer case under Assumption 4.8. See also Remark 6.5

for more discussions.

Remark 4.14. By symmetry, we can consider the right monotone martingale transference

plan as discussed in Remark 3.14 of [21]. This leads to a upward pure jump process with

explicit characterizations, assuming that x 7→ ∂tF (t, x) has only one local minimizer m̃(t).

More precisely, we define

j̃u(t, x) := T̃u(t, x)− x and j̃d(t, x) :=
∂tF (t, x)− ∂tF (t, T̃u(t, x))

f(t, x)
,

where T̃u(t, x) : (l(t), m̃(t)]→ [m̃(t), r(t)) is defined as the unique solution to∫ T̃u(t,x)

x
(ξ − x)∂tf(t, ξ)dξ = 0.
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The limit process solves SDE:

dXt = 1Xt−<m̃(t)j̃u(t,Xt−)(dÑt − ν̃tdt) ν̃t :=
j̃d

j̃u
(t,Xt−)1Xt−<m̃(t), (4.12)

where (Ñt)0≤t≤1 is a upward jump process with unit jump size and predictable compensated

process (ν̃t)0≤t≤1. Moreover, under Assumption 3.1 together with regularity conditions on

the density function f , this martingale solves a corresponding minimization MT problem

with optimal value∫ 1

0

∫ m̃(t)

l(t)

j̃d(t, x)

j̃u(t, x)
c
(
x, x+ j̃u(t, x)

)
f(t, x) dx dt.

4.3 Application: Robust hedging of variance swap

As an application, let us finally consider the reward function c0(x, y) := (lnx − ln y)2,

corresponding to the payoff of a so-called “variance swap”. More precisely, the payoff of

“variance swap” is given by
∑n−1

k=1 ln2 Xtk+1

Xk
in the discrete-time case, and by∫ 1

0

1

X2
t

d[X]ct +
∑

0<t≤1

ln2 Xt

Xt−

in the continuous-time case, following the convergence result in Lemma 3.3.

We can easily verify that c0 satisfies Assumption 3.1. Therefore, given a continuous-time

family of marginals (µt)0≤t≤1 which are all supported on (0,∞) and satisfy Assumptions

4.1 and 4.8, we can then construct a left-monotone (resp. right-monotone) martingale with

characteristics m, ju and jd (resp. m̃, j̃u and j̃d). In addition, suppose that the constructed

optimal static strategy λ∗ satisfies the integrability conditions in Theorem 4.12, we then

get the following result:

Proposition 4.15. Under the above conditions and with the same notations, the optimal

upper bound of the variance swap is given by∫ 1

0
dt

∫ ∞
m(t)

dx
ju(t, x)

jd(t, x)
ln2 x

x− jd(t, x)
f(t, x),

and the optimal lower bound is given by∫ 1

0
dt

∫ m̃(t)

0
dx

j̃d(t, x)

j̃u(t, x)
ln2 x+ j̃u(t, x)

x
f(t, x),

where the optimal martingale measures are given by the local Lévy processes (4.11) and

(4.12).

5 Examples of extremal peacock processes

With the introduction of peacock (or PCOC “Processus Croissant pour l’Ordre Convexe”

in French) by Hirsch, Profeta, Roynette and Yor [24], the construction of martingales with
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given marginal distributions becomes an interesting subject. When the marginals are given

by those of the Brownian motion, such a martingale is called a fake Brownian motion. The

above two jump processes provide two new constructions of martingale peacocks and in

particular two discontinuous fake Brownian motions if we take for f(t, x) the density of a

Brownian motion. We also refer to Albin [1], Fan, Hamza and Klebaner [14], Hamza and

Klebaner [19], Hirsch et al. [23], Hobson [27], Oleszkiewicz [40], Pagès [42] etc. for other

solutions and related results. Moreover, our two fake Brownian motions are remarkable

since they are optimal for a large class of reward functions. Let us provide here some

explicit characterizations of the first discontinuous fake Brownian motion as well as that of

a self-similar martingale induced by Theorem 4.11.

5.1 A remarkable fake Brownian motion

Let µt := N (0, t) with t ∈ [δ, 1] for some δ > 0, for which Assumptions 4.1 and 4.8 are

satisfied. In particular, by direct computation, we have mε(t) = −
√

t(t+ε)
ε log(1 + ε/t) and

m(t) = −
√
t for all t ∈ [δ, 1]. In this case, it follows that Td(t, x) is defined by the equation:∫ x

Td(t,x)
(x− ξ)(ξ2 − t)e−ξ2/2tdξ = 0 for all x ≥ m(t).

By direct change of variables, this provides the scaled solution Td(t, x) := t1/2T̂d
(
t−1/2x

)
,

where:

T̂d(x) ≤ −1 is defined for all x ≥ −1 by

∫ x

T̂d(x)
(x− ξ)(ξ2 − 1)e−ξ

2/2dξ = 0.

i.e.

e−T̂d(x)2/2
(

1 + T̂d(x)2 − xT̂d(x)
)

= e−x
2/2.

Similarly, we see that ju(t, x) := t−1/2ĵu
(
t−1/2x

)
, where

ĵu(x) :=
1

2

[
x− T̂d(x)e−(T̂d(x)2−x2)/2

]
=

1

2

[
x− T̂d(x)

1 + T̂d(x)2 − xT̂d(x)

]
for all x ≥ −1.

We also plot the maps T̂d(x) and T̂u(x) := x+ ĵu(x) in Fig. 2.

5.2 A new construction of self-similar martingales

In Hirsch, Profeta, Roynette and Yor [23], the authors construct martingales Mt which

enjoy the (inhomogeneous) Markov property and the Brownian scaling property:

∀ c > 0 , (Mc2t, t ≥ 0) ∼ (cMt, t ≥ 0).

When the marginals of M admit a density, this property means that the density function

f(t, x) scales as f
(
c2t, x

)
= 1

cf
(
x
c , t
)
, i.e. f(t, x) = f(1, x/

√
t)/
√
t. A first methodology for

17



Figure 2: Fake Brownian motion: Maps T̂d and T̂u

constructing such martingales, initiated in [38], uses the Azéma-Yor embedding algorithm

under a condition on µ = Law(M1), which is equivalent to

x 7→ x

b1(x)
is increasing on R+,

with b1 the Hardy-Littlewood barycenter function

b1(x) :=
1

µ([x,∞))

∫
[x,∞)

yµ(dy).

Their second method uses randomization techniques, and allows to reach any centered law

with finite moment of order 1.

Following our approximation approach, one can construct a self-similar martingale that

can reach marginals without using randomization. Assume that ∂tF (t, x) has a unique

maximizer which is given by m(t) =
√
tm̂, where m̂ is the smallest solution of

f(1, m̂) + m̂fx(1, m̂) = 0.

The scaling property of jd and ju, observed in the previous subsection, still applies; and T̂d
as well as ĵu can be computed by∫ x

T̂d(x)
(x− ζ)

(
f(1, ζ) + ζfx(1, ζ)

)
dζ = 0, ĵu(x) :=

1

2

[
x− T̂d(x)f(1, T̂d(x))

f(1, x)

]
, ∀x ≥ m̂.

6 Proofs

In this section, we complete the proofs of the main results (Theorems 4.11 and 4.12) stated

in Section 4. We first provide some asymptotic estimates for the left-monotone transference

18



plan of Section 6.1 as a preparation. Then we complete the proofs for the convergence results

in Section 6.2, and finally the proof of the optimality result in Section 6.3.

6.1 Asymptotic estimates of the left-monotone transference plan

We recall that the left-monotone transference plan is described by T εu and T εd , which are

defined in and below (4.1). Moreover, Jεu(t, x) := T εu(t, x) − x denotes the upward jump

size, Jεd(t, x) := x− T εd (t, x) the downward jump size and

qε(t, x) :=
Jεu(t, x)

Jεu(t, x) + Jεd(t, x)
=

T εu(t, x)− x
T εu(t, x)− T εd (t, x)

the probability of a downward jump.

Lemma 6.1. Let Assumptions 4.1 and 4.2 (i) hold true. Then for every K > 0, there are

some constant C independent of (t, x, ε) such that

Jεu(t, x) + qε(t, x) ≤ Cε, ∀x ∈ [−K,K] ∩ (l(t), r(t)).

Proof. Differentiating gεt (defined below (4.1)), we have

∂y g
ε
t (x, y) =

δεf(t, y)

f
(
t+ ε, gεt (x, y)

) .
Notice that |δεF (t, x)| + |δεf(t, x)| ≤ C1ε for some constant C1 independent of (t, x, ε).

Then for ε > 0 small enough, the value of gεt (x, y) is uniformly bounded for all t ∈ [0, 1]

and all x ∈ [−K,K] ∩ (l(t), r(t)) and y ∈ R. Further, the density function satisfies

infx∈[−K̄,K̄]∩(l(t),r(t)) f(t, x) > 0 for every K̄ > 0 large enough, by Assumption 4.1, then

it follows by the definition of T εu below (4.1) that

qε(t, x) ≤ T εu(t, x)− x
x− T εd (t, x)

=
gεt (x, T

ε
d (t, x))− gεt (x, x)

x− T εd (t, x)
≤ Cε.

Finally, by the definition of T εu below (4.1), we have

Jεu(t, x) = F−1
(
t+ ε, F (t, x) + δεF

(
t, T εd (t, x)

))
− F−1

(
t+ ε, F (t, x) + δεF (t, x)

)
≤

∣∣δεF (t, T εd (t, x)
)∣∣+ |δεF (t, x)|

f
(
t+ ε, F−1

(
t+ ε, F (t, x) + ξ

)) ,
for some ξ between δεF

(
t, T εd (t, x)

)
and δεF (t, x). We can then conclude the proof by the

fact that |δεF | ≤ C1ε for some constant C1.

Proof of Lemma 4.3. To simplify the notation, let us omit the argument t and write

(mk, xk, yk, zk) in place of (mk(t), xk(t), yk(t), zk(t)), etc. We shall prove the lemma by

induction.

(i) Let k ≥ 1, suppose that xi and Td(t, x) is well defined for all x ∈ [mi, xi) and every

i < k. Denote

Gk(t, x, y) :=

∫
[mk,x)∪{(y,mk)∩Ak}

(x− ξ)∂tf(t, ξ)dξ, (6.1)
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where we recall that Ak :=
(
`(t),mk

)
\
{
∪i<k

(
zi, xi

]}
and zi := Td(t, xi−). Further, using

the equality ∂tF (t, xi) = ∂tF (t, zk), it is easy to show by induction that
∫

[Td(t,xi),xi)
(xi −

ξ)∂tf(t, ξ)dξ = 0 and hence∫
∪i<k(zi,xi]

(x− ξ)∂tf(t, ξ)dξ = 0. (6.2)

It follows then the equation (4.4) is equivalent to

Gk
(
t, x, Td(t, x)

)
= 0. (6.3)

(ii) Using again (6.2), we have

Gk(t, x,−∞) =
∫

[mk,x)∪{(−∞,mk)∩Ak}(x− ξ)∂tf(t, ξ)dξ =
∫ x
−∞(x− ξ)∂tf(t, ξ)dξ.

Therefore, Gk(t, x,−∞) ≥ 0 using Jensen’s inequality and the condition that (µt)t∈[0,1] is

non-decreasing in the convex ordering in Assumption 4.1. In fact, since ∂tf(t, x) > 0 for

x ∈ Ak ⊂ (−∞,mk], the inequality is strict, i.e.

Gk(t, x,−∞) > 0.

Next, since ∂tf(t, ξ) > 0 for every ξ ∈ Ak by Assumption 4.2 (i), it follows that y 7→
Gk(t, x, y) is strictly decreasing on Ak.

Further, denote ck := inf{y > mk : ∂tF (t, y) ≥ ∂tF (t,mk)}. Then it is clear that

Gk(t,mk,mk) = 0 and x 7→ Gk(t, x,mk) is decreasing on interval (mk, ck) since

∂xGk(t, x,mk) =

∫ x

mk

∂tf(t, ξ)dξ = ∂tF (t, x)− ∂tF (t,mk) < 0.

In summary, for every x ∈ (mk, ck), we have Gk(t, x,mk) < 0, Gk(t, x,−∞) > 0 and

y 7→ Gk(t, x, y) is continuous, strictly decreasing on Ak. It follows that the equation (6.3)

has a unique solution Td(t, x) and it takes values in Ak, which implies that the equation

(4.4) has a unique solution in Ak.

(iii) Since mk is a local maximizer of x 7→ ∂tF (t, x), then for x > mk close enough to mk,

we have Td(t, x) ∈ (xk−1,mk), i.e.∫ mk

Td(t,x)
(x− ξ)∂tf(t, ξ)dξ +

∫ x

mk

(x− ξ)∂tf(t, ξ)dξ = 0.

It follows that∫ mk

Td(t,x)
(x−mk)∂tf(t, ξ)dξ +

∫ x

mk

(x−mk)∂tf(t, ξ)dξ < 0,

which implies that ∂tF (t, x) < ∂tF (t, Td(t, x)) for x > mk close enough to mk. Therefore,

xk is well defined in (4.3) and satisfies that xk > mk.

(iv) Differentiating both sides of equation (4.4) w.r.t. x for x /∈ Dc,◦(t), it follows that

−
(
x− Td(t, x)

)
∂tf
(
t, Td(t, x)

)
∂xTd(t, x) +

∫ x

Td(t,x)
∂tf(t, ξ)dξ = 0.
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Therefore, for every x ∈ (mk(t), xk(t)),

∂xTd(t, x) =
∂tF (t, x)− ∂tF (t, Td(t, x))(
x− Td(t, x)

)
∂tf
(
t, Td(t, x)

) < 0, (6.4)

and hence x 7→ Td(t, x) is strictly decreasing in x on interval (mk(t), xk(t)).

Under Assumption 4.2, we provide an asymptotic estimate for Jεu and Jεd . First, Assump-

tion 4.2 states that (mε
k(t), x

ε
k(t), y

ε
k(t), z

ε
k(t)) converges uniformly to (mk(t), xk(t), yk(t), zk(t))

for t ∈ [0, 1]. Let us denote the uniform convergence rate of (mε
k, x

ε
k, y

ε
k, z

ε
k) to (mk, xk, yk, zk)

by ρk(ε).

Lemma 6.2. Under Assumptions 4.1 and 4.2, we have for all t0 ∈ [0, 1) and x0 ∈ Dc,◦(t0):

Jεu(t, x) = εjεu(t, x) + ε2eεu(t, x), and Jεd(t, x) = jd(t, x) +
(
ε ∨ ρk(ε)

)
eεd(t, x), (6.5)

where (ε, t, x) 7→ eεu(t, x), eεd(t, x) are locally bounded near (t0, x0, 0), jd is defined in (4.5),

and

jεu(t, x) :=
∂tF

(
t, x− Jεd(t, x)

)
− ∂tF (t, x)

f(t+ ε, x)
.

Proof. For δ > 0 small enough and 0 ≤ ε ≤ δ, the function gεt (x, ξ) is uniformly bounded

(let us say bounded by K > 0) for x ∈ Bδ(t0, x0, 0) and ξ ∈ R. Let ||∞ be the L∞−norm

in the corresponding space of variables. For the density function f , we denote mf :=

inft∈[t0−δ,t0+δ],y∈[−K,K]∩(l(t),r(t)) f(t, y) which is strictly positive by Assumption 4.1.

Notice that Td(t, x) is clearly continuous on Bδ(t0, x0) for δ > 0 small enough, since x0 ∈
Dc,◦(t0). We first claim that the family (|T εd (t, x)|)(t,x,ε)∈Bδ(t0,x0,0) is uniformly bounded by

some constant K > 0, such that K > |Td(t, x)|+ 1 for every (t, x) ∈ Bδ(t0, x0).

(i) By the definition of T εu below (4.1), we write:

T εu(t, x) = F−1
(
t+ ε, F (t+ ε, x) + δεF (t, T εd (t, x))− δεF (t, x)

)
.

By direct expansion, we see that the first equality in (6.5) holds true with

|eεu(t, x)| ≤ sup
t≤s≤t+ε, T εd (s,x)≤ξ≤x

2∂ttF (s, ξ)∂xf(s, ξ)

f3(s, ξ)
.

(ii) Let us now consider the second equality in (6.5). First,∫ x

−∞
[F−1(t+ ε, F (t, ξ))− ξ]f(t, ξ)dξ =

∫ x

−∞
ξ δεf(t, ξ)dξ +

∫ F−1(t+ε,F (t,x))

x
ξf(t+ ε, ξ)dξ

=

∫ x

−∞
ξ δεf(t, ξ)dξ − δεF (t, x)

(
x+ C1(t, x)ε

)
=

∫ x

−∞
(ξ − x) δεf(t, ξ)dξ + C2(t, x)ε2,

where |C1(t, x)| ≤ |F−1(t+ ε, F (t, x))− x|2|f |∞ and |C2(t, x)| ≤ |C2(t, x)||∂tF |∞.
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We next note that gεt (x, ξ) = x+C3(t, x, ξ)ε, where |C3(t, x, ξ)| ≤ 2 |∂tF |∞mf
. Then it follows

by direct computation that Further, for every k ≥ 1,∫
(−∞,T εd (t,x)]∩Aεk

(
gεt (x, ξ)− ξ

)
δf(t, ξ)dξ =

∫
(−∞,T εd (t,x)]∩Aεk

(x− ξ) δεf(t, ξ)dξ + C4(t, x)ε2,

where |C4(t, x)| ≤ 2 |∂tF |∞mf
|∂tF |∞. Combining the above estimates with (4.1), it follows

that ∫
(T εd (t,x),x]∪{∪i<k[zεi ,x

ε
i )}

(
x− ξ

)1

ε
δεf(t, ξ) dξ =

(
C2(t, x) ∨ C4(t, x)

)
ε.

It follows then∫
(T εd (t,x),x]∪{∪i<k[zi,xi)}

(x− ξ)∂tf(t, ξ) dξ = C5(t, x)
(
ε ∨ ρk(ε)

)
,

where |C5(t, x)| ≤ (x + K)(|∂tf |∞ + |∂2
ttf |∞). Recall that ∂tF (t, xi) = ∂tF (t, zi) and∫ xi

zi
(xi − ξ)∂tf(t, ξ)dξ = 0, we get∫

(mk,x]∪{(T εd (t,x),mk]∩Ak}
(x− ξ)∂tf(t, ξ) dξ = C5(t, x)

(
ε ∨ ρk(ε)

)
. (6.6)

This implies the first estimation in (6.5) since ∂tf(t, x) > 0 on Ak.

(iii) To complete the proof, it is enough the prove the claim that (|T εd (t, x)|)(t,x,ε)∈Bδ(t0,x0,0) is

uniformly bounded. We notice that for ε > 0 small enough, there is some T εd (t, x) bounded

by K > |Td(t, x)| + 1, which solves equation (6.6). Then this T εd (t, x) also solves (4.1)

since (6.6) is equivalent to (4.1) by the definition of C5(t, x). Finally, by the uniqueness

of solution of T ε in (4.1), it follows that the family (|T εd (t, x)|)(t,x,ε)∈Bδ(t0,x0,0) is indeed

uniformly bounded by some constant K, and we hence conclude the proof.

Our next result will be proved in the one local maximizer context of Assumption 4.8.

Then, D := {x ≤ m(t)}, and Td : Dc → D is defined by∫ x

Td(t,x)
(x− ξ)∂tf(t, ξ)dξ = 0, for all (t, x) ∈ Dc. (6.7)

We also introduce the following subsets of Dc := {x > m(t)}:

Eδ := {(t, x) ∈ Dc : m(t) < x < m(t) + δ}, Eδ,K := {(t, x) ∈ Dc : m(t) + δ ≤ x ≤ (m(t) +K) ∧ r(t)}.

Remark 6.3. Under the additional Assumption 4.8 and by the same arguments, the func-

tions eεu and eεd in Lemma 6.2 are uniformly bounded on every Eδ,K , for every 0 < δ < K.

Consequently, there is constant Cδ,K such that qε admits the asymptotic expansion:

qε(t, x) = ε
ju(t, x)

jd(t, x)
+ Cδ,K ε

(
ε ∨ ρ0(ε)

)
, for (t, x) ∈ E+

δ,K . (6.8)
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Proof of Lemma 4.10. (i) To see that jd1Dc is locally Lipschitz in x on [m(t),∞), we

shall verify that ∂xTd1Dc is locally bounded. From (6.4), we have

∂xTd(t, x) =
∂tF (t, x)− ∂tF (t, Td(t, x))(
x− Td(t, x)

)
∂tf
(
t, Td(t, x)

) , (t, x) ∈ Dc.

It is clear that ∂xTd(t, x) is continuous on Dc and hence bounded on Eδ,K for every 0 <

δ < K. We then focus on the case (t, x) ∈ Eδ. Since ∂tf(t,m(t)) = 0 and ∂txf(t,m(t)) < 0

by Assumption 4.8, we have

∂tf(t, ξ) = ∂txf
(
t,m(t)

)(
ξ −m(t)

)
+ C1(t, ξ)

(
ξ −m(t)

)2
,

where C1(t, ξ) is uniformly bounded for |ξ−m(t)| ≤ δ. Inserting the above expression into

(6.7), it follows that∫ x

Td(t,x)

(
x− ξ

)(
ξ −m(t)

)
dξ = C2(t, x)

(
x− Td(t, x)

)4
,

where C2 is also uniformly bounded on Eδ since min0≤t≤1 ∂t,xf(t,m(t)) < 0 by Assumption

4.8. By direct computation, it follows that(
x− Td(t, x)

)2(
x−m(t) + 2

(
m(t)− Td(t, x)

))
= C2(t, x)

(
x− Td(t, x)

)4
,

which implies that

Td(t, x) = m(t)− 1

2

(
x−m(t)

)
+ C2(t, x)

(
x− Td(t, x)

)2
, (6.9)

Using again the expression (6.4), we have

∂xTd
(
t, x
)

= −1

2
+ C3(t, x)

(
x− Td(t, x)

)
,

where C3 is also uniformly bounded on Eδ. Finally, by the uniqueness of solution Td of

(6.7), we get

∂xTd
(
t, x
)

= −1

2
+ C4(t, x)

(
x−m(t)

)
, (6.10)

for some C4 uniformly bounded on Eδ, implying that Td1Dc is locally Lipschitz in x.

(ii) By the expression of ju in (4.5), i.e.

ju(t, x) :=
∂tF

(
t, Td(t, x)

)
− ∂tF (t, x)

f(t, x)
.

By (6.10), it is easy to check hat ju1Dc and (ju/jd)1Dc are also locally Lipschitz in x.

(iii) We now consider ∂tTd(t, x). By direct computation,

∂tTd(t, x) =

∫ x
Td(t,x)(x− ξ)∂

2
ttf(t, ξ)dξ

(x− Td(t, x))∂tf(t, Td(t, x))
,
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which is clearly continuous in (t, x) on Dc, and hence uniformly bounded on Eδ,K , for

K > δ > 0. Using again (6.9), it is easy to verify that ∂tTd is also uniformly bounded on

E0,δ, and hence ∂tTd(t, x) is also locally bounded on Dc. In particular, we have

∂tTd(t,m(t) + δ) → − 3

2

∂2
ttf(t,m(t))

∂2
txf(t,m(t))

uniformly for t ∈ [0, 1], as δ ↘ 0.

(iv) To prove ψ∗ ∈ C1,1([0, 1] × R), we need to check that ∂xψ
∗ = h∗ and ∂tψ

∗ are both

continuous on [0, 1]×R. First, By its definition below (4.9), h∗ is clearly continuous in (t, x)

for x 6= m(t), since the function Td(t, x)1x≥m(t) is continuous. We can also easily check the

continuity of h∗ at the point (t,m(t)) by (4.9), since T−1
d (t, x) → m(t) as x → m(t) and

cy(x, x) = 0. Finally, by (4.9) with direct computation, we get

∂t,xh
∗(t, x) = ∂tjd(t, x)

cxy
(
x, Td(t, x)

)
jd(t, x) −

(
cx(x, x)− cx(x, Td(t, x))

)(
jd(t, x)

)2 ,

which is also locally bounded onDc by (6.9). It follows then that ∂tψ
∗(t, x) =

∫ x
0 ∂th

∗(t, ξ)dξ

is continuous in (t, x).

Lemma 6.4. Under Assumptions 3.1, 4.1 and 4.8, we have

T εd1Dcε → Td1Dc , h
ε → h∗, ∂tψ

ε → ∂tψ
∗, and ψε → ψ∗,

locally uniformly on {(t, x) : t ∈ [0, 1), x ∈ (l(t), r(t))}.

Proof. (i) In the one local maximizer case under Assumption 4.8, the definition of T εd (t, x)

in (4.1) is reduced to be∫ x

−∞

[
F−1

(
t+ ε, F (t, ξ)

)
− ξ
]
f(t, ξ)dξ +

∫ T εd (t,x)

−∞

[
gεt (x, ξ)− ξ

]
δεf(t, ξ)dξ = 0,

or equivalently ∫ x

T εd (t,x)
ξ δεf(t, ξ)dξ +

∫ T εu(t,x)

x
ξf(t+ ε, ξ)dξ = 0, (6.11)

with T εu(t, x) := gεt
(
x, T εd (t, x)

)
. Differentiating (6.11), it follows that

∂tT
ε
d (t, x) := − Aε(t, x)(

T εu − T εd
)
δεf
(
t, T εd (·)

) (t, x), (6.12)

with

Aε(t, x) :=

∫ x

T εd (t,x)
ξ∂tδ

εf(t, ξ)dξ +

∫ T εu(t,x)

x
ξ∂tf(t+ ε, ξ)dξ

+ T εu(t, x)
(
∂tF (t, x)− ∂tF

(
t+ ε, T εu(t, x)

)
+ ∂tδ

εF
(
t, T εd (t, x)

))
,

= −
(
T εu(t, x)− x

)(
∂tδ

εF (t, x)− ∂tδεF (t, T εd (t, x)
)

−
∫ T εu(t,x)

x

(
T εu(t, x)− ξ

)
∂tf(t+ ε, ξ)dξ −

∫ x

T εd (t,x)
(x− ξ)∂tδεf(t, ξ)dξ
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and

∂xT
ε
d (t, x) := − T εu(t, x)− x(

T εu(t, x)− T εd (t, x)
)
δεf
(
t, T εd (t, x)

) f(t, x), (6.13)

where the last term is exactly the same as that induced by ODE (2.4).

(ii) Taking the limit ε→ 0, it follows by direct computation and the convergence T εd (t, x)→
Td(t, x) in Lemma 6.2 that ∂xT

ε
d (t, x) → ∂xTd(t, x) and ∂tT

ε
d (t, x) → ∂tTd(t, x) for every

(t, x) ∈ Dc. Moreover, by the local uniform convergence result in Lemma 6.2, we deduce

that ∂xT
ε
d and ∂tT

ε
d also converge locally uniformly. Denote T 0

d := Td, it follows that the

mapping (t, x, ε)→
(
∂tT

ε
d (t, x), ∂xT

ε
d (t, x)

)
is continuous on

E :=
{

(t, x, ε) : t ∈ [0, 1], ε ∈ [0, 1− t], mε(t) < x < rε(t)
}
,

where m0(t) := m(t) and r0(t) := r(t).

(iii) By exactly the same computation as in Proposition 3.12 of [21], we have

∂xT
ε
d (t, x) =

(
1 +O(ε) +O

(
x− T εd

))(x−mε(t)
)
− 1

2

(
x− T εd

)
+O

((
x− T εd

)2)(
x−mε(t)

)
−
(
x− T εd

)
+O

((
x− T εd

)2) (t, x),

and it follows by similar arguments as in [21] that

T εd (t, x)−mε(t) = − 1

2

(
x−mε(t)

)
+ O

(
(x−mε)2

)
,

and hence

∂xT
ε
d (t,mε(t) + δ)→ −1

2
uniformly for t ∈ [0, 1) and ε ∈ [0, ε0 ∧ 1− t], as δ ↘ 0. (6.14)

Next, using the estimation (6.14) and the definition of T εu , we have

T εu(t, x)− x = C1(ε, t, x)
(
x− T εd (t, x)

)2
and

T εu(t, x)− x
ε

= C2(ε, t, x)
(
x− T εd (t, x)

)
.

Therefore, by direct computation,

1

ε
Aε(t, x) = −1

2

(
x− T εd (t, x)

)2
∂t

1

ε
δεf(t,mε(t)) + C3(ε, t, x)

(
x−mε(t)

)3
.

It follows by the uniform convergence in (6.14) that

∂tT
ε
d (t, x) = −3

2

∂tδ
εf(t,mε(t))

∂xδεf(t,mε(t))
+ C4(ε, t, x)

(
x−mε(t)

)
, (6.15)

where we notice that C4 is uniformly bounded for ε > 0 and x− T εd (mε(t)) small enough.

Finally, the two uniform convergence results in (6.14) and (6.15) together with the continu-

ity of (t, x, ε)→
(
∂tT

ε
d (t, x), ∂xT

ε
d (t, x)

)
implies that ∂tT

ε
d (t, x) and ∂xT

ε
d (t, x) are uniformly

bounded on E ∩ {(t, x, ε) : |x| ≤ mε(t) +K} for every K > 0.

(iv) Therefore, it follows by Arzelà-Ascoli’s theorem that T εd converges to Td locally uni-

formly. Finally, by the local uniform convergence of T εd → Td, together with the estima-

tions in (6.10) and (6.14), it is easy to deduce the local uniform convergence of hε → h,

∂tψ
ε → ∂tψ

∗ and ψε → ψ∗ as ε→ 0.
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6.2 Weak convergence to the Peacock process

Proof of Proposition 4.4. We recall that Pn is a martingale measure on the canonical

space Ω, induced by the discrete-time martingale X∗,n under the probability P∗,n, whose

upward jump size is Jεu(t, x) and downward jump size is Jεd(t, x) with ε := 1/n (see the

beginning of Section 4.1.2).

(i) To prove the tightness of (Pn)n≥1, we shall use Theorem VI.4.5 of Jacod and Shiryaev

[32, P. 356].

First, Doob’s martingale inequality implies that

Pn
[

sup
0≤t≤1

|Xt| ≥ K
]
≤ EPn [|X1|]

K
=

1

K

∫
R
|x|µ1(dx) =:

L1

K
, ∀K > 0. (6.16)

It follows that, to prove the tightness of (Pn)n≥1, we can suppose, without loss of generality,

that the canonical process X under every Pn is a bounded martingale. Let δ > 0, it follows

by Lemma 6.1 that the upward jump size Jεu(t, x) is uniformly bounded by Cε for some

constant C on Dδ := {(t, x) : m(t) ≤ x ≤ r(t)−δ/2}. We then consider θ > 0 small enough

such that θ ≤ δ
2C and |l(t+θ)−l(t)|+|r(t+θ)−r(t)| ≤ δ/2 for all t ∈ [0, 1−θ]. Let S, T be two

stopping times w.r.t to the filtration generated by X∗,n such that 0 ≤ S ≤ T ≤ S + θ ≤ 1.

When X∗,n only increases between S and S + θ, then clearly |X∗,nT −X∗,nS | < δ. Therefore

P∗,n
[∣∣X∗,nT −X∗,nS

∣∣ ≥ δ] ≤ P∗,n
[
There is a down jump of X∗,n on [S, S + θ]

]
≤ 1− (1− Cε)θ/ε+1,

where the last inequality follows by the estimate of qε in Lemma 6.1. It is clear that

lim
θ→0

lim sup
n→∞

(
1− (1− Cε)θ/ε+1

)
= 0.

We then deduce from Theorem VI.4.5 of Jacod and Shiryaev [32] that the sequence (X∗,n)n≥1

is tight, and hence
(
Pn
)
n≥1

is tight.

(ii) Let P0 be a limit of (Pn)n≥1, let us now check that P0 ◦X−1
t = µt for every t ∈ [0, 1]. By

extracting the sub-sequence, we suppose that Pn → P0, then P∗,n ◦ (X∗,nt )−1 = Pn ◦X−1
t →

P0 ◦ X−1
t . By the construction of the Markov chain X∗,n, there is a sequence (sn)n≥1 in

[0, 1] such that sn → t and X∗,nt = X∗,nsn ∼ µsn under P∗,n. It follows by the continuity of

the distribution function F (t, x) that µsn → µt, and hence P0 ◦X−1 = µt.

(iii) Finally, let us show that X is still a martingale under P0. For every K > 0, denote

XK
t := (−K) ∨Xt ∧K. Let s < t and ϕ(s,X·) be a bounded continuous, Fs-measurable

function, by weak convergence, we have

EPn[ϕ(s,X·)(X
K
t −XK

s )
]
−→ EP0[

ϕ(s,X·)(X
K
t −XK

s )
]
.

Moreover, since the marginals (µt)t∈[0,1] form a peacock, and hence are uniformly integrable,

it follows that∣∣EPn[ϕ(s,X·)(X
K
t −XK

s )
]∣∣ ≤ 2|ϕ|∞ sup

r≤1

∫
|x|1{|x|≥K}µr(dx) −→ 0, as K →∞,
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uniformly in n. Then, by the fact that X is a Pn−martingale, we have EP0[
ϕ(s,X·)(Xt −

Xs)
]

= 0. By the arbitrariness of ϕ, this proves that X is a P0−martingale.

To show that a limit of (Pn)n≥1 provides a weak solution of (4.7), we shall consider the

associated martingale problem. Let

Mt(ϕ,x) := ϕ(xt)−
∫ t

0
ju(s,xs−)Dϕ(xs−)1xs−>m(s)ds

+

∫ t

0

[[
ϕ(xs− − jd(s,xs−))− ϕ(xs−)

]ju
jd

(s,xs−)
]
1xs−>m(s)ds, (6.17)

for all x ∈ Ω := D([0, 1],R) and ϕ ∈ C1(R). Then the process M(ϕ,X) is clearly progres-

sively measurable w.r.t. the canonical filtration F. For the martingale problem, we also

need to use the standard localization technique in Jacod and Shiryaev [32]. In prepara-

tion, let us introduce, for every constant p > 0, an F-stopping time and the corresponding

stopped canonical process

τp := inf
{
t ≥ 0 : |Xt| ≥ p or |Xt− | ≥ p

}
, Xp

t := Xt∧τp .

Following [32], denote also J(x) := {t > 0 : ∆x(t) 6= 0},

V (x) := {a > 0 : τa(x) < τa+(x)} and V ′(x) := {a > 0 : τa(x) ∈ J(x) and |x(τa(x))| = a}.

Proof of Theorem 4.11. By extracting subsequences, we can suppose without loss of

generality that Pn → P0 weakly. To prove that P0 is a weak solution of SDE (4.11), it is

sufficient to show that
(
Mt(ϕ,X)

)
t∈[0,1]

is a local martingale under P0 for every ϕ ∈ C1
b (R).

Since the functions ju and jd are only locally Lipschitz (not uniformly bounded) by Lemma

4.10, we need to adapt the localization technique in Jacod and Shiryaev [32], by using the

stopping time τp. Our proof will be very similar to that of Theorem IX.3.39 in [32].

First, for every n ≥ 1, Pn is induced by the Markov chain (X∗,n,P∗,n), then

EPn
tk

[
ϕ(Xtk+1

)− ϕ(Xtk)
]

= EPn
tk

[{
ϕ
(
Xtk + Jεu(tk, Xtk)

)
−ϕ(Xtk)

}(
1− Jd

Jd + Ju

)
1Xtk≥mε(tk)

]
+ EPn

tk

[{
ϕ
(
Xtk − J

ε
d(tk, Xtk)

)
− ϕ(Xtk)

} Jd
Jd + Ju

1Xtk≥mε(tk)

]
=: α + β.

By (6.8) in Remark 6.3 and the uniform continuity of mε(t), we see that

α = EPn
tk

[ ∫ tk+1

tk

Dϕ(Xs)ju(s,Xs)1Xs≥m(s)ds
]

+ O
(
ε(ε ∨ ρ0(ε))

)
,

where ρ0 is the continuity modulus of (t, ε) 7→ mε(t) in Assumption 4.8. We also estimate

similarly that

β = EPn
tk

[ ∫ tk+1

tk

(
ϕ(Xs − jd(s,Xs))− ϕ(Xs)

)ju
jd

(s,Xs)1Xs≥m(s)ds
]

+O
(
ε(ε ∨ ρ0(ε))

)
.
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Therefore, let 0 ≤ s < t ≤ 1, p ∈ N, φs(X·) be a Fs-measurable bounded random variable

on Ω such that φ : Ω→ R is continuous under the Skorokhod topology, we have

EPn
[
φs(X·)

(
Mt∧τp(ϕ,X)−Ms∧τp(ϕ,X)

)]
≤ Cp ε. (6.18)

To proceed, we follow the same localization arguments as in the proof of Theorem IX.3.39

of Jacod and Shiryaev [32]. Since Pn → P0 as n→∞, then for every p ∈ N, the distribution

of the stopped process Xp
· under Pn also converges, i.e. there is P0,p such that LPn(Xp

· )→
P0,p as n→∞. Due to the proof of Proposition IX.1.17 of [32], there are at most countably-

many a > 0 such that

P0,p
(
ω : a ∈ V (ω) ∪ V ′(ω)

)
> 0.

So we can choose ap ∈ [p− 1, p] such that

P0,p
[
ω : ap ∈ V (ω) ∪ V ′(ω)

]
= 0.

It follows by Theorem 2.11 of [32] that ω 7→ τap(ω) is P0,p-a.s. continuous and the law

LPn
(
Xp
· , X

ap
·
)

converges to LP0,p(
X,Xτap

)
.

Denote by P̃0,p the law of Xτap on (Ω,F ,P0,p), we then have ω 7→ τap(ω) is P̃0,p-a.s.

continuous and LPn
(
Xap

)
→ P̃0,p. In particular, since there is a countable set T∗ ⊂ [0, 1]

such that

x 7→ Mt∧τap (ϕ,x)−Ms∧τap (ϕ,x) (6.19)

is P̃0,p-almost surely continuous for all s < t such that s, t /∈ T∗. Therefore, by taking the

limit of (6.18), we obtain

EP̃0,p[
φs(X·)

(
Mt(ϕ,X)−Ms(ϕ,X)

)]
= 0,

whenever s ≤ t and t /∈ T∗. Combining with the right-continuity of Mt(ϕ,x), we know P̃0,p

is a solution of the martingale problem (6.17) between 0 and τap , i.e.
(
Mt∧τap (ϕ,X)

)
0≤t≤1

is

a martingale under P̃0,p. Moreover, since P̃0,p = P0 in restriction to (Ω,Fτap ) and τap →∞
as p→∞, it follows by taking the limit p→∞ that

(
Mt(ϕ,X)

)
0≤t≤1

is a local martingale

under P0, i.e. P0 is a solution to the martingale problem (6.17) and hence a weak solution

to SDE (4.11).

Finally, for uniqueness of solutions to SDE (4.11), it is enough to use Theorem III-4 of

Lepeltier and Marchal [37] (see also Theorem 14.18 of Jacod [31, P. 453]) together with

localization technique to conclude the proof.

Remark 6.5. In the multiple local maximizers case under Assumption 4.2, the functions

ju and jd are no more continuous, then the mapping (6.19) may not be a.s. continuous and

the limiting argument thereafter does not hold true. This is the main reason for which we

restrict to the one maximizer case under Assumption 4.8 in Theorem 4.11.

Proof of Lemma 4.6. We recall that by Theorem 3.8 in [21] (ii), the corresponding maps

T εu(t, .) and T εd (t, .) solve the following ODEs:

d

dx
δεF

(
t+ ε, T εd (t, x)

)
= (1− q)(t, x)f(t, x), (6.20)

d

dx
F
(
t+ ε, T εu(t, x)

)
= q(t, x)f(t, x) for all x ∈ (Dε)c(t), (6.21)
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where δεF (t+ ε, .) := F (t+ ε, .)− F (t, .). With the asymptotic estimates

T εd (t, x)− x = −jd(t, x) + ◦(ε) and T εu(t, x)− x = εju(t, x) +O(ε),

which is locally uniform by Lemma 6.2. By direct substitution of this expression in the

system of ODEs (6.20-6.21), we see that the limiting maps (jd, ju) of (T εu , T
ε
d ), as ε ↘ 0,

satisfy the following system of first order partial differential equations (PDEs):

∂xjd(t, x) = 1 +
ju(t, x)

jd(t, x)

f(t, x)

∂tf(t, x− jd(t, x))
, ∂x{juf}(t, x) = −∂tf(t, x)− ju(t, x)

jd(t, x)
f(t, x).

Since x ∈ Dc(t) and x− jd(t, x) ∈ D(t), it follows directly that (4.6) holds true.

Proof of Proposition 4.7. By Lemma 4.6, item (ii) of Proposition 4.7 is a direct conse-

quence of item (i), then we only need to prove (i).

Let x ∈ R, the function y 7→ (y − x)+ is continuous and smooth on both (−∞, x] and

[x,∞), then it follows by Itô’s lemma that

d
(
X̂t − x

)+
= dMt + Lt (6.22)

:= 1{X̂t−>x}dX̂t +
((
X̂t − x

)+ − (X̂t− − x
)+ − 1{X̂t−>x}∆X̂t

)
,

where (Mt)0≤t≤1 is a local martingale. Notice that 1{X̂t−>x} is bounded and X̂1 ∈ Lp for

some p > 1. Using BDG inequality and then Doob’s inequality, it is a standard result

that (Mt)0≤t≤1 is a real martingale. Further, the local Lévy process X̂ is clearly quasi left

continuous. Moreover, since

Ls =
(
x− Td

(
s, X̂s−

))
1{

Td

(
s,X̂s−

)
≤ x < X̂s− , X̂s−∈Dc(s)

} ≤ jd
(
s, X̂s−

)
1{

X̂s−∈Dc(s)
}

by direct computation, it follows by (4.8) together with dominated convergence theorem

that

E
[ ∑
t≤s≤t+ε

Ls

]
= E

[ ∫ t+ε

t

(
x− Td

(
s, X̂s−

))ju
jd

(
s, X̂s−

)
1{

Td

(
s,X̂s−

)
≤x<X̂s− , X̂s−∈Dc(s)

}ds],
for every ε ≤ ε0, where ε0 ∈ (0, 1 − t). Then, integrating (6.22) between t and t + ε, and

taking expectations, it follows that

E
[(
X̂t+ε − x

)+]
− E

[(
X̂t − x

)+]
=

∫ t+ε

t

∫
R

(
x− Td(s, y)

)ju
jd

(
s, y
)
1{

Td(s,y)≤x<y, y∈Dc(s)
}f X̂(s, y) dy ds. (6.23)

Let us now differentiate both sides of (6.23). For the left hand side, since the density

function f X̂(t, .) of X̂t is continuous, the function x 7→ E
[
(X̂t−x)+

]
=
∫∞
x (y−x)f X̂(t, y)dy

is differentiable and

∂xE
[(
X̂t − x

)+]
=

∫ ∞
x
−f X̂(t, y)dy, ∂2

xxE
[(
X̂t − x

)+]
= f X̂(t, x). (6.24)
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We now consider the rhs of (6.23) and denote

l(s, x) :=

∫
R

(
x− Td(s, y)

)ju
jd

(
s, y
)
1{

Td(s,y)≤x<y, y∈Dc(s)
}f X̂(s, y) dy.

Let us fix s ∈ [0, 1) and x ∈ Dc,◦(s), then it is clear that

l(s, x) =

∫ ∞
x

(
x− Td(s, y)

)ju
jd

(
s, y
)
1{

Td(s,y)≤x, y∈Dc(s)
}f X̂(s, y)dy,

where the integrand is smooth in x for every y ∈ R. Hence for every x ∈ Dc,◦(s),

∂xl(s, x) = ju(s, x)f X̂(s, x) +

∫ ∞
x

ju
jd

(
s, y
)
1{

Td(s,y)≤x, y∈Dc(s)
}f X̂(s, y)dy,

and

∂2
xxl(s, x) = ∂x

(
juf

X̂
)
(s, x) − ju

jd
f X̂(s, x). (6.25)

We now consider the case x ∈ D◦. Notice that Td(s, ·) : Dc(s) → D(s) is a bijection and

X̂s admits a density function. It follows that the random variable Td(s, X̂s) also admits a

density function on D(s), given by

f T̂ (s, y) =
f X̂

∂xTd
(s, y), ∀y ∈ D(s).

Then by the expression that

l(s, x) =

∫ x

−∞
(x− z)ju

jd

(
s, T−1

d (s, z)
)
1{x≤T−1

d (z)}f
T̂ (s, z)dz,

we get

∂2
xxl(x) = ju

jd

(
s, T−1

d (s, x)
)
f T̂ (s, z) = ju

jd

(
s, T−1

d (s, x)
) fX̂

∂xTd
(s, x), ∀x ∈ D◦(s). (6.26)

Finally, differentiating both sides of (6.23) (with (6.24), (6.25) and (6.26)), then dividing

them by ε and sending ε↘ 0, it follows that

∂tf
X̂(t, x) = 1{x∈Dc(t)}

(
∂x
(
f X̂ju

)
− juf

X̂

jd

)
(t, x)− 1{x∈D(t)}

juf
X̂

jd(1− ∂xjd)
(
t, T−1

d (t, x)
)
,

for every t ∈ [0, 1) and x ∈ D◦(t) ∪Dc,◦(t).

6.3 Convergence of the robust superhedging strategy

To prove Theorem 4.12, we recall that under every Pn, we have Pn-a.s. that

n−1∑
k=0

(
ϕε(tk, Xtk) + ψε(tk, Xtk+1

)
)

+
n−1∑
k=0

hε(tk, Xtk)
(
Xtk+1

−Xtk

)
≥

n−1∑
k=0

c
(
Xtk , Xtk+1

)
.(6.27)

By taking the limit of every term, we obtain a superhedging strategy for the continuous-

time reward function, and we can then check that this superhedging strategy induces a
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duality of the transportation problem as well as the optimality of the local Lévy process

(4.11).

Let us first introduce Ψ∗ : Ω→ R by

Ψ∗(x) := ψ∗(1,x1)− ψ∗(0,x0)−
∫ 1

0

(
∂tψ
∗(t,xt) + ju(t,xt)1xt>m(t)∂xψ

∗(t,xt)
)
dt (6.28)

+

∫ 1

0

ju(t,xt)

jd(t,xt)
1xt>m(t)

(
ψ∗(t,xt)− ψ∗(t,xt − jd(t,xt)) + c(xt,xt − jd(t,xt))

)
dt.

Lemma 6.6. Let Assumptions 4.1 and 4.8 hold true. Then for every càdlàg path x ∈
D([0, 1]) taking value in (`1, r1), we have

lim
n→∞

n−1∑
k=0

(
ϕε(tk,xtk) + ψε(tk,xtk+1

)
)
→ Ψ∗(x) as ε → 0.

Proof. By direct computation, we have for every n ≥ 1,

n−1∑
k=0

(
ϕε(tk,xtk) + ψε(tk,xtk+1

)
)

=

n−1∑
k=1

(
ψε(tk−1,xtk)− ψε(tk,xtk)

)
+ ψε(tn−1,x1)

+
n−1∑
k=0

(
ϕε(tk,xtk) + ψε(tk,xtk)

)
− ψε(0,x0).

First, we have ψε(tn−1,x1)→ ψ∗(1,x1) and by Lemma 6.4,

n−1∑
k=1

(
ψε(tk−1,xtk)−ψε(tk,xtk)

)
= −

∫ 1

0

n−1∑
k=1

∂tψ
ε(s,xtk)1s∈[tk,tk+1)ds −→ −

∫ 1

0
∂tψ
∗(s,xs)ds.

Further, when x > m(t),

ϕε + ψε = ψε − ψε(., T εu) +
Jεu

Jεu + Jεd

(
ψε(., T εu) + c(., T εd )− ψε(., T εd )

)
+ o(ε)

= −εju∂xψε + ε
ju
jd

(
ψε − ψε(., Td) + c(., Td)

)
+ o(ε).

It follows that
∑n−1

k=0

(
ϕε(tk,xtk) + ψε(tk,xtk)

)
converges to∫ 1

0
−∂xψ∗(t,xt)ju(t,xt)dt

+

∫ 1

0

ju(t,xt)

jd(t,xt)
1xt>m(t)

(
ψ∗(t,xt)− ψ∗(t,xt − jd(t,xt)) + c(xt,xt − jd(t,xt))

)
dt,

which concludes the proof.

Lemma 6.7. Let Assumptions 4.1 and 4.8 hold true, and µ(λ
∗
) < ∞. Then for the limit

probability measure P0 given in Theorem 4.11, we have

EP0[
C(X·)

]
= EP0[

Ψ∗(X·)
]

= µ(λ∗) =

∫ 1

0

∫ r(t)

m(t)

ju(t, x)

jd(t, x)
c
(
x, x− jd(t, x)

)
f(t, x)dxdt.
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Proof. We notice that under the limit probability measure P0, X is a pure jump mar-

tingale with intensity ju
jd

(s,Xs−). Then by Itô’s formula, the following process is a local

martingale

ψ∗(t,Xt)− ψ∗(0, X0)−
∫ t

0
∂tψ
∗(t,Xs)dt

−
∫ t

0

[
ju(s,Xs)∂xψ

∗(s,Xs) +
ju
jd

(s,Xs)
[
ψ∗(s,Xs − jd(s,Xs))− ψ∗(s,Xs)

]]
1Xs>m(s)ds.

Moreover, since µ(λ
∗
) <∞, it follows by dominated convergence theorem that

EP0[
Ψ∗(X·)

]
= EP0

[ ∫ 1

0

ju
jd

(s,Xs)1Xs>m(s)c(Xs, Xs − jd(s,Xs))ds
]

=

∫ 1

0

∫ r(t)

m(t)

ju(t, x)

jd(t, x)
c
(
x, x− jd(t, x)

)
f(t, x)dxdt,

since the marginals of X under P0 are (µt)0≤t≤1.

To computer EP0
[C(X·)], we notice that [X]ct = 0, P0 − a.s., and the process

Yt :=
∑
s≤t
|c(Xs− , Xs)| −

∫ t

0
|c(Xs− , Xs− − jd(s,Xs−))|ju(s,Xs−)

jd(s,Xs−)
1Xs−≥m(t)ds,

is a local martingale. Since µ(λ
∗
) <∞, we have∫ 1

0
|c(Xs− , Xs− − jd(s,Xs−))|ju(s,Xs−)

jd(s,Xs−)
1Xs−≥m(t)ds

=

∫ 1

0

∫ r(t)

m(t)

ju(t, x)

jd(t, x)

∣∣c(x, x− jd(t, x)
)∣∣f(t, x)dxdt < ∞,

which implies that Y is a martingale and hence E[Y1] = 0. Finally, using similar arguments

together with dominated convergence theorem, we get that

E
[∑
s≤t

c(Xs− , Xs)
]

=

∫ 1

0

∫ r(t)

m(t)

ju(t, x)

jd(t, x)
c
(
x, x− jd(t, x)

)
f(t, x)dxdt,

which concludes the proof.

Next, let us consider the limit of the second term on the left hand side of (6.27).

Lemma 6.8. Let Assumptions 4.1 and 4.8 hold true. Then we have the following conver-

gence in probability under every martingale measure P ∈M∞:

n−1∑
k=1

hε(tk, Xtk)
(
Xtk+1

−Xtk

)
→

∫ 1

0
h∗(t,Xt−)dXt.

Proof. The functions hε are all locally Lipschitz uniformly in ε and hε → h∗ locally

uniformly, as ε → 0, by Lemma 6.4. By the right continuity of martingale X, the above

lemma is then a direct application of Theorem I.4.31 of Jacod and Shiryaev [32].
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Proof of Theorem 4.12. Using (6.27), together with Lemmas 3.3, 6.6 and 6.8, it follows

that under every P ∈M∞ (i.e. the canonical process X is a martingale under P), we have

the superhedging property

Ψ∗(X·) +

∫ 1

0
h∗(t,Xt−)dXt ≥

∫ 1

0

1

2
cyy(Xt, Xt)d[X]ct +

∑
0<t≤1

c(Xt− , Xt), P-a.s.

Further, by weak duality, we have

EP0
[C(X·)] ≤ P∞(µ) ≤ D∞(µ) ≤ µ(λ∗).

Since EP0
[C(X·)] = µ(λ∗) by Lemma 6.7, this implies the strong duality as well as the opti-

mality of the local Lévy process (4.11) and the semi-static superhedging strategy described

by (h∗, ψ∗).
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