An overview of Viscosity Solutions of
Path-Dependent PDEs *

Zhen-Jie REN T Nizar Touzr * Jianfeng ZHANG #

September 28, 2014

Abstract

This paper provides an overview of the recently developed notion of viscosity solutions
of path-dependent partial differential equations. We start by a quick review of the Crandall-
Ishii notion of viscosity solutions, so as to motivate the relevance of our definition in the
path-dependent case. We focus on the wellposedness theory of such equations. In partic-
ular, we provide a simple presentation of the current existence and uniqueness arguments
in the semilinear case. We also review the stability property of this notion of solutions, in-
cluding the adaptation of the Barles-Souganidis monotonic scheme approximation method.
Our results rely crucially on the theory of optimal stopping under nonlinear expectation.
In the dominated case, we provide a self-contained presentation of all required results. The

fully nonlinear case is more involved and is addressed in [12].
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1 Introduction

Let Q := {w € C°([0,T],R?) : wy = 0} be the canonical space of continuous paths starting from
the origin, B the canonical process defined by B;(w) := wy, t € [0,T], and F := {F;,t € [0,T]}

the corresponding filtration. Following Dupire [10], we introduce the pseudo-distance
d((t,w), (', ") ==t = t'| + lwat — Whplle forall ¢t €[0,T], w,w' €Q.  (1.1)

Then, any process u : [0,7] x Q@ — R, continuous with respect to d, is F—progressively
measurable, so that u(t,w) = u(t, (ws)s<t).

The goal of this paper is to provide a wellposedness theory for the path-dependent partial
differential equation (PDE):

—Opu(t,w) — G(t,w,u(t,w), Du(t,w), 0> u(t,w)) =0, t<T, weq. (1.2)

r Y ww

with boundary condition u(T,w) = &(w). Here, £ : (Q, Fr) — (R, Bgr) is a bounded uniformly
continuous function, and G : [0,7] x Q@ x R x RY x S; — R is continuous in (¢,w), Lipschitz-

continuous in the remaining variables (y, z, ), and satisfies the ellipticity condition:
v € Sqr— G(t,w,y,z,7) is non-decreasing. (1.3)

The unknown process u(t,w) is required to be F—progressively measurable, and the derivatives
Oyu, O,u, 02, u are F—progressively measurable processes valued in R, R?, Sy, respectively, which
will be defined later. Notice in particular that, as R?— and Sy—valued process, the derivatives
du, 0% ,u do not correspond to some (infinite-dimensional) gradient and Hessian with respect
to the path. Consequently, the equation is a PDE parameterized by the path, and not
a general PDE on the paths space. For this reason, the name path-dependent PDE is more
relevant than PDE on the paths space.

There are three particular examples of such equations which can be related to the existing

probability theory literature, namely

1. When the nonlinearity G is linear:
. 1
G (L y,z,7) == —ky + §Tr(7), (1.4)

for some functions ¢, k defined on [0,77] x  the natural solution of the equation (1.2) is

given by any regular version of the conditional expectation

T
uhn(t7 CU) = EP |:/ e e krdrfsds +e jtT krdré‘
t

A @), (1.5)
where P is the Wiener measure. Similar results hold for more general linear equations.

2. When the nonlinearity G is semilinear:

1 1
Gy, 2,7) = STe() + Fly,2), (16)

for some function F' : [0,7] x 2 x R x R — R, the natural solution of the equation ([1.2))

is given by any regular version of the backward stochastic differenttial equation:

T T
us_hn(t,w) =Y;(w) where Y,=¢ —|—/ F.(Y,, Z,)dr — / ZdB;, Py —a.s.



3. The theory of second order backward stochastic differential equations introduced in [5]
and [29] provides a similar representation of the natural solution of the path-dependent
PDE (1.2) for a class of fully nonlinearities G.

Another important particular example, which plays the role of a benchmark, is the so-called
Markovian case when &(w) = h(wr), and G(t,w,y, z,7) = g(t,w:,y, 2,7) for some functions g
and h defined on the corresponding finite-dimensional spaces. In this context, we expect that
u(t,w) = v(t,w;) for some function v : [0,7] x RY — R, and the path-dependent PDE ([1.2)
reduces to the standard PDE:

—dw(t,x) — g(t, z,v(t,x), Dvu(t,z), D*v(t, x)) =0, t<T, zeR? (1.7)

where 0;, D, D? denotes respectively the standard time derivative, the gradient and the Hessian
with respect to the space variable. In this case, it is well-known that the theory of viscosity
solutions introduced by Crandall and Lions [7, [§] is a powerful notion of weak solution for which
a solid existence and uniqueness theory has been developed, and which proved its relevance for
various applications. Viscosity solutions gained importance by the contributions of Barles and
Souganidis [I] to the convergence of numerical schemes, and the work of Cafarelli and Cabre [4]
which makes a crucial use of viscosity solutions to obtain sharp regularity results.

Our main concern is the adaptation of the notion of viscosity solutions to the context of our
path-dependent PDE (1.2). However, the fact that our underlying space, namely [0, 7] x Q, is
not locally compact raises a major difficulty which needs to be addressed. Indeed, the stability
and the uniqueness results in the theory of viscosity solutions is based on the existence of a
local maximizer for an arbitrary upper semicontinuous function.

In order to by-pass this difficulty, we introduce a convenient modification of the definition. To
explain our definition, let us focus on the notion of viscosity subsolution, the case of a viscosity
supersolution is symmetric. For a viscosity subsolution u, the standard definition considers as
test functions some point (tg,xg) all those functions ¢ which are pointwisely locally tangent
from above to u with contact point (¢g,zo):

(¢ —u)(to,x0) = min (p—u), forsome 7 >0,
Or(to,z0)

where O,.(ty, o) denotes the open ball in R4+ centered at (tg, zo), with radius r.

1. For simplicity, we first consider the case of a nonlinearity G = G'™ as in (1.4)), or G =
G*n a5 in (1.6), with F(t,w,y,z) independent of the z—component. Our definition
follows exactly the spirit of viscosity solutions, but replaces the pointwise tangency by the

corresponding notion in mean:
(o — u)(to,wo) = mTin EF [(go — u)MH|}'t0] (wo), for some stopping time H > tg,
where the min is over all stopping times 7 > t;.

2. For a more general nonlinearity G, our definition replaces the expectation operator EF
by a the sublinear expectation operator £ := SUPpep EF for some convenient family P
of probability measure. We observe that P can be chosen to be a dominated family of
measures in the semilinear case G = G¥lin, However, in the general nonlinear case, the

family P is not dominated.



The main purpose of this paper is to provide an overview of the available results on the
wellposedness of the path-dependent PDE under this notion of viscosity solution. In particular,
we highlight that our definition induces a richer family of test function in the Markovian case.
Consequently,

(1) the existence may be more difficult to achieve under our definition; however, we shall see
that the traditional examples from the applications raise no special difficulty from the existence
side; in fact, in contrast with the standard notion of viscosity solution, our definition is tight,

(ii) the uniqueness may be easier under our definition because our notion of viscosity solution
is constrained by a bigger set of test functions; indeed recently comparison results were obtained
in the semilinear case G = GSIiM with relatively simple arguments avoiding the Crandall-Ishii’s
lemma of the standard viscosity solution in the Markovian case; in particular, the comparison
result for the linear path-dependent PDE G = GI™ follows from the equivalence between our
notion of viscosity subsolution and the (regular) submartingale property, whose proof is a simple
consequence of the theory of optimal stopping.

This paper also pays a special attention to the stability of our notion of viscosity solutions,
which is an essential property of standard viscosity solutions in the Markovian case, and is
responsible for the denomination of this notion. We shall present the present state of stability
results, together with the corresponding convergence results of numerical schemes a la Barles &

Souganidis [IJ.

2 Standard viscosity solution in the Markovian case

In this short section, we recall the standard definition of viscosity solutions in the Marko-
vian case, and we review the corresponding existence and uniqueness results. In order for
our notations to be consistent with the path-dependent case, our functions will be defined on
cl(Q) = [0,T] x R, where Q := [0,T) x R

2.1 Definitions and consistency with classical solutions

For (t,z) € @Q, u € USC(Q), and v € LSC(Q), we denote:

Au(t,z) = {cp € Cl’Q(Q) (e —u)(t,x) = mén(gp — u)}, (2.1)

Av(t, ) {cp e CM2(Q) : (p —v)(t,x) = mgx((p - v)} (2.2)

Definition 2.1 (i) u € USC(Q) is a viscosity subsolution of equation if:
{—0p— g(.,u,Dgp,D2<p)}(t,x) <0 forall (t,x)€Q, ¢ € Au(t,x).
(ii) v € LSC(Q) is a viscosity supersolution of equation if:
{ -0 —g(,u,Dp,D*p)}(t,x) >0 forall (t,z)€Q, ¢ € Au(t, ).
(iii) A wiscosity solution of 18 a viscosity subsolution and supersolution of .

From the last definition, it is clear that one may add a constant to the test function ¢ so that
the minimum and the maximum values in (2.1)-(2.2|) are zero. Then, the pictorial representation
of a test function ¢ € Au(t, z) is a smooth function tangent from above to u« with contact point



at (t,z). The symmetric pictorial representation holds for a test function ¢ € Av(t,z). Notice
that Av(t,z) may be empty, and in this case the subsolution property at (¢, z) holds trivially.
We also observe that we may replace the minimum and maximum in — by the corre-
sponding local notions. Moreover, by the continuity of the nonlinearity g, we may also assume
the minimum (reps. maximum) or local minimum (resp. local maximum) to be strict, and we
may restrict attention to C*°(Q) test functions.
The following consistency property is an easy consequence of the ellipticity condition on g.

We state it only for subsolution, but the result can be similarly stated for supersolutions.

Proposition 2.2 Assume g(t,x,y,z,7) is non-decreasing in . Then, for a function u €

C12(Q), we have

u is a classical subsolution of (1.7) iff w is a viscosity subsolution of ((1.7)).

2.2 The heat equation example

In this subsection, we consider the equation
1
—Lu(t,x) == —0pu(t, ) — b(t, z) Du(t,x) — 502(15,33) : Du(t,z) =0, (t,z)€eQ. (2.3)

where the coefficients b : Q — R? and ¢ : Q —» Sy are continuous and Lipschitz-continuous
in « uniformly in ¢. The purpose from studying this simple example is to gain some intuition
in view of our extension to the path-dependent case.

Under the above conditions on b and o, we may consider the unique strong solution {X;,t €
[0,T]} of the stochastic differential equation

¢ ¢
Xy = X0+/ b(s,Xs)ds—i—/ o(s,Xs)dBs, Py — a.s. (2.4)
0 0

for some given initial data Xy. Then, given a boundary condition w(7,.) = 1 for some ¢ :
R? — R, the natural solution of (2.3) is given by:

u®(t, ) == EFo V(X)X =2], (t,z)€Q.

In the remaining of this section, we verify that u° is a viscosity solution of the heat equation (2.3,
and we make crucial observations which open the door for enlarging the set of test functions.

(a) Tower property The first step is to use the Markov feature of the process X in con-
junction with the tower property to deduce that

u(t,z) = EF[u(r, X,)|X; = x| for all stopping time 7 with values in [t,T]. (2.5)

We shall use this identity with stopping times 7 = 7, := (¢ +h) Ainf{s > ¢ : | X;— x| > 1}.
For the next development, notice that 75, > ¢, a.s., (s,X;) is bounded on [t, 7], and
T, — t, a.s. when h 0.

Also, we avoid to discuss the regularity issues of the function u°

. For instance, if 1 is
Lipschitz-continuous, then «° is immediately seen to be Lipschitz-continuous with respect
to the xz—variable, uniformly in ¢, and we verify that u° is %—Hélder—continuous with

respect to the t— variable, uniformly in x, by using the identity (2.5).



(b) u° is a viscosity subsolution Let (t,7) € Q and ¢ € Au(t,x) be given. We denote by
{Xb* s € [t,T]} the solution of started from X = z. By definition, we have
(¢ —u)(t,z) < (¢ —u) on Q, and then (p — u)(t,z) < EFo [(4,0 — ) (7, Xﬁ;f)], (2.6)
for all A > 0. From the last inequality in mean, together with the identity , we get
p(t,z) < EP[p(m, XET)].

Since the test function ¢ is smooth, it follows from It6’s formula that

—EFo [/Th Lo(r, Xﬁ’m)dr} < 0.
¢

Dividing by h and sending h N\, 0, we deduce from the mean value theorem together with

the dominated convergence theorem that

—Lp(t,z) < 0.

(c) u® is a viscosity supersolution For (¢,z) € Q and ¢ € Au(t,z), notice that we have

the analogue of (2.6]):
(¢ —u)(t,z) > (p —u) on Q, and then (p —u)(t,z) > E[(p —u)(m, XET)]. (2.7
Following the same line of argument as in (b), it follows that Ly(t, ) > 0, as required.

Crucial observation Notice that only the right-hand sides of and have been
useful to prove that u° is a subsolution and supersolution, respectively, of the heat equation
(2.3). The right-hand sides of and express that the test function ¢ is tangent to
u in mean, locally along the trajectory of the underlying process (s, X®). Of course, the set
of smooth functions which are tangent from above (reps. from below) in mean is larger than
Au (resp. Au). Consequently, we may have used an alternative definition of viscosity solution
with a richer family of test functions (defined by the right-hand sides of and ), and
still get the same existence result. The benefit from such a stronger definition may be that the
uniqueness theory can be simplified by suitable use of the additional test functions.

Remark 2.3 The C!2 smoothness of the test function ¢ is only needed in order to apply Itd’s
formula

Th Th
(i XE7) — o(t,z) = / L(r, Xt%)dr + / De(r, X)o(r, X4*)dB,, Py - as.
t t

Motivated by this observation, we shall take It6’s formula as a starting point for the definition

of smooth processes in the path-dependent case.

2.3 Existence for HJB equations

In this subsection, we show that the crucial observation from the previous subsection holds in
the context of the fully nonlinear Hamilton-Jacobi-Bellman (HJB) equation:

—du — sup {b(., ) Du+ 202(, k) : D%} =0, (tz)eq. (2.8)
ke K 2

Here, for simplicity, we consider the case of a bounded set of controls K. The controlled
coefficients b: Q x K — R% and ¢ : Q x K — Sy are continuous in ¢, Lipschitz-continuous



in z uniformly in (¢, ). The controls set is denoted by K, and consists of all F—progressively
measurable process with values in K. For all control process k € I, we introduce the controlled

process X* as the unique strong solution of the SDE
t t
X7 = Xo —|—/ b(s,X§7ns)d8+/ o(s, X} ks)dBs, Py — as.
0 0

and we denote by X% the solution corresponding to the initial data X;"** = z. The Dynkin
operator associated to X" is denoted:
X 1
L* = 9, +b(,k)D+ 50'2(.,16) : D2

Given a boundary condition u(7),.) = ¢ for some 9 : R — R, the natural solution of (2.8) is
given by:

u'(t,z) = supEP[p(XF"T)], (tz) €Q.
REK
In the remaining of this section, we verify that u' is a viscosity supersolution of the HJB equation
(2.8)), and we focus on the crucial observation that only the tangency condition in mean is used
for this purpose. The subsolution property can be obtained by similar standard arguments, and

the reader can verify that only tangency in mean is needed, again.

(a) Dynamic programming principle In the present nonlinear case, the substitute for

the tower property identity (2.5)) is the following dynamic programming identity:

u(t, z) = sup B [u(r", X25%)] for all stopping times 7 with values in [t,T].  (2.9)
KEK
This identity will be used with stopping times 7% = 7f* := (t+h) Ainf{s > ¢ : [ X 0" —x| >
1}. For the next development, notice that 7, > ¢, a.s., (s, X[) is bounded on [¢, 7], and
T — t, a.s. when h 0.

The proof of is a difficult task relying on involved measurable selections techniques,
see [29] for the regular case (which does not require measurable selection arguments),
[18] 19] for the general irregular case, and [2] for a weak dynamic programming principle
which is sufficient for the task of deriving the viscosity property, while by-passing the
measurable selection arguments.

We also avoid here to discuss the regularity issues of the function u?

. For instance, if
1 is Lipschitz-continuous, then u! is immediately seen to be Lipschitz-continuous with
respect to the x—variable, uniformly in ¢, and we verify that u' is %—Hélder—continuous

with respect to the t— variable, uniformly in z, by using the identity (2.9).

(b) u! is a viscosity supersolution Let (t,2) € Q and ¢ € Au(t,z) be given. Fix an
arbitrary control process x € K. For the purpose of the present argument, we may take

this control porcess to be constant ks = k for all s € [t,T]. By definition, we have
(90 - U) (ta ZC) > (90 - U) on Qv and then (Qﬂ - u)(t7 1‘) > EPO [(QO - u)(Tf’f7 Xf;}t@)], (210)
for all A > 0. From the last inequality in mean, together with the identity (2.9)), we get

ptx) > E[p(n, X507)].



Since the test function ¢ is smooth, it follows from It6’s formula that

—EPo [/Th Lo(r, X:"’t’z)} > 0.
t

Dividing by h and sending h N\, 0, we deduce from the mean value theorem together with
the dominated convergence theorem that

—LFp(t,z) > 0.
By the arbitrariness of k € K, this proves the required supersolution property.

Crucial observation Here again, only the right-hand side of has been useful to prove
that u' is a supersolution of the HJB equation . The right-hand side of expresses
that the test function ¢ is tangent to u in mean, locally along the trajectory of the underlying
process (s, X6%) for all possible control process £ € K. The latter is a new feature which
appears in the present nonlinear case: while the linear case involves the tangency condition
under the expectation operator EFo, the present nonlinear case requires the use of a sub linear
expectation defined by an additional maximization with respect to all possible choices of control
process k € K.

This additional feature however does not alter the observation that the set of smooth functions
which are tangent from below in (sublinear) mean is larger than Au. Consequently, we may
have used an alternative definition of viscosity solution with a richer family of test functions
(defined by the right-hand side of ), and still get the same existence result. Similar to the
case of the linear heat equation, the benefit from such a stronger definition may be that the
uniqueness theory can be simplified by suitable use of the additional test functions.

2.4 Comparison of viscosity solutions

The uniqueness result of viscosity solution of second order fully nonlinear elliptic PDEs is
usually obtained as a consequence of the comparison result, which corresponds to the maximum

principle.

Definition 2.4 We say that the equation (1.7) satisfies comparison of bounded solutions if for
all bounded viscosity subsolution u, and bounded viscosity supersolution v, we have

(w—v)(T,.) <0 on R implies u—v<0 onclQ).

Comparison results for viscosity solution are available for a wide class of equations. The most
accessible results are for the case of first order equations where the beautiful trick of doubling
variables is remarkably efficient.

For second order equations, comparison results are more difficult and require to introduce a
convenient regularization, typically by inf-convolution. The most general approach which covers
possibly degenerate equations relies crucially on the Crandall-Ishii Lemma which provides the
substitute of first and second order conditions at a local maximum point when the objective
function is only upper semicontinuous.

In the context of uniformly elliptic equations, the argument of Caffarelli & Cabre [4] avoids the
technique of doubling variables, but still relies crucially on the inf-convolution regularization.
We refer to Wang [30] for the extension to the uniformly parabolic case which requires a more

involved regularization technique.



All available comparison results for second order elliptic and parabolic equations use the
restriction of test functions to paraboloids. This leads to the notion of superjets and subjets.
For notations consistency, we continue our discussion with the parabolic case.

For ¢ € R, p € R%, and v € Sy, we introduce the paraboloid function:
1
¢TI (tx) = qt4p-x+ 37T T (t,z) € Q.

For u € USC(Q), let (to,x0) € Q, ¢ € Au(ty,xo), define q := dyp(to, o), p := D(to,x0), and
7 1= D?%p(tg, z0). Then, it follows from a Taylor expansion that:

u(t,z) < ulto, zo) + o977 (t — to, @ — mo) + o(|t — to| + |z — xol?).
Motivated by this observation, we introduce the superjet J u(to, zo) by

Jtu(to,z0) == {(g.p.7) ERxR*xSy: forall (t,z) € Q (2.11)
u(t,z) < ulto, zo) + ¢ (t — to,x — x0) + o(|t — to| + |z — 20/?) }.

Then, it can be proved that a function v € USC(Q) is a viscosity subsolution of the equation

(1.7) if and only if
F(t7$7u(t7$)»p7 '7) <0 for all ((]7p7 fy) c J+’U/(t7$)

The nontrivial implication of the previous statement requires to construct, for every (¢q,p, A) €

JTu(t,x), a smooth test function ¢ such that the difference (¢ — ) has a local minimum at

(t,x).
Similarly, we define the subjet J~v(to,xo) of a function v € LSC(Q) at the point (tg, o) € Q
by

Jv(to, xo) = {(q,p,v) eRY xSy : forall (t,z2) € Q (2.12)
v(@) 2 v(to, o) + 697 (L~ to, @ — w0) + oIt — to| + |z — wol?) }
and v € LSC(Q) is a viscosity supersolution of the equation if and only if
F(t,z,v(t,x),p,7) >0 forall (q,p,v)€ J u(t, ).
By continuity considerations, we can even enlarge the semijets J* to the following closure
Jrw(t,z) = {(q,p, ) € R X Sq: (tn, Tny W(tn, Tn)s Gny Py Yn) — (t, z,w(t, ), q,p,7)
for some sequence (tn, Tn, Gn, Prs Yn)n C (;‘drauph(‘]jtw)}7

where (tn, Tn, Gns Pns Yn) € Graph(JTw) means that (¢, pn,Vn) € JTw(ty, z,). The following
result is obvious, and provides an equivalent definition of viscosity solutions.

Proposition 2.5 Let v € USC(Q), and v € LSC(Q).
(i) Assume that g is lower-semicontinuous. Then, u is a viscosity subsolution of (1.7) iff:

—q—g(t,x,u(t,x),p,’y) SO fOT’ all (t,[L’) EQ and (Q7pa7) € j+u(t,x)
(ii)  Assume that g is upper-semicontinuous. Then, v is a viscosity supersolution of (1.7) iff:

—q— g(t,iE,U(t,T/),p,’Y) Z 0 f07’ all (t’x) € Q and (Q7p7 rY) € jiv(tx)'



2.5 Stability of viscosity solutions

We conclude this section by reviewing the stability property of viscosity solutions. The following
result is expressed in the context of our parabolic fully-nonlinear equation. However, the reader
can see from its proof that it holds for general degenerate second order elliptic equations. We

consider a family of equations parameterized by € > 0:
—du — ¢°(z,u, Du,D*u) =0 on Q, (2.13)

and we consider the convergence problem of a corresponding family of subsolutions (u¢)cso.
The main ingredient for the stability result is the notion of relaxed semi limits introduced by
Barles and Perthame [3]:

u(t,z) ;== limsup u*(¢,2’) and g(¢):= limsup g¢°(¢’),
(e,t",2")—=(0,t,x) (£,6")—(0,¢)

where ¢ = (¢,2,y, z,7). Notice that the semilimits here are taken both in the variables and the
small parameter ¢, and are finite whenever the functions of interest are locally bounded in the

corresponding variables and the small parameter .

Theorem 2.6 Let u® € USC(Q) be a viscosity subsolution of (2.13)) for all e > 0. Suppose that
the maps (e,x) — uc(z) and (¢,() —> ¢°(¢) are locally bounded. Then, uw € USC(Q) is a

viscosity subsolution of the equation
—oyu — g(z,w, DU, D*u) =0 on Q, (2.14)
A similar statement holds for supersolutions.

Proof The fact that @ is upper semicontinuous is an easy exercise. Let ¢ € Au(t, ). Without
loss of generality, we may assume that the test function ¢ is strictly tangent from above to w
at the point (¢, ), i.e.

(p—u)(t,z) < (p—u)(t' ") forall (¢ ,2')eqQ, (t',2")# (t,z). (2.15)
By definition of %, there is a sequence (e, 7,) € (0,1] x R? such that
(enstn,an) — (0,¢,2) and ™ (tn,2n) — u(t, ).

Let O be an open subset of @) containing (¢,z) and (t,,%n)n. Let (fn,%,) be a minimizer of
@ —u° on cl(O). We claim that

(tn, Tn) — (t,x) and u®" (t,, Tn) —> u(t,z) as n — oo. (2.16)

Before verifying this, let us complete the proof. We first deduce that (¢,,Z,) is an interior
minimizer of the difference (¢ — u®"). Then, it follows from the viscosity subsolution property
of u®" that:

0 > {_at@_ggn (-aUE”»D<P7D2<P) }({n;jn)
Then, taking limits on both sides, we see that

0 Z _6t<p(t7x) - limsupgsn (~7u6ﬂ/aD@aD2(p) (E’n)i‘n) Z { - 6t<)0 _g('aﬂa D%DQSO) }(t,l‘),

n—oQ

10



by (2.16)) and the definition of g.
It remains to prove Claim (2.16). Recall that (Z,, %), is valued in the compact set cl(O).

Then, there is a subsequence, still named (¢, Z, )., converging to some (¢, ) € cl(O). We now
prove that (¢,Z) = (¢,z) and obtain the second claim in (2.16) as a by-product. By the fact
that (f,%,) is a minimizer of (¢ —u®") on cl(O), together with the definition of u, we see that

0 = (pg—u)(t,z) = li_>m (o —u") (tn, xn)
> limsup (o —u®) (tn, Tn)

n—00

> liminf (p —u®) (tn, Tn)
n—oo

We now obtain (2.16]) from the fact that (¢,z) is a strict minimizer of the difference (p —@). O

3 Viscosity solution of path-dependent PDEs

We now turn to the main purpose of this paper, namely the theory of viscosity solutions for
path-dependent PDEs (|1.2]):

—Opu(t,w) — G(t,w, u(t,w), du(t,w), P ult,w) =0, t<T, weQ

where the generator G : [0,7] x @ x R x R x §; — R is a continuous map satisfying the
ellipticity condition . We recall that Q := {w € C°([0,T],R?) : wy = 0} is the underlying
canonical space, Bi(w) := wy, t € [0,T], is the canonical process, Py is the Wiener measure,
F:={F,t €[0,T]} with F; = 0(Bs, s < t) is the natural filtration equipped with the pseudo-
distance d defined in . Moreover, denote

©:=1[0,T)xQ, ©:=1[0,T]x 9,

and C°(0) is the set of continuous processes on ©. We note that any u € C°(0) is F—progressively

measurable, namely u(t,w) = u(t, (ws)sgt).

3.1 Differentiability

Before introducing the notion of viscosity solutions for this path-dependent PDE, we first need
to specify the meaning of the time derivatives dyu(t,w) and the spatial derivatives 9, u(t,w) and
92, u(t,w). Once these derivatives are clearly defined, we would have, on one hand a natural
definition of classical solutions for the path-dependent PDE, and on the other hand a natural
set of smooth functions to serve as test functions for our notion of viscosity solutions.

These path derivatives were first introduced by Dupire [10]. In particular, [I0] defines the
vertical derivatives (our spatial derivatives) by bumping the path at time ¢. While such a
definition is natural in the larger space of discontinuous paths, our paths space €2 would require
an extension of the map u to the set of discontinuous paths. We refer to Cont & Fournié [6]
for this approach, where it is proved in particular that such a vertical derivative, if exists, does
not depend on the choice of the extension of u to the set of discontinuous paths. Motivated by
Remark we adopt the following notion of smoothness.
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Definition 3.1 (Smooth processes) Let P be a set of probability measures on  with B a
P—semimartingale for all P € P. We say that u € 0713’2(6) if u € C°(©) and there erist
processes o, Z,I' € C°(O) walued in R, R? and Sy, respectively, such that:

1
du; = oudt+ irt :d(B); + Z1dBy, P — a.s. for allP € P.

The processes a, Z and I" are called the time derivative, spacial gradient and spatial Hessian,

respectively, and we denote Opu = o, O uy := Zy, 02 uy =Ty,

We observe that any C"2? process in the Dupire sense is in 0713’2(@). This is an immediate
consequence of the functional It6 formula proved in Dupire [I0] and [6]. In particular, our notion
of smooth processes is weaker than the corresponding one in [I0]. We also note that, when P

is rich enough, our path derivatives are unique.

Remark 3.2 The previous definition does not require that 92, u; be the derivative (in some
sense) of dy,uy. This is very well illustrated by the following example communicated by Mete
Soner. Let d = 2, and u; := f(f BldB? which is defined pathwise due to the results of Karandikar
[23].

e Clearly dyu = 0. Since du; = B}dB?, under any semimartingale measure, we also deduce that
dour = (0, BHT, and 82 u; = 0s,. Hence u € 0713’2(@) for any subset P of the collection of all
semimartingale measures for B.

o Let OPu; and agjut denote the vertical first and second derivatives in the Dupire sense. Direct

calculation reveals that OPu; = (0, B})T = 9,u;. However,

2 0 0
3Bwut—<1 0>7

e However, we need to point out that in this example u does not belong to C°(0).

which is not symmetric !

e We complement this example by the following observation from a private communication with
Bruno Dupire. By considering the Dupire vertical derivative as originally defined on the set of

discontinuous paths, we see by direct calculation that agf,ut =0s, = 02 us.

Definition 3.3 (Classical solution) Let P be a set of probability measures on Q with B a
P—semimartingale for all P € P.
(i) ue 071,’2(9) is a P—classical subsolution of the path-dependent PDE (1.2) if

—Oyu — G(.,u,@wu,aiwu) <0 on ©O.

(ii) v € 0713’2((9) is a P—classical supersolution of the path-dependent PDE if
-0 — G(.,vﬁwv,afwv) >0 on O.

(iii) A P—classical solution of (L.2)) is both classical subsolution and supersolution.

Example 3.4 Let u(t,w) := EF[¢|F,] for some &€ € LY (Py, Fr), and assume u € C];,(’)Q(@). By
definition, this implies that

1
du, = (&ut + iaiwut)dt + O,udB, Py — a.s.
Since the process u is a martingale, it follows that:
1
8tut + iaiwut = 0, (t,w) € 0.

In other words, u is a Po— classical solution of the path-dependent heat equation.
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Example 3.5 For ¢ € L2(Py, Fr), consider the backward stochastic differential equation:
dut = —Ft(w,ut, Zt)dt + thBt, ur = 5, PO — a.S.

where F : [0,T] x Q x R x RY — R is continuous, uniformly Lipschitz in (y, z), with F(0,0) a
square integrable process. Assume u € C’;f (©). By definition, this implies that

1
dut = (at’ll,t + iaiwut)dt + 8wutdBt = th(w,ut, Zt)dt + thBt, ]P)O — a.s.

Identifying the martingale terms, we see that O, us = Z;. Next, identifying the drift term, it

follows that u is a Py—classical solution of the path-dependent semilinear PDE:

1
—8tut — *82 U — Ft(w,ut, 8wut) = 0, (t,W) € 0.

2UJUJ

Remark 3.6 (i) In the Markovian case, strong regularity results are induced by the ellipticity
of the underlying diffusion coefficient. The simplest example is when the diffusion is the identity
matrix. Let u(t,x) := EFo[h(B7)|B; = 2]. Then u € C>®([0,T) x R).

(ii) The path-dependency induces specific non-smoothness as outlined by the following example.
Let u(t,w) := EFo [B%\]-}] = WL for all t € [0,7]. Clearly, dyu; = 0, and du; = 1t§%dBt
implying that d,u; is not continuous. Hence u ¢ C12(©).

3.2 Viscosity solutions of path-dependent PDEs
3.2.1 Notations

First recall our canonical setting (2, B,F,Py). We denote by T the set of all F-stopping times,
T+ C T the collection of all strictly positive stopping times, and 7% C 7 the subset of the
F-stopping times larger than t.

For w,w’ € Q and t € [0,T], we define

(W@ w')s = wslisary + (W +wi_y) et
Let £ : 2 — R be Fr-measurable random variable. For any (t,w) € ©, define
W) =¢(wdrw') forall w' e

Clearly, £4% is Fp_;-measurable, and thus Fp-measurable. Similarly, given a process X defined
on {2, we denote:
XP9(w') = Xppa(w @ w'), for s € [0,T — ).

Clearly, if X is F-adapted, then so is Xt*.
Let P be a family of probability measures on 2. We also introduce the sublinear and super-

linear expectation operators associated to P:

EP :=supE? and &7 := inf EP.
PeP PeP

3.2.2 Definition of Viscosity Solutions

We recall that the nonlinearity G satisfies the ellipticity condition in (1.3). We assume in
addition that it is Lo—Lipschitz with respect to the arguments (y, z,), uniformly in (¢,w):

G(t,w,y,2,7) = Glt,w,y',2,7)| < Lo(ly—o'[+ 1z =2 [+ v =7 (3.1)
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for all y,9/ € R, 2,2/ € R?, 4,7 €Sy, (t,w) € O.
Ou Definition [3:1] of smooth processes involves a family of probability measures that we inten-
tionally did not discuss so far. We now introduce a specific family of semimartingale measures

which will be needed for our notion of viscosity solutions.

Definition 3.7 By Pr we denote the collection of all continuous semimartingale measures P
on ) whose drift and diffusion characteristics are bounded by L and /2L, respectively.

We refer to [12] for properties of this class. In our subsequent analysis, the family of probability
measures P is a subset of Py, for some L > 0.
Motivated by the crucial observations of Subsections [2.2] and [2:3] we introduce the sets of test

processes:

APuy(w) = {(p € 0713’2(9) D —uh¥)y = n;igﬁj [(o — u"*)rpu] for some H € Hf},
vat(w) = {go € 071;2(@) S — V") = mea%gp [(¢ — ") nn] for some H € ’Hf},

where ’H?j C T satisfies the following properties, for all H,H' € ’H,E:

H1 (stability by minimization) HAH € HT,
H2 (stability by localization) HAH. € HT, where He :=e Ainf {¢ > 0: |B|, > ¢}.

Later, we will call H the localizing stopping time (or the localization) of the corresponding test

process .

Definition 3.8 (Viscosity solution of path-dependent PDE) Let u,v € C°(©).
(i) w is a P—wiscosity subsolution of (1.2)) if:

{ — Opp — G(.,u,@wgp,ﬁiwgp)}(t,w) <0 foral (t,w)e®, ¢ APu(w).
(ii) v is a P—wiscosity supersolution of if

{ — Oyp — G(.,v,@wgo,aiwgo)}(t,w) >0 foral (t,w)eO, pe vat(w).
(iil) A P—wiscosity solution of is both a P—subsolution and a P—supersolution.

Remark 3.9 in the Markovian case, we may as well use the last definition as an alternative
to the standard notion of viscosity solutions. Compared to the standard notion reviewed in
Section 2] we see that any ¢ € Au(t, x) induces a process ¢(t,w) := ¢(t,w;) which obviously lies
in A”u;(w). However, even in the Markovian case u;(w) = u(t,w;), a test process in A" u(w)
does not necessarily induce a test function in Au(t,w;). Thus, our notion of viscosity solution
involves more test functions than the standard notion. A viscosity subsolution/supersolution in
sense of Definition [3.8]is restricted by a richer family of test functions. Consequently:

e under our definition, we may hope to take advantage of the richer family of test functions in
order to obtain an easier uniqueness proof,

e under our definition, the existence problem is more restricted than under the standard theory

of viscosity solutions.

Remark 3.10 Due to the stability property of the set ’HE by localization, the viscosity property
introduced in Definition [3.8]is a local property. Indeed, in order to check the viscosity property
of u at (t,w), it suffices to know the value of u** on [0,H.] for an arbitrarily small £ > 0. In
particular, since v and ¢ are locally bounded, there is no integrability issue in the definition of
the set of test functions A% and A .
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3.3 Semijets definition and punctual differentiability

Similar to the standard notion of viscosity solutions in finite-dimensional spaces, we will now

prove that we may reduce our Definition to paraboloids:
1
PPV (W) :=qs+p-ws + 57" wswl, s€f0,T—t], we,
for some (g, p,7) € R x R? x S3. We then introduce the corresponding subjet and superjet:
TP ur(w) = {(g:p,7) ERxRIxSy:¢"77 € APuy(w)},
7pvt(w) = {(q,p7 v) €ER x R? x Sy : ¢?P7 € vat(w)}.

Proposition 3.11 Let P C Py for some L > 0. A process u € C°(0©) is a P—wviscosity
subsolution of (1.2)) if and only if:

—q— G(tywa ut(w)7pa ’7) < 0 fOr all (t,(U) € @7 (Qapa 7) € lput(w)' (33)
The corresponding statement holds for supersolutions.

Proof We focus on the nontrivial direction, assuming that (3.3) holds. For (¢,w) € © and
¢ € AT u;(w), we have to prove that —q — G(t, w, us(w), p,~) < 0, where

q = at(p(t7w)ﬂ D= 6&1@@7“’)7 Y= Biwcp(t,w).

Without loss of generality, we take (¢t,w) = (0,0). For € > 0, we denote ¢. := ¢+&(1+2L), and
¢ := ¢%P7. By the smoothness of ¢, we may find J. > 0, such that

0ip —q| <&, |Bup—p—wi| <e, and [93,0p—7<e on Q :={(t,w):t <., |wl <4}

Let H be the stopping time corresponding to ¢, and set He := HAInf{t > 0: (t,w) € Q. }. Then,
for all stopping time 7 € Ty:

=P

(¢ —u)o— éP [(¢ - U)TAHJ <(p—u)o— §P [(‘P - u)T/\HE] +& [(‘P — %o — ¢)TAHJ

TAH:

=P
<E[ [ O adds + @ups—p— BB, + @p—)d(E).].

0
Since P C Py, it follows that the integral term inside the nonlinear expectation ?P is non-
positive, implying that (¢ — u)g — QP[(¢ — u)ran.] < 0. Consequently (e, p,v) € J"uy and

therefore —q. — G(¢, w, ut(w), p,v) < 0 by (3.3). The required result follows by sending & “\ 0.
O

Proposition 3.12 For u’,v' € C°(0), i = 0,1, we have
TPu(w) + TPul(w) € TP (W0 +u')i(w) and T od(w)+ T viw) C T (@0 +v)e(w)

Proof We only report the argument for the subjets. Let 8% = (¢*,p*,~7%) € J " ui(w), i = 0, 1.
By definition, this means that the corresponding paraboloids ¢ € Apui(w)7 i.e. there is
H' € ’HE such that

—ul < EP[(qﬁgi — (")) pwi] forall 7€T andPeP.
With 1 := 0% A 1! € HP, this implies that
—(u® +ut) SEF[(¢” + ¢ — (W +ul)t) ] forall 7€7T andPeP.

Since ¢ + ¢ = ¢?°+9" | this shows that 60 + 61 € J7 (u® + ul);(w). O
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3.4 Punctual differentiability

The following notion is adapted from Caffarelli and Cabre [4].
Definition 3.13 A process u is P—punctually C*? at some point (t,w) € O if
—P
TPu(w) = (T u(w))Nel(T u(w)) # 0.

The next (immediate) result states that the viscosity property reduces to a pointwise property

at points of punctual differentiability.

Proposition 3.14 Assume that the nonlinearity G is continuous in (z,7), and let u € C°(©)
be a P—wiscosity solution of (1.2)). Then, if u is P—punctually C*? at some point (t,w) € O,

we have
—q¢— G(t,w,u(t,w),p,y) =0 forall (g,p,7) € T u(w).

For our subsequent analysis, we need the following additivity property of punctual differentia-

bility, which is a direct consequence of Proposition [3.12

Proposition 3.15 Let u,v be two processes which are P—punctually C12 at some point (t,w) €
©. Then, u + v is P—punctually C*? at (t,w), and

TPurw) + T u(w) € TP (u+0)w).

3.5 Consistency of path-dependent viscosity solutions

We conclude this definition subsection by proving consistency of our notion of viscosity solution

with classical solutions.

Proposition 3.16 Let G be continuous, elliptic and uniformly Lo— Lipschitz-continuous in
(y,2,7). Let Pr, C P C Pr for some L > Ly. Then, for u € 0713’2(@), the following are
equivalent:

(i) u is a P—classical subsolution (reps. supersolution) for some L >0,

(ii) w is a P—wviscosity subsolution (reps. supersolution).

Proof We only report the proof of the subsolution property. The supersolution property
follows by the same line of argument. If u is a P—viscosity subsolution and u € C713’2(@), then
it is clear that ut* € Aput(w) for all t < T and w € €, and therefore u is a P—classical
subsolution.

We next assume that w is a classical subsolution, and we assume to the contrary that 5c :=
—0yp — G(.,u,000,0%,0) > 0 for some t < T, w € Q, and ¢ € A uy(w). Without loss of
generality, we may assume (t,w) = (0,0). Let @ € R? B € S; be arbitrary constants with
|a] < Lo and %Tr[BQ] < Lo, to be fixed later, and denote by P := P%8 the corresponding
probability measure in P, and £ := & - d,, + 3% : 92,,. By the continuity of G, and the fact
that u, o € C12,

—rp — Go(uo, uipo, 02, 00) > 4e, |Lp — Lipo| < c,

and |G(u, d,u, 82,u) — Go(uo, Duuo, 02,u0)| < ¢, [Lu— Lug| < ¢,  on [0,H],

I T ww
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for € > 0 sufficiently small, where H, := & Ainf{s > 0 : |ws| > €}. Since u is a P—classical

subsolution, we compute for every 7 € 7 that

—u)o—EF[(p —u)rnn.] = EF| o u— )
(o= -Ele-wm] = B[ [ du-o)]

= EP:/OTAHE {8t(ufg0)s+£7(ufcp)s}ds]

v
=
<

- TAHe
/ {Go(uovawLPOaazw‘pO)
LJo
—Go(ug, Do, D2 uo) + L(u — cp)o}ds} +cP[T A H].

By the definition of P, we may find & so that Gy (ug, 9,0, 02,,0) — Go(ug, Outio, 0% uo)+L(u—
©)o = 0. Then,whenever 7 > 0, P—a.s., we have (¢ —u)y > EF [(ap - u)T/\HE], contradicting the
fact that ¢ € AP uy. O

4 Wellposedness of the path-dependent heat equation
In this section, we consider the heat equation
1
—Opu — 5’1&[83“4 =0 (4.1)

where, for simplicity, the diffusion matrix is taken to be the identity matrix. We recall that
Py denotes the Wiener measure. In addition to the previous notations, we denote F* as the
filtration augmented by all Po-null sets. Also, denote T, (resp. T}) as the set of all F*-stopping
times taking values in [0,T] (resp. [t,T]). In this section, we take

P:={Py} and H}:=T".
In this section about the heat equation, the relevant space for our comparison result is

C’SPO(@,R) = {u € C°(O,R) : Efo LquT ’ui“’ﬂ < oo for all (t,w) € @}.

4.1 Facts from optimal stopping theory

Let X € C9p (©,R). Our main result uses the Snell envelope characterization of the optimal
stopping stopping problem:

Vo := sup EFo[X ],
TET

The standard characterization of this problem uses the dynamic formulation of this problem:

Y;O = esssupEF° [XTAT‘]-}], 0<t<T,
TET!

so that Y0 = Vj by the Blumenthal zero-one law. In this context, an optimal stopping rule is
well-known to be defined by the first hitting time

T = inf{t >0: Yto :Xt}.
In addition to the standard result, we need an additional refinement by introducing the variable:

YV, (w) := sup EFo [Xg(w)’w], forall 7€ 7,,weq.
0cT.
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Theorem 4.1 Let X € CS’PO (©,R). Then, there exists an F—adapted version Y of Y satisfy-

ing:
Yoar = Vorr, Po—a.s. forall T€eT,.

Moreover, Y is a pathwise continuous Po—supermartingale, Yar~ is a Po—martingale, and 7* is

an optimal stopping rule.

This result follows from the more general Theorem below.

4.2 Existence, comparison, and uniqueness

Definition 4.2 An F—progressively measurable process m is a regular Po—submartingale (resp.

supermartingale) if, for any (t,w) € ©, we have
my(w) — EFo [m2*] <0 (resp. 20) forall T€T.

Lemma 4.3 Let u € CS,]P’0<®>R)7 (t,w) € ©, and H € T, be such that uy(w) > Ep[uf{w].
Then,

0 € AU (w @y w*)  for some (t*,w*) with the localization n* :=n"*" —¢* e T+,

Proof Without loss of generality, we may assume that (¢,w) = (0,0). Consider the optimal
stopping problem Vj := sup, 7 EPo [umn]. Set X := ugay and let Y be the F—adapted Snell
envelope as introduced in Theorem 7* the corresponding optimal stopping rule. From the
strict inequality ug > E [uy], it follows that Po[r* < H] > 0. By Theorem |4.1, we also have
Y« = Y+, Pp—a.s. We may then find w* such that t* := 7*(w*) < H(w*), and:

Ao* — Y (w*) = EIP’O ' W™
up (") b (w”) leea% [(UHA )r ],
By definition of AP0y, this is exactly the required result. O

The main result of this section is the following.

Theorem 4.4 For a process u € C'S’PD(@,R), the following are equivalent:
(1) w is a regular Po—submartingale (resp. supermartingale),

(ii) u is Po—wviscosity subsolution (resp. supersolution) of the path-dependent heat equation (4.1)).
Proof (i) = (ii): For arbitrary (t,w) € © and ¢ € A™u;(w), we have for some H € T, :
po — ur(w) < EFo |:<)07'/\H - u?;\dn] forall 7€T.

For all ¢ > 0, define H.(w') := H(w') Ainf{s > 0 : |w,| > e}. Then, since u is a regular
Py—submartingale, it follows that

1

He
0 > w(w)— EFo [utHE‘“] > o — EPo [@HE] = EFo [/ (—0rp — 5:63w<p)sds]
0

1
2

(ii) = (i): Clearly, it is sufficient to prove that the process @ := u§ := u; + €t is a regular

by the smoothness of ¢. Sending € \, 0, we see that (—0p 02:02 ,¢)0 < 0, as required.

Py —submartingale for all € > 0, as the required claim will follow by sending ¢ to zero. By (ii), we
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deduce immediately that @ is a Py—viscosity subsolution of the equation e — 9, — £ Tr[02,,u] < 0
on ©. In particular, this implies that

0¢ A% (w) forall (t,w) e O. (4.2)

Suppose to the contrary that @ is not a regular Po—submartingale, i.e. ;(w) > EFo [ﬂﬁw] for
some (t,w) € © and H € T;.. Then, Lemma 4.3| induces a contradiction of (4.2]). ad

As an immediate consequence of Theorem [£.4] we obtain the wellposedness of the path-
dependent heat equation.

Theorem 4.5 (Comparison and existence for the heat equation)

(i) Let u,v € Cg% (©,R) be Po—wiscosity subsolution and supersolution, respectively, of the
path-dependent heat equation , with ur < wvp on Q. Then u < v on [0,T] x Q.

(ii) For an Fr r.v. & such that uy(w) := EF[¢"] € C9p (O,R), the process u is the unique
Pg—wviscosity solution of the path-dependent heat equation with boundary condition up = £
on Q.

Proof (i) By Theorem {4.4) we have u;(w) < EFo[(ur)b*] and EFo[(vr)«] > vy(w) for all
(t,w) € ©. Then ur < vp on  implies that v < v on [0,T] x €.

(ii) Uniqueness is a direct consequence of the comparison result of (i). Clearly the process
ug(w) := EFo [gt»w} is uniformly continuous on [0, T] x §2. Since u is a Pp—martingale, it follows
from Theorem [4:4] that it is both a viscosity subsolution and supersolution. |

5 Wellposedness of semilinear path-dependent PDEs

In this section, we consider the equation
1
—Ou — i’ﬁ[aiwu] - F(,u,0,u)=0 on ©. (5.1)

The nonlinearity F : © x R x R — R is assumed to satisfy the following assumptions which
consists with the general assumption as (3.1]).

Assumption 5.1 The nonlinearity F : (t,w,y,z) € © x R x R —— F(t,w,y,2) € R satisfies
the following conditions:
(i) F is uniformly continuous in (t,w),

(il) F s uniformly Lo— Lipschitz continuous in (y, z), for some Lo > 0, i.e.
F(3,2) = F(oy's ) < Lo (g — o/l + |2 = #I) forall 4,y €R, 2,2 € R
(iii) The process F(-,0,0) is bounded.
For all bounded F—progressively measurable process A\, we denote:
dPy := Z) - dPy on Fr, where 7 = elo MdBi=z i M dt,
In this section, we take

P = {IP’A : A bounded by L}, (5.2)
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where L > Ly is arbitrary. Notice that Py is a dominating measure for the family P. For
simplicity, we say Py € P by implying that A is the corresponding bounded process. Similar to
the section of the heat equation, we denote F* as the filtration augmented by all Pg-null sets.

Also, we consider the set of localizing stopping times as:
’Hﬁ = T
In this section about the semilinear equation, the relevant space for our comparison result is

0377,(9,1&) = {u € C°(O,R) :EP[ sup ’ui“’ﬂ < oo for all (t,w) € @}.
t4+s<T

5.1 Optimal stopping under dominated nonlinear expectation

For X € C’S’P(@,R), we consider the optimal stopping stopping problem under dominated
nonlinear expectation:

Vo = sup ?P[XT].
TET

The corresponding dynamic formulation is defined by:

Y;O = ess sup?P [XTAT‘]-}], 0<t<T.
TETE

with first hitting time:
™ = inf{t >0: Yto :Xt}.

Since the dominating measure P satisfies the Blumenthal zero-one law, it follows that Y = Vj.
We also introduce the pointwise optimal stopping problem:
7’P —
Vi(w) := sup & [Xf_’/‘\”(Tit)], for all (t,w) € ©.
TET

Theorem 5.2 Let X € C’QOVP(G,R). Then, there exists an F—adapted version Y of Y° satisfy-
mg:
(i) for all T € T, we have Yopr = Vrnr, Po—a.s.
(ii) Y is a pathwise continuous P—supermartingale for all P € P, and 7* is an optimal stopping

rule,
(iil) Y; = ess SUp, e EF” [XTATLE] for allt € [0,T], Py—a.s. for some P* € P, and

Y =Yoo+ M —K* with M{ =K, =0, and [(Y —X)dK*=0, Py— a.s.
for some pathwise continuous martingale M* and predictable nondecreasing process K*.

This result can be proved by referring to the corresponding literature in the theory of reflected
backward stochastic differential equations, see Remark 7.3 in [13]. For the convenience of those
readers who are not familiar with this literature, we report in Section [§a proof purely based on

arguments from optimal stopping theory.
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5.2 Punctual smoothness of submartingales

In this subsection, we prove that a process u € CSJ;.(@, R) which is P—submartingale for some
P € P is punctually 071,’2— Leb®P—a.e. This is our natural extension of the well-known result
that any non-decreasing function is differentiable a.e. and our proof builds on the corresponding
standard results in analysis that we quickly review. For a function f : [0,7] — R with finite
variation, we use the following notations for the left-semigradients:

)= tmint 28T =IO 4 F ) = timesnp L =)
N €10 € 10 e

The right-semigradients iT and f are defined similarly by sending € | 0. The function f is
differentiable at a point ¢ if

f(t) = lim fltre) = /) exists, and therefore f(t) = fé(t) = ?é(t) = f (1) :? (t).

e—0 15 Ea J

Our smoothness results uses crucially the two following properties:
FV; The set of points of differentiability of f has full Lebesgue measure.
FV; If f is absolutely continuous, then lim._,o ft+€ |f(s) — f(t)|ds = 0, Leb-a.e. on [0,T].

t

For a subset ©g C O, we denote T® := {t : (t,w) € Oy for some w € N} and QP := {w:
(t,w) € TO}.

Theorem 5.3 Let Py € P and u € CSJ;, (0,R) be Py—submartingale. Then u is P—punctually
CY2? on Oy, for some Oy with

Leb[T®] =T and Po[Q7°] =1 for all t €T, (5.3)

Sketch of the proof. For a proof in more details, we refer to [28]. We proceed in two steps.
Step 1: By the Doob-Meyer decomposition, we have u = ug + M + A, Py—a.s. for some
Py—martingale M and nondecreasing predictable process A, with My = Ay = 0. Then, process
MO .= M — fo 0sd{M, B)s defines a Py-martingale.

Since all Pp-martingale have the martingale representation, it follows that ¢ —— H; :=
(M, B); = (M°, B), is absolutely continuous on [0, T], Py — a.s., i.e.

! .
hy :== H, = H; for a.e. t € [0,T], Py — a.s.

By the above property FV3 together with the Fubini theorem, we see that

Leb @ Py[61] = T where O := {(t,w) :limeyo L [ [hy — helds = 0}. (5.4)

t

Further, applying property FVy to the finite variation process A% := A + fo 0sdHg, and using
again the Fubini theorem, we see that:

Leb @ Pg[@2] =T where O3 := {(t,w) : at(w) := Al (w) exists }. (5.5)
Step 2: In this step, we prove that for (¢,w) € Oy := 01 N Oa.

(¢5,p,0) € JPup(w), where ¢ :=a;(w)—e(1+1L), p:=hi(w). (5.6)
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We define
H(w') := inf {s>0:(A")(w ") — A%(w) < (ay(w) —e)s or I |t (W) — hy(w)|dr > es}.

Since w € O, we have H € TT. Also, note that MM := M — My(w) — [ (0 — \),h,dr defines
a Py-martingale. Further, rewriting the Doob-Meyer decomp081t10n, we have

=) + (A )+ 2~ [ Ak, Pacas

So, for all 7 € T, Py € P:
EP (6700 — ) ] = () + EP [(ar(w) — ) A B) — AL+ A7)

TAH
—eL(r A H) +/ (hs — ho), ds} < —uy(w),
0

by the definition of H. Then holds.

Step 3: From the previous step, it follows that (a;(w), ht(w),0) € cl(J"u(w)). By a similar
argument, we may show that (a;(w), h¢(w),0) € Cl(jput (w)). Consequently, (a¢(w), hi(w),0) €
JPui(w), and u is punctually C’713’2. O

5.3 Comparison

In this subsection, we are going to show the comparison principle for the semilinear path-

dependent equation.

Theorem 5.4 Let Assumption hold true. Let u,v € CS’P(G),R) be P-viscosity subsolution
and supersolution, respectively, of the equation . Assume further that ur < vy on Q. Then
u<von e.

To show Theorem[5.4] we need some preparation. The following lemma is the analog of Lemma
in the context of the semilinear path-dependent PDEs. We omit the proof, since it is similar
to that of Lemma 3]

Lemma 5.5 Let u € C’QO’P(G,R), (t,w) € ©, and H € T, be such that uy(w) > g’ [uu ]
Then,

0€ AP uppe-(w @ w*)  for some (t*,w*) with the localization w* :=wu' " —t* e T+,
The next main ingredient is the partial comparison result.

Proposition 5.6 In the setting of Theorem assume in addition that v € 071,’2(@). Then
u<wvon0O.

Proof First, by possibly transforming the problem to the comparison of @; := e*wu; and

¥y = eMuy, it follows from the Lipschitz property of the nonlinearity F in y that we may
assume without loss of generality that F' is decreasing in y.

Suppose to the contrary that ¢ := (u—v)¢(w) > 0 at some point (t,w) € O. Let ¢g := and

ﬁ7
define f, := (u—v)¥ +co(s—1), s € [t,T]. Since (u—v)r < 0, it follows that fi(w) > & [f;ft}.
By Lemma we may find a point (t*,w*) such that t* € [t,T) and 0 € A” fi-(w*). In

particular, this implies that

—(u— )W)~ —t) < EP[~(u—v)f)" —a(T—1)] = —co(T 1),
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so that (u — v)f(w*) > co(T — t*) > 0. Then, since (u — v)* > u — v, we deduce from
0 € A” fye (w*) that

(@ —w)e (W) < ET [(p— u)f_/\‘;} for all 7 € T, where ¢s(w) :=vs(w) — co(s —t).

Since v € C}D’z(@), this means that o' " € A7 uu(w*). Then, by the viscosity subsolution

property of u, and the classical supersolution property of v, we deduce that

0 > {—0wp— %Tr [02.,¢] — F(.,u,0,0) } (", w")
= c+{-0w- %Tr[(“)iwv] — F(.u, 0,0) }(t*,w*)
> co+{F(.,v,0,v) — F(.,u,0,0)}(t*,w") > co,

where the last inequality follows from the non-increase of F' in y and the fact that wu;(w*) >
O

ve (w*). Since ¢ > 0, this is the required contradiction.

Lemma 5.7 Under Assumption , there is a constant C such that
(i) the process {u; + fot lus|ds + Ct,t € [0,T)} is a P*-regular submartingale, for some P* € P,
(ii) the process {vt —fot lvs|ds—Ct,t € [0, T]} is a PV-regular supermartingale, for some PV € P,
(iii) u and v are P—punctually C*? on ©% and O, respectively, where O and ©° satisfy (5.3)).

Proof Assertion (iii) is a direct consequence of (i) and (ii) together with Theorem [5.3] By
Assumption we may find a constant C such that:

|F(t,w,y,2)] < C =1+ Lo(ly|+ |2])

Then, it is easy to verify that u; := uy + Ct and vy := vy — Ct are P-viscosity subsolution and

supersolution, respectively of:
—Lu—Lo(Ju—Ct|+1]0,u|)+1 < 0and — Lo+ Lo(|o+Ct|+|0,0]) —1 >0 on [0,7)xQ. (5.7)

In the rest of this proof, we shall show that u and v are gp—regular submartingale and £7-
regular supermartingale, respectively. In addition, we prove in Appendix (Proposition that
a continuous Zp—regular submartingale is a P-submartingale for some P € P. This leads to the
desired result.

We only prove that w is Ep-regular submartingale, as the corresponding statement for v follows
from the same line of argument.

Suppose to the contrary that @;(w) > g’ [a*] for some (t,w) € [0,T) x Q and some stopping
time H € 7+. Then, it follows from Lemma that there exist t* and w* such that 0 €
APy (w*), i.e. there exists B € T such that

TAH’

_p . TAH .
() 2 [ —at - Lo/ ul " ds].
0
As aresult, function ¢; := —Lg f(f [ut " |ds is in A7 ug- (w*). Since @ is a P-viscosity subsolution
of the left equation of (5.7]), this leads to
Lo|ug(w?) = Lo|ue= (w*)[ +1 <0,

which is the required contradiction, thus completing the proof of (i). |

We are now ready for the key-result for the proof of the comparison result. We observe that

this statement is an adaptation of the approach of Caffarelli and Cabre [4] to the comparison

in the context of the standard theory of viscosity solutions in finite dimensional spaces.
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Proposition 5.8 Let Assumption hold, and consider the L in the definition of P (recall
that L > Lg). Let u,v € 0377, (©,R) be P-viscosity subsolution and supersolution, respectively,
of the path-dependent PDE (5.1)). Then, w :=u — v is a P-viscosity subsolution of

— Lw(t,w) — L|ws(w)| — L0, wi(w)| < 0. (5.8)

Sketch of Proof Without loss of generality, we only check the viscosity property at (¢t,w) =
(0,0). For an arbitrary (a,,0) € J” (u— v)o, we have to prove that

—a—L|(u—v)o| - L|B] < 0. (5.9)

1. Denote as usual by ¢®? = ¢®50 the corresponding paraboloid process. By definition, there
exists H € T such that

o = —(u—v) = Héi¥§7) [(Qsa’ﬂ — U+ V)rpn)-

For 6 >0, r > 0, and H, := HA inf{t : |w| > r}, define the Snell envelop:

iy = essinf EF [moag |F], t€0,T], where m:=¢* P —u 4o,
TETHPEP
Clearly,
mo = co, ET [mu,] > co, o < mg, and My, =my,, Py—as. (5.10)

Further, from Theorem [5.2] we have that:

My = ess jrrtlf EF> [mopn, | Fi], Py —a.s. for some [|A\*[| < L. (5.11)
TET,

2. By classical optimal stopping theory, m is a Py« —submartingale with Doob-Meyer decom-

position
m=mgy+ A + M, with A= / 1{m:m}(8)d145, Py--a.s.
0

for some Py~ —martingale M , and some nondecreasing process A. In addition, we may prove
that A is absolutely continuous Pg-a.s. (see Step 4 in the proof of Proposition 7.3 in [28]). Then,

it follows from ([5.10)) that:
H- R
0 < P [mu, — mo] < EP [, —1ho] < EP [/0 1{m—m}<f>dAf}
P Hy -
= 1 A* —aa I3
2t VO Lom=my (D14 <oy Ao dt]

Hy
. Py~ X
< I\/}linooM E [/o Lim—rm} (t)dt] .

A

This implies that Leb ® Po[t < H,,m = 7| > 0, so that, with the subsets ©“,0" from
Proposition we have:

Leb ® Py [{t € [0,H,),m =m}NO“NO"] > 0.

Further, by taking in account (i) of Theorem we may find a point (¢*,w*) such that

Hff"*’* —t* e TT, my(w*) = 1y (w*) = infrer o [mi/;‘;{ﬁyw*_t*)],

and u,v are P — punctually C%2 at (t*,w*).
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3. By Proposition it follows that m is P-punctually C*? at (t*,w*), and (a™, ™) :=
(a+68—a*+a",B— B+ B € JPm(t*,w*) for any (a*, %) € JFPu(t*,w*) and (a,B") €
JPu(t*,w*). Then, by using the viscosity subsolution property of u together with Proposition
and the Lipschitz property of F' from Assumption [5.1] we see that:

0

Y

—a"* — F(t",w", up (0*), )
= (—=a"4+ad™")—a—-0—F(t",w*, (u —v+0) ("), 8+ 8" — ™)
> a" = L™ —a—0—L|(u—v)(w)| = LIB| = a” = F(t*,w", v+ (w"), )

We shall prove in Step 5 below that
a™—LIg" > 0. (5.12)
Together with the viscosity supersolution property of v, this provides:
0 > —a—90—L|(u—v)e(w")] = L|B.

Since t* — 0 as 7 — 0, and u,v € C°, this provides —a — § — L |(u — v)o| — L|B| < 0, which
implies ([5.9) by sending § — 0.

4. It remains to prove (5.12). For the sake of simplicity, we set t* = 0. Recall that (a™, ™) €
JPmg and mg = 1y = infrer E [mrnm.]. Suppose to the contrary that o™ — L|3™| < 0.
Then, there exists (@, 3) € J” mq such that & — L|3| < 0. By definition of J"mg, we have

ap

. A
T/\]:li| for some H € T with H < H,.

=P
mg = sup& {mﬂ\ﬂ—¢
T

Then, considering the process A := —Lsgn((), we see that:

o = mo > BP [my — 625 = P> [my] — (6 — LB)ER [] > EP [my].

TAR

Since I < H, and Py € P, this is in contradiction with the definition of . O

The previous proposition, together with the partial comparison result of Proposition lead
directly to the comparison result.

Proof of Theorem By Proposition u—v € C’gp(@, R) is a P —viscosity subsolution of
the path-dependent equation . Clearly, 0 is a classical supersolution of the same equation.
Since (u — v)r < 0, we conclude from the partial comparison result of Proposition that
u—v<0onO. O

5.4 Existence

To establish an existence result of P—viscosity solutions of the equation under the above
assumption [5.1] we consider a terminal condition defined by an Fr—measurable r.v. £. Then,
the PPDE with terminal condition u(T,w) = &(w) is closely related to the following
backward stochastic differential equation (BSDE):

T T
Yt°=£+/ F(s,B,Yf,Zg)ds—/ Z%B,, 0<t<T, Pyas. (5.13)
t

t
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We refer to the seminal paper by Pardoux and Peng [24] for the wellposedness of such BSDEs.
On the other hand, for any (¢t,w) € [0,T] x Q, by [24] the following BSDE on [t, 7] has a unique

solution:

T T
Y = ghe / F“(r, Bt Y20 Z009) dr — / ZY'9dBy, Pg-as. (5.14)

S S

By the Blumenthal 0-1 law, l/'to’t7w is a constant and we thus define
w0 (t,w) = Y2, (5.15)

Theorem 5.9 Let £ € UCB(Q)) be an Fr—measurable r.v. Then, under Assumption u® s
a viscosity solution of PPDE (1.2) with terminal condition u$ = €.

Proof Under our assumptions on the nonlinearity F, it follows from the boundedness and
uniform continuity of ¢ that u° is uniformly continuous on [0, T] x €, see [I1]. We show that u°
is a P—viscosity subsolution, the same line of argument allows to prove that u" is a P—viscosity
subsolution. We proceed by contradiction, assuming that u® is not a viscosity subsolution.
Then, there exist (t,w) € [0,T) x Q and ¢ € APuf(w) such that:

1
2¢ 1= —0ypp — iTr[angoO] —Ft(w,u(t)(w)ﬁw(po) > 0.
Without loss of generality, we assume u:(w) = g, and we set (t,w) = (0,0). Denote:

@ = Oyps + %Tr [ingps} + Fs(ps,dps) so that ¢g = —2¢,
and ﬁ = Ps; Zs = Owps, 0Y:= }N/s =Y, 0Zs:= Zs —Zs, ,8€ [O,T]

Applying 1t6’s formula, we have
1 -
d(6Ys) = (Ops + 5T [02,¢s])ds + Zy - dBs + Fy(Ys, Z,)ds — Z, - dB,
= [¢s + Fs(Ys, Z) — Fs(Ys, Zs)|ds + 0Zs - dB,, Py — ass.

Since §Yy = 0, it follows from the Lg—Lipschitz property of F' that for all stopping time 7 € T

T

0 > (g@—u)Tf/ (¢37L0|5Y,;|)ds+/ (5Z5~dBS+L0|5ZS|d5), Py — a.s.
0 0

Define H, := e Ainf{s > 0: |Bs| > e} Ainf{s > 0: ¢s — Lo|dYs| > —c}, and notice that H. > 0,
Pg—a.s. since 6Yy = 0. Then,

He
0o > ((p—u)HE+CHE+/ (JZs-st+L0|5Zs|ds), Py — a.s.
0

By the Girsanov theorem, we may find a probability measure P € PLo C P such that B +
Ly fo sgn(Z,)ds is a P—Brownian motion. Then, it follows from the previous inequality that
EF[(¢ — u)y] < —c EF[H] < 0, contradicting the fact that ¢ € AP O

6 Wellposedness of fully nonlinear path-dependent PDEs

In this section, we outline the main results established in [14] in the context of the fully nonlinear
path-dependent PDE:

Lu = —0u—G(.,u,0,u,02,u) =0 on [0,T)x Q. (6.1)
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Assumption 6.1 The nonlinearity G satisfies:
(i) The process G(.,y, z,7) is continuous, and G(.,0,0,0) is bounded.
(ii) G is elliptic, i.e. nondecreasing in .

(iii) G is Lo— Lipschitz in (y, z,7), uniformly in (t,w).

In the present fully nonlinear context, we shall consider Definition of viscosity solutions

with the sets of test processes A and A defined by means of
P =Py for some L > Ly, and H:={H=tAHp:t€[0,T],0 € O CR? bounded convex},

where Hp := inf{¢t > 0 : B, ¢ O}. Observe that, unlike the semilinear case, the set P of
Definition is a non-dominated family of probability measures.
Following the same line of argument as in the semilinear case, it is shown in [I3] that the

following partial comparison results hold true.

Theorem 6.2 Let u,v € UCB(Q) be viscosity subsolutions and supersolution, respectively of
the equation 1) with up < vy on Q. Assume further that either one of them is in 0713’2(6).

Then, under Assumption|6.1, u < v on ©.

We next report the wellposedness result from [I4] which requires further conditions on the
path-frozen PDE:

(E)t’w Gt (5’v(svx),Dv(S,xLDQv(s,x)) =0, (s,2)€Qf:=[t,T]x Bra(e),

€
where Bga(¢) is the centered open ball of R? with radius e. We denote the parabolic boundary

of the domain Qf by 0Q§ := [t,T) x Bga(c) U{T} x cl[Bga(e)].

Assumption 6.3 (i) The process G(-,y, z,7) is uniformly continuous, uniformly in (y,z,v);
(ii) For alle > 0, (t,w) € ©, and h € C°(9Q5), we have T = v, where:

(s, x) inf {w(s,m) :w classical supersolution of (E)t’w and w > h on 8@?},

g

6.2
s,x) = supsw(s,z):w classical subsolution of (E b9 and w < hoon Q5 ¢. (6.2)
€ t

I

Remark 6.4 The following sufficient condition for the nonlinearity g := g, to satisfy As-
sumption (ii) is reported from Proposition 8.2 of [I4]:
(i) The nonlinearity g(s,y,z,’y) is continuous in s, uniformly Lipschitz in (y, z,7), and non-
decreasing in 7,
(ii) The PDE (E)iw satisfies existence and comparison in the sense of viscosity solutions within
the class of bounded functions,
(iii) Either one of the following conditions holds:

(iii-1) g is convex in (y, 2,7), gs(.,7) = infaes,, a>0 {g(., v+ A) —Tr[A]} > —oco for 0 < § < ¢y,
for some ¢g > 0, and gs — g as 6 \, 0,

(iii-2) g is convex in 7 and uniformly elliptic: for some constant ¢y > 0,

9(7) —g(,7) = coTr[y —4'] for any ~ >+
(iii-3) ¢ is uniformly elliptic and d < 2.

We finally formulate a technical condition on the final condition £&. We shall denote w :=

maxs<¢ Ws, W = Ming<t ws, and w! 1= ws; —w; forall 0 <t < s <T.

27



Assumption 6.5 £ = 9((Wtwwtw£ti)1<i<n7w) for some 0 =ty < ... < t, =T and some
function g € UCB(R?¥™ x Q) satisfying for all 0 € R3¥" i < n, and w,w’ € Q, there exist

somep > 0 and continuity modulus p such that:

19(0,w) — g(8, )| < p(||(w - w/)|}€p([ti,ti+1])) whenever way, = wh,, and W't = W't

We are now able for the wellposedness result proved in [14].

Theorem 6.6 Let Assumptions hold true.
(i) Let u,v € UCB(Q) be P—wiscosity subsolution and supersolution, respectively, of PPDE

with upr < & <wvp. Thenu < v on 6.
(ii) The PPDE (6.1)) with terminal condition & has a unique viscosity solution uw € UCB(0©).

7 Stability of viscosity solutions of path-dependent PDEs

7.1 Stability

We shall establish the stability in the context of fully nonlinear PPDE, and thus we use the
setting in Section [f] We first report the fully nonlinear analogue of Lemmas and

Lemma 7.1 Let u € UCB(®), (t,w) € ©, and H € H, be such that us(w) > g’ [uﬁw} Then,
0€ AP uppi-(w @ w*)  for some (t*,w*) with the localization H* :=u' " —t* € H.

We remark that in this case P has no dominating measure, and consequently the Dominated
Convergence Theorem fails under EP. The proof of Lemma relies on the theory of optimal
stopping under nondominated nonlinear expectation. The Snell envelop approach in this context
is rather technical, and makes crucially use of the regularity of X and the special structure of
H, see [12].

We now present the stability result. Fix P = Py, and simplify the notations: £ := EP, E:=£7.

Theorem 7.2 Let G, G° satisfy Assumption with a common Ly < L, and u,u® € UCB(),
for each e > 0. Assume

(i) for each € > 0, u® is a viscosity subsolution (resp. supersolution) of PPDE with
generator G*;

(ii) as € = 0, (G%,u®) converge to (G,u) locally uniformly.
Then u is a viscosity subsolution (resp. supersolution) of PPDE with generator G.

Proof Without loss of generality we shall only prove the viscosity subsolution property at
(0,0). Let ¢ € A"u(0,0) with corresponding H € H, dy > 0 be a constant such that Hs, < H
and lim._,o p(e, dg) = 0, where p(g, dp) is the bound of |G* — G|+ |u® —u| on the Jp-neighborhood
of (0,0,%0, 20,70) := (0,0, uo, B0, O2,%0)-

Now for 0 < § < &y, denote ps(t,w) := ¢(t,w) + dt. One can easily show that £,[Hs] > 0, see
[13]. Then we have

(ps —u)o = (p—u)< §[(<p - u)né} = é{(@s — Uy, — 5H5}

E[(0s = W, | = 0€l1s] < £](ps —wh -

IN
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By the local uniform convergence of G¢ and u®, there exists €5 > 0 small enough such that
(ps —u)o < §[(<P5 - UE)H,;]; Ve < &5. (7.1)
By Lemma, we may find a point (¢*,w*) such that
0 € A" (u€ — p5)s- (w*) with the localization H* := Hf; “ e A

It is straightforward to check that L,Of;’w* e APus (t*,w*). Since uf is a viscosity subsolution of
PPDE (6.1) with generator G¢, we have

0 Z |: - atQO(S - G€(~,u5,8wcp5785wap5)] (t*7w>k) = |: - aﬁp -6 GE(',usaaw@7 aiwgo)} (t*7W*><72)

Note that t* < Hg(w™*), then |u® —u|(t*,w*) < p(e,d) < p(e, dp). By local uniform convergence,
we may set ¢ small enough and then e small enough so that (-, u¢, 9., 0%, ¢)(t*,w*) is in the
dp-neighborhood of (0, 0, yo, 20,70). Thus, (7.2)) and Assumption lead to

0

Y

|: - at‘p - G('? us, Bw(p, afm@)} (t*7 W*) —0— p(g, 50)
[ — 0 = Gy, 00, 02,0) | (1, w) = 8 = ple, 00) = Cile, )

> Lo sup |Gl Gup 2,00 (6w) = Gl Dup, 62,0)(0,0)| = 6 = Cp(e, o).

(t,w):t<us(w)

v

Now by first sending ¢ — 0 and then § — 0 we obtain Loy < 0. Since ¢ € A™u(0,0) is
arbitrary, we see that w is a viscosity subsolution of PPDE (6.1]) with generator G at (0,0) and
thus complete the proof. O

7.2 Monotone scheme for PPDEs

As an important application of the above stability result (in spirit), in this subsection we
study discretization schemes for PPDEs. For any (t,w) € © and h € (0,7 — t), we denote

fffh = FyinN{Bia. = win.}. Let ']I‘fl’w be an operator on Lo(fffh). For n > 1, denote h := %,

ti:=1ih,i=20,1,--- ,n, and define:
h - h . mtw hiy. ) . S
u(tn,w) = E(w), u"(tw) =Ty W (t,-)], t € [tie1,ti), i=n, -, 1. (7.3)
where we abuse the notation that:
T3 [ps] := Th[p4*,] for process .

Assumption 7.3 Assumption[6.]] holds, and
(i) £: Q2 — R is bounded and uniformly continuous.
(ii) Comparison principle for PPDE (1.2)) holds in the class of bounded viscosity solutions.

Assumption 7.4 The descritization operator TZ“’ satisfies the following conditions:
(i) Consistency: for any (t,w) € © and ¢ € C12(0),

et el e) — T e+ (4 b))
(' ,w',h,c)—=(t,0,0,0) h

= Lo(t,w).

where (t',w') €0, h € (0,T —1t), ce R.
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(ii) Monotonicity: for some constant L > Lo and any @, € UCB(I'erh),

Ele—¥)"*1 <0 implies T;[¢] < T, [y
(iii) Stability: u" is uniformly bounded and uniformly continuous in w, uniformly on h. More-

over, there exists a modulus of continuity function p, independent of h, such that
[u (t,w) — u(t',w.pe)| < p((t’ —t)V h), for any t <t' and any w € Q.

We now report the result from [32], which extends the seminal work Barles and Souganidis [I]

to our path dependent case.

Theorem 7.5 Let Assumptions and hold. Then PPDE (6.1) with terminal condition
u(T,-) = £ has a unique bounded viscosity solution u, and uy converges to u locally uniformly
as h — 0.

Proof By the stability, u” is bounded. Define

w(t,w) = liminfu”(t,w), 7(t,w) := limsupu"(t,w). (7.4)
h—0 h—0
Clearly (T, w) = {(w) = u(T,w), u < 7, and u,w are bounded and uniformly continuous. We
shall show that u (resp. @) is a viscosity supersolution (resp. subsolution) of PPDE (6.1]). Then
by the comparison principle we see that w < u and thus u := uw = u is the unique viscosity
solution of PPDE . The convergence of u” is obvious now, which, together with the uniform
regularity of u” and u, implies further the locally uniform convergence.
Without loss of generality, we shall only prove by contradiction that u satisfies the viscosity su-
persolution property at (0,0). Assume not, then there exists ©° € ZPQ(O, 0) with corresponding
H € H such that —cy := L°(0,0) < 0. Denote

o(t,w) = ¢ (t,w) = . (7.5)
Then
Lp(0,0) = —%0 <0. (7.6)
Denote X0 := ¢ —u, X" := ¢ — P, H. ;=02 A® := inf{t : |By| > e} A€, and c. := Scoe®.
Note that H. < H for € small enough, and by [13] (2.8),
sup P(H. # &%) = sup P(0Y < &%) < CL*e %% < Cec.. (7.7)
PePL PePr
Then
Ele® —H.] < E[%1yy 2eny] < Cece.
Thus, for € small, it follows from ¢° € ZLQ(O, 0) that
Xg-EXy) = [¢°—ufo— f[(wo —w)y, — %OHE}
> g[(wo - !)H5:| - E[WO — )y, — %OHE] (7.8)
> §[%OHE} = 00260 — %05[55 — H.| > 3% — Cec, > c. > 0.
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Let h | 0 be a sequence such that

lim up* = wu,, (7.9)
k—o0

and simplify the notations: u* := u/*, X% := X" Then (7.8) leads to
¢ < o~ liminf uf] — €|, — liminfu} | < [po — lim uf] = &[eon, — liminf uf |-
Note that X* is uniformly bounded. Then by we have
E“Xi - stﬂ < Céec..

h

Since u" is uniformly continuous, applying the monotone convergence theorem under nonlinear

expectation &, see e.g. [I2] Proposition 2.5, we have

ce < lim [po — uf] — ?{hm sup[pu, — uﬁa]}

k—o0 k—o0

<  lim X(’)C ff[limsuprg)} 4+ Cec. = lim X(’f ff[ lim sup X;%} + Cec.
k—o0 k—s 00 k— o0 m—00 p>m

= lim X} — lim ?{ sup ng,} + Cec. < lim X} —limsup?[Xeks} + Cec,
k—o0 m— o0 k>m k—o0 k— 00

lim X} — limsupz[X}’IC } + Cec. = liminf [X(’f —?[X}]f ]] + Cec..

k—o0 € k—oo e

k—o0

IN

Then, for all € small enough and k large enough,

x5 -E[xh] = 3. (7.10)
Now, applying Lemma [7.1} we obtain that
0e APXZC,: (w*) for some (t¥ w*) with the localization u* := HZE’W* — 1tk
Moreover, in this case, we may prove that
sup P[u} < §] < €62 (7.11)

PeP

for all § < hy, (see [32]). Let {tF,i =0,--- ,ni} denote the time partition corresponding to hg,
and assume t¥ | < ¥ < t¥. Note that

Xh(Wh) = VEW) 2 E[(xXMEe ], vreT

k
TAHZ

Set 0 := tf —t# < hy and 7 := ). Combine the above inequality and (7.11) we have

k

_ tk Wk _ £+ wk
o — b1k, = E[(p — uh)g ] 2 E[ (0 )5 | - ot
This implies
— k wk k ,U.)k
E (w5 — o —uh(th M) - Co?) - (wh ] <o.
By the monotonicity condition (Assumption (ii)) we have

tk7wk tf,wk
WF(th, ) = T [l ] ST [ = [ — wb](h, ") — 7). (7.12)

31



We next use the consistency condition (Assumption (i)). For (t,w) = (0,0), set
th=1th W =Wk hi=06, = —[p— uF](tF,Wh) — C62.
By first sending k£ — oo and then € — 0, we see that

d((t5,w"),(0,0)) <H. + sup |wf|<2e—0, h<hp—0,
0<t<n.

which, together with (7.5, (7.9), and the uniform continuity of ¢ and u*, implies
el < |l — ¥t ") = [ip = w¥](0, 0)| + s — wo| + C6F — 0.

Then, by the consistency condition, we obtain from (7.12)) that
£k ok
Wt w0) = T [ = [p — u)(2h, w¥) — O
Ok
tk,wk
o+ (2, w*) = T3 [l + lus

= } + C6y, — Lp(0,0).
Ok

This contradicts with (7.6)).

8 Optimal stopping under dominated nonlinear expecta-
tion

The objective of this section is to provide a self-contained proof of Theorem We follow the
setting in Section [5| In particular, the family P of equivalent probability measures is defined as

in .

We emphasize that the main results of this section are available in the literature in reflected
backward stochastic differential equations, see [16] 21l 27]. We collect them here for the con-
venience of the readers who might not be familiar with this literature. Our presentation in
Subsections [8.3|and |8.2]is inspired from El Karoui [I5] and Appendix D of Karatzas and Shreve

[22], which are focused on the standard optimal stopping under linear expectation.

8.1 Preliminaries

For ease of notation, we simply write € := EP. We start by the dominated convergence theorem
under £ which holds by the fact that P is dominated by Py.

Lemma 8.1 Let X,, be a sequence of random variables. Assume that X!T® are uniformly
integrable under probability Py and X,, — X Pg-a.s. Then, we have E[|X,, — X|] — 0.

Proof For any Py € P, we have
BP(X, = X)) = B[l Mn T, x|
< (BR[el IP I AR 8 (R, — X))

where p = 1 + « and % + % = 1. Since X is bounded, we know that EFo [efoT aXsdB—[if %‘/\”2‘13}
is bounded. Then, by the convergence theorem, we obtain that E¥o[|X,, — X|'*%] — 0. The
proof is complete. O
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Lemma 8.2 If X > 0 Py-a.s. and £[X] =0, then X =0 Py-a.s..

Proof Since £[X] = 0, for any ¢ > 0 there exists P° € P such that EF'[X] < e. Also, by
Cauchy-Schwarz inequality, we have the estimate:

Nl

EPo[X 3] = EF' [e*foT NdB.—3 [i" N Pds x5 | < CREF[X]2 < Ce3.
Since € is arbitrary, we get EF[X2] = 0. So, we conclude that X = 0 Pg-a.s.. O

Finally, we state the following lemma, which is a direct consequence of Proposition 3.1. in El
Karoui, Peng and Quenez [17].

Lemma 8.3 Let £ € L*(Py), and vy := ess suppep EF[¢|F). Then, vy = EP[Q}}] Py-a.s. for
all t € [0,T) for some P € P.

8.2 RCLL version of the F*—Snell envelop

Throughout this section, we consider a process X : [0,7] x 2 — R satisfying the following

condition.

Assumption 8.4 The process X is piecewise pathwise continuous F-adapted on [0,T], and
Supyeo, 7 | Xt| € L2(P), i.e.

IEP[ sup |Xi?] < oo, forall PeP.
t€[0,T)

Our starting point is the classical Snell envelop process:

Y; = esssup EF[X,|F], te€[0,T]
TETE PEP

Clearly, Y; is F;-measurable for all ¢ € [0, T].

Lemma 8.5 For any t € [0,T), {E*[X|F]; (,P) € T x P} satisfies the lattice property.

Proof Let 71, 2 € T! and Py, Py € P. Let A := {EF1[X,, |F] > EF2[X,,|F]}, and define
Fi=mila+lae and P(D)i=E” [EP [Lap|Fi] + B [Laenn| B, D € Fr.

Clearly, 7 € T}, P € P, and we immediately verify that

EF[X;|F] > max{E"' [X,, | F], EF?[X,,| F]}, Po-as.

We next introduce the concatenation P; ®; Py of two probability measures Py, Py € P by:
(P, ®; P2)(D) := E [Eﬂ”z [1D\]-}}] for all D € Fr,
and we observe that P; ®; Py € P.

Lemma 8.6 Y is an E-supermartingale with sup,c(o 1 E™ [|V;[*] < 0o and E[Y;] = sup, ¢ 7+ E[X;]
for allt €10,T7.
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Proof Denote |X|7 := sup,¢jo 7 |X¢|. By the definition of Y, we have

sup EFo [|Y}|2] < [EFo [ess supEP[(|X|i})2’ftH < sup EP[(|X|})2] < 00.
te[0,T) PeP PeP

For arbitrary P € P and s < ¢, it follows from Lemma [8.5| and the property of the ess sup that:

EP[V;|F,] = esssup EFEF[X,|F,] < esssup E¥ [X,|F.,] < esssup E¥[X,|F.,] =Y, Po—as.
TETLP EP TeTHP' eP TeTSP'eP

which proves that Y is an £ —supermartingale.

We finally prove the last claim. For all 7 € T and P € P, we have Y; > EF[X.|F;], Po-a.s.
Hence, we obtain for any 7 € 7! and P, P € P that £[V;] > ol ;] > o ®P1X], and therefore
&y > Sup, ¢ £[X,]. On the other hand, it follows from Lemma that:

EF[Y] = sup EF®F[X,] < sup E[X,] forall PeP.
TETHP €P TET!

Proposition 8.7 (Dynamic programming principle) For allt € [0,T) and 0 € T}:

Y = esssup EP |:X7—1{7—<0} + Y91{7>9} |]:t} , Pg-a.s.
rET!, PEP =

Proof Since X <Y, we have for all € T}

Y; < esssup EP[XTl{Td} + Y150y | Fi] < ess sup EP[XTl{Td} + Yolir>0y|Ft], Po —aus.
TETY PEP TETE PEP
where the last inequality is due to the £-supermartingale property of Y of Lemma On the

other hand, since Y is £-supermartingale, we have for all 7 € 7! and P € P:
Y, > EF[Yonr | Fi] = EX [Yolgrsoy + Yelircoy | i) = EX Yol ooy + X 1r<oy | ], Po-as.
The proof is completed by taking ess sup over 7 € T.! and P € P. O

Lemma 8.8 Y has a Py-a.s. RCLL F*—adapted version. Moreover, there exists P € P such
that Ep[supte[O’T] V%] < .

Proof Step 1. Let {t,} C [0,T] be such that ¢, N\, t. By Lemma we know that E[Y;,] =
sup, e rtn E[X;] < sup, ey E[X,] < E[Y;]. On the other hand, for any 7 € T, denoting 7, :=
TV ty, it follows from the continuity of X and the Po—uniform integrability of {X2 'n > 1}
that £[X,] = lim, . E[X,,] < liminf, . £[Y;,]. Using again Lemma we obtain that

EY:] <liminf,, o E[Y:,]. Hence,

ey = {jgf[Ys]-

Step 2. Tt follows from Lemma that Y is a Pp-supermartingale in the right-continuous
filtration F*. By classical martingale theory, we know that for any ¢ € [0,T),

Y.y ;= lim Y, exists Py-a.s.
o sllt,seQ 8 0

Note that Y;4 is F;-measurable. Also, we have the properties that {Y;+}; is RCLL and Y34 =
E[Yii|F] <Yy, Po-ass.
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We now show that Y = Y;, Pp-a.s. Suppose to the contrary that Pg[Y;4+ < Y;] > 0. Then, we
have E*0[\/Y; — Y;1| > 0, implying that £[Y; — Y;4] > 0. Then, there exists § > 0 such that:

E¥[Y; - Yiy] > 6 > 0 forall Pe?P. (8.1)

By the definition of Y;; and the fact that {Y;%} are uniformly integrable (by Lemma , we
obtain by Lemma [8.1| that £[Y;] = lim,; E[Ys] = 5[Yt+] This means that for all P € P and
€ > 0, there exists ]P’ € P such that EF[Y;] — e < EF [Y;,]. Together with , this implies
that EF[Y;] — e < EF [Y;] — 6 < E[Y:] — 6, and therefore E[Y;] — € < E[Y;] — 6. By arbitrariness
of € > 0, this provides that £[Y;] < £[Y;] — J, which is the required contradiction. So, we have
proved that Y;; is an F*—adapted RCLL version of Y;.

Step 3. With | X[} 1= supye(o 1) [ X¢], we have:

sup |Y;|> < sup esssupE" [(|X|})2\]~}]
te[0,7] te[0,T] PeP

By Lemma there exists P € P such that EF[X*|F;] = ess suppep EF[X*|F;] for all t, Py-a.s.
Then, it follows from the Doob inequality that:

o ] = ]E]F’[ sup EP[(1X[7)%[F]] < 4EF[(X 7)),
tef0,7] t€[0,T]

which provides the desired result by Assumption O

8.3 Doob-Meyer decomposition of the RCLL F*—Snell envelop

From now on, we consider Y in its F*—adapted RCLL version of Lemma [8:8] For a vector

= (21,...,74) € RY we denote |z|; := Z?:l ||

Proposition 8.9 There exist H € Hj,. and a non-decreasing previsible process K such that
t
Y; = Yo+ (H-B); — L/ |Hslhds — K¢, t€][0,T], Py— a.s.,
0

with B [sup,c (o7 |(H - B):|] < oo.
Proof 1. By Lemmal[8.6] Y is a P—supermartingale, with Doob-Meyer decomposition,
Y = Yo+ MF — AP, Py —as. forall PeP, (8.2)

for some P-martingale MT and some non-decreasing previsible process AF. By the martingale
representation property, M = (H - B), Pp-a.s. for some H € Hj,.. By the Girsanov theorem,
the process MP» := MPo — fo AT H,ds defines a Py-local martingale. Then, it follows from the

uniqueness of the Doob-Meyer decomposition that MP> is a Py-martingale, and
MP)‘ = ]\41[»A and / AIHSdS — A]PO = —APA, IP(] — a.s.
0

We next introduce the process A\* with i—th component proportional to the sign of the i—th
component of H, so that \X*H = L|H|;. Note that PA~ € P. Then the required decomposition
holds with K := APx*.

2. By Itd’s formula, we have

t t t
1
AYy; — / Y, dAZ = / Alay, = / AfaM? — 5(AE’)Q, for all P € P.
0 0 0
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Let (7)n be a localizing sequence for the P—local martingale [; ASdM;. Then,

1 1
SEP((AZ)%) < 2BF[ sup (W3] AZ ] < 2(E°[ sup [Vi?]E7[(4F,)])".
te[0,T7] te[0,T]

For P = P as in Lemma we conclude that EP[(A%Q] < 00. Then, one may easily verify
that EF [SUPte[o,T] |M¥|?] < oo, and therefore E¥[(M¥)7] < oo by the Burkholder-Davis-Gundy
inequality. Then, it follows from the Cauchy-Schwartz inequality that

EP[(MF)Z] = EF[(MP)

] < CEF[(MF)7])? < oo, forall PeP,

Sl

and we conclude that EF [SUPte[o,T] |MF |] < 00, by the Burkholder-Davis-Gundy inequality. O

We next provide some further properties of the previsible nondecreasing process K, and we

derive an optimal stopping rule.

Proposition 8.10 The processes Y and K are pathwise continuous, fOT Liex,<v,ydKy = 0,
Po-a.s. and the F*-previsible stopping time 7 := inf{t : X; = Y;} is an optimal stopping rule.

In order to prove this result, we introduce the stopping times
D := inf{s>t:Y, < X,+¢} forall t€]0,T), €>0.

By the right-continuity of ¥ and the continuity of X, it is clear that D € T'!. The following

two lemmas prepare for the proof of Proposition [8.10
Lemma 8.11 For all t € [0,T), we have [Yp: — Y] = 0.

Proof Since Y is P-supermartingale and Df > t, we have E[YDts —Y;] <0. On the other

hand, by the dynamic programming principle of Proposition [8.7] we have

Y, = esssup EF {X71{7<D§} + YD;1{T>D5}|}}}, Py — a.s.
TETE PEP ) -

Here, we may prove the lattice property similar to Lemma [8.5] so that

EP[}Q] = ﬁug PEP@)”PI [XT]-{T<D§} + YDfl{TZDf}] forall PeP.
TETP'e

Then, there exists (7,)n, C 7.} such that
E'[Y)] < B [Xo1(r<pf) + YD Lrzppy] + %
< BV, — el cpr] 4 < B[V, el o] 4
where the last inequality follows from the £ —supermartingale property of Y. Note that
EFS:Pn]y,] = EFEE [IEP&P” [Yt\]:t}] _ EP [EP&P" [Yt|-7:t]} — E'[Y;).

Then (P ® P,)[r, < D] < 1, and it follows from the previous estimate that:

1
E'[Y)] < B [(Xr, = Yp:)lir,<psy + Yo + —
1 C 1
< C(]P & Pn) [Tn < Dta]% + EP@)P" [YDf] + E < ﬁ + E + ]EP®IP" [YDf]V

36



by the fact that sup;c(o 71 | Xt and Ype € [Xps, Xp: +¢] are both in L*(P). Finally, we obtain

& [Yor %] = EPP¥pe ~¥] > (o

+7) — 0 as n— oo.

AVALZS n

Lemma 8.12 The processes {K,t € [0,T]} and {Kps,t € [0,T]}; are indistinguishable.

Proof By the decomposition of Proposition we have
Yo: — Y, / H,dB, — / L|H,|1ds — Kp; + K, t € 0,T), Poas.

Since E[Yps — V3] = 0 by Lemma we may find a sequence (P,,),>1 C P such that

2 < B [Vp: - Y] < B [Kp: - K] < ~£[Kp: ~ K.

Then, it follows from the non decrease of K that £ [K Ds — Kt} = 0, and therefore
Kp: = K;, Pp-as. forall tel0,T]

Consequently, Po[Q'] = 1, where ' := {Kp: = Ky, forall ¢ € [0,7] N1 Q}. Further, for any
t€[0,T),let {t,}, C Qandt, | t. Since K is nondecreasing, we see that K; < Kp: < Kp: =
K, on Q. Since K inherits the RCLL property of Y, this shows that Kp: is right continuous
on ', and implies that {K;}; and {Kp¢}; are indistinguishable. O

Proof of Proposition (i) We first prove that [(Y — X)dK = 0, Pp—a.s. From Lemma
8.12) we have Po[A] = 1, where A = {w : Ki(w) = Kp:(w) for all t € [0,T]}. Next, consider the
decomposition of the process Y into a continuous and a purely discontinuous part Y = Y¢+Y¢9,
From the decomposition of Proposition and the fact that K is increasing, we deduce that
Po[A’] = 1, where A’ := {w : AY?(w) < 0 for all t € [0,7]}.

Now fix any w € ANA’. For any tg € {t: X¢(w) < Yi(w)}, denote 2¢ := Yy, (w) — Xy, (w) > 0.
Since Y (w) is RCLL with negative jumps, and X (w) is continuous, there exists § such that for
all t € (to — d,tg] we have Y (w) — X;(w) > ¢, and

to is an interior point of (to — d, Dy, _s(w)) C {t : X¢(w) < Yi(w)}.

Further, it is easy to prove that {t : X;(w) < Y:(w)} can be covered by a countable number of

open intervals in the form of (¢,, Di"(w)). Finally, we have

o0

T
OS/O Lt () <1 (@)} A (W) <D (Kpen ) (@) — Ky, (w) = 0.

n=1

(ii) We next prove that Y and K are continuous. Consider the decomposition K = K¢ + K¢
into a continuous and a purely discontinuous part, and let us show that Po[Kf = 0 for all ¢ €
0,7]] = 1.

Since K is previsible and AK? = K, — K,_, AK? is also previsible. In the following we
set inf() = co. By Theorem 12.3 in Chapter VI of [31] (p. 333), we know that 7° = inf{t €
(0,7] : AK{ > 6} is a previsible stopping time (defined in Definition 12.1 in Chapter VI of
[31]), for all § > 0. Then, by Theorem 12.6 in Chapter VI of [31], 7% can be announced by a
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sequence of stopping time 7,, i.e. 7, < 70 and 7, 1 7, Py-a.s. Then, since K; and Kp; are
indistinguishable by Lemma it follows from the definition of 79 that K¢. = K¢ < K9,
Then, 7, < D7 < 79, Py-a.s. Hence

Po[Q] =1, where Qp:= {Tn 1+ 70 and 7, < D7 < 7'6}.

For all w € Qp, we can find a sequence t, such that D¢ (w) < ¢, < 79(w) and Y}, (w) <
Xi, (w) + €. Sending n — oo, we get Yooy (w) < Xps()(w) + € So, Yis_ < Xos + ¢, Po-as.
Choosing € < §, we see that, whenever 70 < T, Y,s < Y,s_ — 0 < X,s, which is therequired
% = oo for all § > 0, implying that K? = 0, Py-a.s.

(iii) We now show that 7* is an optimal stopping rule. The results of (i) and (ii) lead to K, =0
Po-a.s.. Recall the generalized Doob-Meyer decomposition in Proposition[8.9] Take A* such that
|A*]| < L and A*H = L|H|;. Then, by taking expectation under Py~, we obtain that

contradiction. Hence 7

Yo = EP[Y,.] = EP [X,.].
The last equality is due to the definition of 7*. Finally, it is clear that Yy = EP [X;+]. Hence,

*

7* is an optimal stopping rule. O

8.4 Reduction to a standard optimal stopping problem

As a consequence of the decomposition in Proposition B9 together with Lemma [8.12] we obtain

the following reduction.
Proposition 8.13 There exists a probability P* € P such that

Y, = ess sup EX [X|Ft], Po-a.s.
TET!

In particular, there exists a P*-martingale M* such that Y =Yy + M* — K, Py-a.s.

Proof First, for any 7 € 7! and P € P, we have Y; > EF[X,|F], Po-a.s. Hence, Y; >
€ss Sup ¢y EP[X,|F], Po-a.s.

On the other hand, let A* be defined by its i—th entry L sgn(H;);. From Proposition we
know that (H - B) — [, L|H|1ds is a Py--martingale. Then, it follows from the decomposition
of Proposition together with Lemma [8.12] that

Y, = E™ [Yp: + Kp: — K| F] = E™ [Ypr

) <E™ [Xp;

ft] +e.
Since D¢ — Dy :=inf{s > t:Y;_ = X;}, as ¢ — 0, this implies that

V; <EP [Xp,|F] < esssupE™ [X,|F], Po-as.
TETE

8.5 The F—adapted Snell envelop

Given the continuity of Y in Proposition [8.10) we now reduce to an F—adapted version.

Proposition 8.14 There is an F—adapted pathwise continuous indistinguishable version of Y.
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Proof Define

YF =EP[Y;|F] for t €[0,T]NQ, and Y/ := Jim fos for t € [0,7]\ Q.
sTlt,se

The last limit exists by the pathwise continuity of Y, Py-a.s., see Proposition Clearly,
Y[ is Fi-measurable. Since Y is F*—adapted, we have P [Y =Y¥on [0, 7] N Q] =1, and
by the pathwise continuity of Y, we deduce that P [Y = Y]F] = 1. Hence Y and YT are
indistinguishable. a

In this section, we consider the process Y in its version of Proposition which we call the
F—adapted Snell envelop of X. We next define:

Zr(w) = sup EX;@) forall TeT.

Clearly, Yy = Zy. The main result of this subsection is the following.
Proposition 8.15 Let Y be the F—Snell envelop of X. Then, Y, = Z., Po—a.s. for all T € T,
In preparation for the proof of this result, we prove two lemmas.

Lemma 8.16 Let Y be a continuous F-adapted process such that, for some Po—martingale M
and nondecreasing process K:

(i) Y =Yy + M, — maXWSL(M, fo AsdBg) — K, Py—a.s.

(i)Y > X, Py—-a.s.

(i) fy 1gpx, sy K0 = 0, Po-a.s.

Then, Y; = ess SUpP, 7t pep EP[X,|F], Po-a.s.

Proof By martingale representation and the Property (i), there exists H € Hy,. such that Y =
Yo+ (H-B) - L [;|H,|1ds — K ,Py—a.s. By Girsanov theorem, M* := [, H,dB, — [, \T H,ds is
Py-local martingale, and it follows from the previous decomposition that there exists increasing

process K* such that
Y = Yo+ M —K* Py—as. (8.3)

By the uniqueness of the Doob-Meyer decomposition, we deduce that M is a Py-martingale,
and it follows from ({8.3)) and Property (ii) that

Y, > ERY,|R] > EP[X,|FR] forall 7eT!, PyeP.

Hence, Y; > ess SUP 7t pep EF[X,|F:]. For the reverse inequality, consider the stopping time
Dy :=inf{s > t:Y, = X,} € T}. Let A* be the process defined by its i—th entry L sgn(H;).
Note that K" = K in || and therefore

Yt = EPA* [Y/Dt + IA(D,g — Kt|ft]
By property (iii) and the definition of Dy, it follows that Kp, = K;, Pg-a.s., so that

Y, = EP» [YDt|Ft] = EP» [XD,,‘}—t] < esssup EF[X|F).
TeTLPEP
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Lemma 8.17 Let M be a pathwise continuous Po-martingale with EFo [Supte[O,T] |My|] < oo.

Then, there exists an F-adapted indistinguishable version M such that:
Py [w c M™% s a Py — martingale} =1 foral T€T.

Proof 1. Let My := My, and for all w € Q:

M,(w) :==EP[M3¥] for s € Q and M,(w) := limsup M(w) for t € [0,7]\ Q.
sTt,s€Q
Clearly, M is F-adapted, and Po[M = M on Q] = 1. Since M is continuous, it is easy to verify
that Po[M = M] =1, i.e. M is an indistinguishable version of M.
2. Denote [M|# := SUp, < | M|, and

I = {w € Q: M, (w) =EP [Mp], ER[|M[;™] < oo, and Po{M™ is continuous} = 1}.

Since M and M are indistinguishable, M is a Py-martingale and P, [I;] = 1. For n € T with

n > 7, we define a sequence of stopping times 7, := [2"2”# Note that 7, only take rational

values. By the tower property and the definition of M, for s € Q, we obtain for w € I,

M‘r (LU) — EIPO [M;,W] — lim ]EIP’O [M;Zn,w@)rw’]lpo(dw/) — lim EPO [M;?w]
n—oo [o n— oo n
Since [EFo [|M|§TW] < oo, it follows that the family {M;ﬁ}neN is Pp—uniformly integrable.
Then, it follows from the Pg-a.s. pathwise continuity of M™% that M, (w) = lim,,_, o EFo [M;;L‘"] =
EFo [M; “]. By the arbitrariness of 7 € T, this proves that M7 is a Py—martingale. o

Proof of Proposition Notice that Y > X, Py—a.s., and by Propositions and
there exists H € H;,. and nondecreasing previsible process K such that, with M := (H - B):

. T

Y=Yy+M-— max(M,/ AsdBs) — K and / Litx, <y} dKy =0, Po —as.
AL 0 0

The process M is a pathwise continuous Py-martingale with EFo [supte[O’T] |Mt|} < 00, by

Proposition 8.9 By Lemma we may consider M as the version for which M™% is a

Po—martingale, for Po—a.e. w € 2.

Let T' := T — 7(w), and define M*(w') :== M{*(w') — M, (w) for t € [0,T"]. Then, M™¥
is Po-martingale for Po—a.e. w € Q. We now observe that (Y7« M™% K™) satisfies the
following properties for Pp-a.e. w € Q:

(i) Y™ = Y, (o) (w) + M7 — max)y <, (M7, [; \sdBs) — K™, on [0,T"], Py—a.s.
(i) yme > X7 on [0,77], Po—a.s.
(i) Ji LgxrecyreydKDY =0, Po—aus,
Then, it follows from Lemma [8.16] that Y, = Z,, Pp—a.s. O

9 Appendix: on £-submartingales
We say that a process u is an -regular submartingale, if
u(w) < Eub®] forall (t,w)€[0,T]xQ and 7€ 7.

The main result of this section is the following.
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Proposition 9.1 Let u € CS’P (6,R) be a E-reqular submartingale. Then, there exists P* € P

such that u is a P*-submartingale.
Proof 1. We shall prove in Step 2 below that

?[ut’w | = esssupEF[uy|F] for Pg—ae we, forall t<s>T—t (9.1)

PeP
Let t} := kT27™, k > 0, and I, :== {T At} : kK > 0}. Since P is weakly compact and
u e C9 5(0,R), we deduce from (9.1) that, for all pair (n, k) with ¢} < T, there exists Pk e p
such that us» < EF"" [uep | Fep]s P%—a.s. Defining P := P™% @n P! @;n - - -, this implies that

ugnar < EP" [ut?ATLB?/\T} Py —a.s. forall 0<i<j<n.

Since P is weakly compact, P™ converges weakly to some P* € P, after possibly passing to a
subsequence. Observe that, for m > n, we have EF" [ut;L AT | Fir AT] = EF” [ut; AT | Fir AT] —
EF” [ut?AT|}}?AT], as m — oo, by the fact that u € C’g’p(@,R). Hence, u; < EF [ug|Fi],
Pp—a.s. for all t < s < T —t with s,t € I,. By the density of I, in [0,T], we further conclude
that u is a P*-submartingale.

2. It remains to prove . For t < s, define a process:

vy = ess sup EF[u,|Fy] for t€[0,T], 0<s<T —t.
PP
Similar to Lemma we may check that the family {EF[u,|F;];P € P} satisfies the lattice
property. Then, for t; <ty < s, we have for all P € P:
EF 5, Fy,] = ess sup EF® [u,| 7, ] < ess sup B"® P [u, | 7, ] = of .
P'EP PreP

proving that v*® is P-supermartingale on [0, s] for all P € P. Similar to Lemma we may
consider v® in its F*—adapted RCLL version.

Following the line of argument in the proof of Proposition there exists H® € H,. and

increasing process K® such that
vi=vy+ (H*-B) fL/ |HE | dr — K*, PY — as.
0

We next prove that K* = 0, P’-a.s. Indeed, assuming to the contrary that PO[K? > 0] > 0, it
follows that E[K?] > 0. Following the line of argument in Lemma it can be checked that

E[vi] = Elus] for all ¢ < s. Then, since v¥ = u, it follows from the previous decomposition that
EF[vg] > Ef[us + K°] > Ef[u,) 4+ E[K?] forall PeP,

and therefore E[vy] > &[us], which is the required contradiction. This reduces the decomposition
of v* to:

vszvé—i-(HS-B)—L/ |HZ|1dr, PO —as.
0

so that, with A® the process with i—th entry L sgn(H;), we obtain v = o [us|Fi]. We finally
prove that (9.1]) holds true by following the line of argument in the proof of Proposition
O
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