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1 Introduction

Let X be a Markov process. Given n simulated paths of X, the purpose of this

paper is to provide a Monte Carlo estimation of the conditional expectation
r(z) = Elg(X2)| X1 = 1], (L.1)

i.e. the regression function of g(Xs) on X;. In order to handle the singularity
due to the conditioning, one can use Kernel methods developed in the statistics
literature, see e.g. [2]. However, the asymptotic properties of the Kernel estima-
tors depend on the bandwidth of the Kernel function as well as the dimension of
the state variable X. Therefore, using these methods in a Monte Carlo technique
does not induce the \/n rate of convergence.

Malliavin integration by parts formula has been suggested recently in [7], [6],
[10] and [9] in order to recover the \/n rate of convergence. Let us first discuss
the case of the density estimator considered by [9]. The starting point is the
expression of the density p of a smooth real-valued random variable G (see [12]
Proposition 2.1.1) :

we) = Ellions (o )| (12)

where J is the Skorohod integration operator, and D is the Malliavin derivative
operator. Writing formally the density as p(x) = E[e,(G)], where ¢, is the Dirac
measure at point x, the above expression is easily understood as a consequence
of an integration by parts formula (integrating up the Dirac). A remarkable
feature of this expression is that it suggests a Monte Carlo estimation technique
which does not require the use of Kernel methods in order to approximate the
Dirac measure.

The same observation prevails for the case of the regression function r(x)
which can be written formally in :

r(z) = Elg(Xa)es(X1)]
Ele.(X1)]

Using the Malliavin integration by parts formula, [6] suggest an alternative rep-
resentation of the regression function r(z) in the spirit of (1.2). This idea is
further developed in [10] when the process X is a multi-dimensional correlated
Brownian motion.

An important observation is that, while (1.2) suggests a Monte Carlo esti-
mator with y/n rate of convergence, it also provides the price to pay for this
gain in efficiency : the right-hand side of (1.2) involves the Skorohod integral



of the normalized Malliavin derivative |DG|~2DG; in practice this requires an
approximation of the continuous-time process DG and its Skorohod integral.

In this paper, we provide a family of such alternative representations in the
vector-valued case. As in [6], we introduce localizing functions ¢(z) in order
to catch the idea that the relevant information, for the computation of r(z),
is located in the neighborhood of . The practical relevance of such localizing
functions is highlighted in [10].

The main contribution of this paper is the discussion of the variance reduction
issue related to the family of localizing functions. We first restrict the family
to the class of separable functions ¢(z) = [, ¢i(x?). We prove existence and
uniqueness of a solution to the problem of minimization of the integrated mean
square error in this class. The solution is of the exponential form ¢; (%) = e~1'%"
where the 7'’s are positive parameters characterized as the unique solution of
a system of non-linear equations. In the one-dimensional case, this result has
been obtained heuristically by [9].

We also study the problem of minimizing the integrated mean square error
within a larger class of all localizing functions. We first prove existence and
uniqueness in a suitable Sobolev space. We then provide a PDE characterization
of the solution with appropriate boundary conditions. An interesting observation
is that separable localizing functions do not solve this equation, except for the
one dimensional case.

The estimation method devised in this paper is further explored in [4] in the
context of the simulation of backward stochastic differential equations.

The paper is organized as follows. Section 2 introduces the main notations
together with some preliminary results. Section 3 contains the proof of the
family of alternative representations of the conditional expectation. The variance
reduction issues are discussed in Section 4. Numerical experiments are provided
in Section 5. Finally, Section 6 provides an application of this technique to a
popular stochastic control problem in finance, namely find the optimal portfolio

allocation in order to maximize expected utility from terminal wealth.

2 Preliminaries

We start by introducing some notations. Throughout this paper we shall denote
by Ji the subset of N¥ whose elements I = (iy,...,i) satisfy 1 < i1 < ... <
i < d. We extend this definition to k = 0 by setting Jo = 0.

Let I = (i1,...,4m) and J = (j1,...,i,) be two arbitrary elements in 7,
and J,. Then {i1,...,im}U{j1,...,dn} = {k1,..., kp} for some max{n,m} <



p < min{d,m+n}, and 1 < ky < ... < k, < d . We then denote IV J :=
(lﬁ,...,k}p) S jp.

2.1 Malliavin derivatives and Skorohod integrals

Let (Q,F,P) be a complete probability space equipped with a d-dimensional
standard Brownian motion W = (W!,...  W%). Since we are interested in the
computation of the regression function (1.1), we shall restrict the time interval
to T := [0,2]. We denote by F := {F;, t € T} the P—completion of the filtration
generated by W. Throughout this paper, we consider a Markov process X such
that X; and X3 belong to the Sobolev spaces D*? (p, k > 1) of k—times

Malliavin differentiable random variables satisfying :

& 1/p
Xllpes = [BOXP) + DB (1D X)) | <00
j=1
where
' 1/p
1D’ X || o) = </V|Dt1'~Dthpdtj...dt1> .
TJ

Given a matrix-valued process h, with columns denoted by h’, and a random

variable F', we denote
ShF) = /F(hg)*th fori=1,...,d, and S}(F) := S!'o...0S!(F)
T

for I = (i1,...,ix) € Jx, whenever these stochastic integrals exist in the Skoro-
hod sense. Here * denotes transposition. We extend this definition to & = 0 by
setting Sjj(F) := F. Similarly, for I € Jj, we set :

Sh(F) = SP(F) where I€ Jy_j and IV I is the unique element of J, .

2.2 Localizing functions

Let  be a CY, i.e. continuous and bounded, mapping from R into R. We say

that ¢ is a smooth localizing function if
e0) =1 and 9rp € CY forall k=0,...,dand I € J}, .

Here, 07 = 0%¢/0x;,,...0x;, . For k =0, J, = ), and we set 9y = ¢. We
denote by L the collection of all such localization functions.



With these notations, we introduce the set H(X) as the collection of all

matrix-valued L?(Fy) processes h satisfying
/ Dtthtdt == Id and / DtXthdt =0 (21)
T T

(here I; denotes the identity matrix) and such that :
St(p(X1)) is well-defined in DV2 for all I € Ji, k<dand ¢ € £ .(2.2)

We shall assume all over this paper that
Standing Assumption : H(X) # (.
We next report useful properties for the rest of the paper.

Lemma 2.1 Consider an arbitrary process h € H(X). Then, for all bounded f
€ C} and for all real valued r.v. F € DY? with E[F? [ |h]?dt] < oo :
(1) / D; (f(X2)) hedt = 0 and therefore E |:f(X2)/ Fhrth} = 0.

T T

(ii) /T f(X1)FhidW, = f(X1) [ FhidW, — Vf(X1)F,

Proof. The first identity in (i) is a direct consequence of the chain rule formula
together with (2.1). The second identity follows from the Malliavin integration
by parts formula. To see that (ii) holds, we apply a standard result (see e.g.
Nualart (1995) p. 40)

[ reeorniaw, = 6 [ Fhiaw - ViG0)F [ DXt
T T T

The required result follows from (2.1). O

2.3 Examples
Example 2.1 (Markov diffusion) Let X be defined by the stochastic differential
equation :

dXt = b(Xt)dt—FO'(Xt)th y (23)

together with an initial condition Xo. Here, b, 0 and o~! are Cp° vector and
matrix-valued functions. Under the above condition X belongs to the set Ll}’p
(p, k > 1) of processes X such that X; € D¥? for all t € T and satisfying :

k
1Xllsr = E(/F|Xt|pdt)+§:lE</r|DJXt|1£p(Tj)dt) <00
=



We denote by LF := Np>1 Ni>1 Llr}’p. We similarly define D*°. Notice that f(X)
€ LY whenever f € C°. In particular, 071 (X) € LS (see [12] Proposition
1.5.1).
The first variation process of X is the matrix-valued process defined by :
d
Yo=1Iy and dY; = Vb(X\)Yidt+ > Vo'(X,)Y,dW/ (2.4)
i=1
where V is the gradient operator, and ¢* is the i—th column vector of o. By
[12] Lemma 2.2.2, the processes Y and Y ! also belong to L.

The Malliavin derivative is related to the first variation process by :
DX, = VY 'o(X)lp<yy: 520, (2.5)
so that :
D,X1 = 1Yy "D Xolp<ry; s>0. (2.6)

It follows that H(X) is not empty. Indeed, since X, Y, Y ! and 071(X) are in
LT,

hy = (DiXa) 'YV (Lyepor) — Leepz) (2.7)

defines a process in L satisfying (2.1). Moreover, for each real-valued F' € D,
and i =1, ...,d, Slh(F) is well defined and belongs to D> (see [12] Property 2
p38 and Proposition 3.2.1 p158). By simple iteration of this argument, we also
see that h satisfies (2.2).

Example 2.2 (Euler approzimation of a Markov diffusion) Consider the Euler
approximation X of (2.3) on the grid 0 =tg <t; < ... <ty =1<...<tony =
2, N € N,

X, = Xo

0

th+1 = th + b (th) (tn-i—l - tn) +o (th) (th+1 — th) , n S 2N —1.

Recalling that b, o are Cg°, we see that, for each n € {0,...,tan}, X;, € D™,
where the Malliavin derivatives can be computed recursively as follows :

Dtth = 0 (Xto) 1t§t1
DXy, = DXy, +Vb(Xy,)Di Xy, (tng1 —tn)
d
+ D Vo (X, )DeXe, (Wi = W)+ 0(Xe) Lee(t ] -
i=1



Noticing that Dtth = 0 for ¢t > t,, and recalling that o~ ! € Cy°, we see that :
iLt = (1 - thl)_la_l(Xthl)ltG(tN—l,l]
- (2 - t2N*1)710—71(thN—l)DtAXQJil(XtN—l)]-tE(tszhQ] (28)
where £ € (tx_1,1), satisfies (2.1) and (2.2).

Remark 2.1 Let h be the process defined in Example 2.1 or 2.2. Then, using
[12] Proposition 3.2.1 p158, we see that, for any localizing function ¢ € L :

E[S?(@(Xl))]p < oo forall p>1,TeJ, k<d.

3 Alternative representation of conditional ex-

pectations

The starting point of this paper is an alternative representation of the regression
function r(z), introduced in (1.1), which does not involve conditioning. This is
a restatement of a result reported in [6] without proof, and further developed in
[10] in the case where the process X is defined as a correlated Brownian motion,
see also [9] for the one-dimensional case with f = 1, and [12] Exercise 2.1.3 for
p=f=1

Theorem 3.1 Let f be a mapping from RY into R with f(X2) € L?, and
{4;, i < d} a family of Borel subsets of R. Then, for all h € H(X), and ¢
eL:

E[LA(X)f(X2)] = /A B [H, (X)) f(X2)S" (p(X) —2))] dz . (3.1)

where H,(y) = H?:l Ligicyiy, A= Ay x ... x Ag, and S" = S(hl,...,d)'

The proof of the above Theorem will be provided at the end of this section.
The representation (3.1) can be understood formally as a consequence of d suc-
cessive integrations by parts, integrating up the Dirac measure to the Heaviside
function H,. The main difficulty is due to the fact that the random variable
H,(X1) is not Malliavin-differentiable, see [12] Remark 2 p31. We therefore
adapt the argument of the proof of (1.2) in [12].

Remark 3.1 By the same argument (see Proposition 2.1.1 and Exercise 3.1 in
[12], and [9]), we also obtain an alternative representation of the density px, of
X;. This is only a re-writing of Theorem 3.1 with f=1:

px,(z) = E[H(X1)E [S" (p(X1 - ) | F1]]
= B [H(X)S" (p(X —2))|  where hi= Rl ,



and the last equality follows from [12] Lemma 3.2.1. This means that, for the
problem of density estimation, we can consider processes in H(X) which vanish
on the time interval (1, 2].

Since the distribution of X; has no atoms, we obtain the following family
of representations of the regression function r(x), as a direct consequence of
Theorem 3.1.

Corollary 3.1 Let g be a mapping from R? into R with g(X2) € L?. Then, for
allh e H(X) and p € L :

= =z| = alo)(= where T) = el f(x
and
QMfl(z) = Hu(X1)f(X2)S" (p(X1 — 1)) .

Remark 3.2 Variance reduction I : optimal localization. As in [9], [6] and
[10], we introduce a localizing function ¢ in L in order to catch the idea that the
relevant information, for the computation of r(x), is located in the neighborhood
of z. The practical importance of this issue is highlighted in [10]. The problem of
selecting an ”optimal” localizing function will be considered in the next section.
The one-dimensional case was discussed heuristically by [9].

Remark 3.3 Variance reduction II : control variates. This is a direct extension
of [9] who dealt with the one-dimensional case with ¢ = 1. Under the conditions
of Theorem 3.1, it follows from Lemma 2.1 (i) that

E[Ho(X1)g(X2)S" (p(X1 — )] = E[(Ho(X1) — ) g(X2)S" (p(X1 —2))] ,

for all ¢ € R. This suggests to apply a control variate technique, i.e. choose ¢ in
order to reduce the variance of the Monte Carlo estimator of the expectation (if

g is not identically equal to 0). Clearly, the variance is minimized for
B [H,(X1)9(X2)28" (p(X1 — )]

B |g(X2)8" (o(X1 — 2))°|

éx) =

Remark 3.4 For later use, we observe that, by using repeatedly Lemma 2.1
(ii), the Skorohod integral on the right-hand side of (3.1) can be developed in

d
S (p(X1 =) = D (=D" D re(Xy —2)S",(1) . (3:2)

k=0 I€Jk



Remark 3.5 Assume that

d
S B[(F(xa)8",(1)] < oo, (3.3)

k=01€Jk

then it follows from the above Remark that Theorem 3.1 (and therefore Corollary
3.1) holds for all p € CO(R?) with ¢(0) = 1, dr¢ exists in the distribution sense
and

d
Z Z E [(8190(X1 - x))Q} < 00.
k=0I€Jk
Remark 3.6 In Section 4.2, we shall need to extend further the class of local-
izing function by only requiring that

orp € L*(RY) forall k=0,...,dand I € J; . (3.4)

We shall see in Proposition 4.1 that the set of functions satisfying (3.4) can be
imbedded in C°(R%), thus providing a sense to the constraint ¢(0) = 1.

Proof of Theorem 3.1 We shall prove the required representation result by
using repeatedly an identity to be derived in the second part of this proof. Let
us first introduce the following additional notation

mi(z) == (0,...,0,2" 1 ... 2% fori=0,...,d—1, and my(x) =0,
for x € R?, and :
I = (i+1,...,d) € Jg_y fori=0,....d—1and I := 0.

1. By a classical density argument, it is sufficient to prove the result for f
smooth and A? = [a?, b’] with a® < b’

2. In preparation of the induction argument below, we start by proving that,
foralli=1,...,d,

E [14,(X1)¢"(X1) f(X2)SE (pomi(X1 — 2))]
= [ B[ ()FS] (o mia (X )] o

i

(3.5)

for any ¢ € £, f and ¢' € C} with ¢'(x) independent of the i—th component
xt.

To see this, define the r.v.

Xi o ,
F; ::/ La,(2%)¢" (X1) f(X2)ST (pomi_1 (X1 —x))da’ .

— 00



Since f, ¢' are smooth, A" = [a’,b’] and S} (pom_1(X1 —x)) € D'2, F; is
Malliavin-differentiable. By direct computation, it follows that

DiF; = 14,(X1)¢" (X1)f(X2)S} (pomi(X1 —x)) Dy X{

X , ,
+ / dSCZ].Ai (l‘Z)Dt {QSZ(Xl)f(Xz)SZ (90 o 7T1'_1(X1 — LZZ))} (36)

Now recall that the function ¢¢ does not depend on its i—th variable. Then, it
follows from (2.1) that [ Di{¢"(X1)}hidt = 0. Also, we know from Lemma 2.1
(i) that [ Di{f(X2)}hidt = 0. Therefore, it follows from (3.6) that :

[_r DFhdt = 14,(XD)é(X1)[(X2)S), (90 m(Xy — ) (3.7)
X |
+ dxllAi ($Z)¢Z(X1)f(X2)/rDtSZ ((pOﬂ'i_l(Xl — .13)) hidt 5

where we used the fact that [, D;X{hjdt = 1 by (2.1). We now observe that :

E UT DtFihgdt] = F [Fi/T(hi)*th] 2

— [ o' [ (50 ) 0185, (0 mins (=) [

where we used the Malliavin integration by parts formula. Then, taking expec-

tations in (3.7), we see that :
E [14,(X1)¢"(X1) f(X2)ST. (p o mi(X1 — 2))]
= / da'E [H (X1)¢'(X1) f(X2) {S}: (9o mi1(X1 — ) /T (hy)"dW,

l - [ Dast (o (xi - aniar

_ / At B [Hos (XD (X0) f(X2)S], (g0 mi1(Xy )]
.

i

3. We now use repeatedly identity (3.5). First notice that, by density, (3.5)
holds also for bounded ¢?(z). Set ¢¢(x) := Hf;ll 14,(z"). Since ¢(0) = 1, we
see that :

E14(X1)f(X2)]

E [14(X1) f(X2)S7, (¢ o ma(X1 — x))]
_ /A de B [Hoa (X84 (X0) f(X2)S,_, (90 mas(X1 — )] -

We next concentrate on the integrand on the right hand-side of the last equation.
We set ¢%1(y) := Hya(y®) [1922 14, (y"), and we use again (3.5) to see that :
E14(X1)f(X2)]
= [ ot [ et B [He (X6 ) SIS, (o maa(Xs — )]
Aq Ag_1

10



Iterating this procedure, we obtain the representation result announced in the

theorem. 0

Remark 3.7 Let the conditions of Theorem 3.1 hold. For later use, observe

that, by similar arguments,
B[ (X)L (X)) = [ B [0 F(S (o —a)] da

where A= = Ay x ... xA;_1 xA;41 X... xAgand dz~*! = Hj# dad .

4 Variance reduction by localization

Given a localizing function ¢ € £ (or ¢ in some convenient relaxation of L, see
Remark 3.6), and h € H(X), the representation result of Corollary 3.1 suggests
to estimate the regression coefficient r(x) by the Monte Carlo estimator :

Po(z) = q [g](l‘) where & ) = l - h,e z (k)
o) = G i @A) = 3@ @
and
Q@) ® = H, (xV) £ (X)) 8" (o(x(P =) . (42)

Here, (X(k)7 h(k)) are independent copies with the same distribution as (X, k).
By direct computation, we have
. 1
Var[@alf]@)] =+ {B [H(X0)/(X2)8" (p(X:1 —2))?] = alf](@)?} -
In this section, we consider the problem of minimizing the mean square error

(mse, hereafter)

P = [ B [H0)F02S" (o - 2))7] de
Rd

within the class of localizing functions. This criterion has been introduced by
[9] in the one dimensional case with f = 1.

In order to ensure that this optimization problem is well-defined, we assume
that :

d
>3 E[f(X2)’SP(1)?] < 0o and  E|f(X2)[ >0 (4.3)

k=0 I€J}
(see Remark 2.1 and Remark 3.6).
Notice that only the restriction of ¢ to R% is involved in I"[f](¢). We then

consider the set £, C L of functions of the form Ploa - On this set, the functional
+

I"[f] is convex, by linearity of the Skorohod integral.

11



4.1 Optimal Separable localization

We first consider the subset £% of localizing functions ¢ of £ of the form

and we study the integrated mse minimization problem within the class of such
localizing functions :
Jf) = nf IS 4.4
vl : in (p) . (4.4)
wELj
Theorem 4.1 Let h € H(X) be fived, and f a mapping from R? into R satis-
fying Condition (4.3). Then, there exists a unique solution ¢ to the integrated

mse minimization problem (4.4) given by :

pz) = e ze Ry, forsome 7§ € (0,00)%.

Moreover, 1) is the unique solution of the system of non-linear equations

- E [f(X2)2 (22;3 dreg St () Tjer ﬁj)? (4.5)
') = 2] '
P [1000 (S5 e 9y O s 1)

1<i<d, where J, " ={I €T : i¢gI}.
Observe that (4.5) is a system of (deterministic) polynomial equations.

Remark 4.1 By (3.2), one can define the integrated mse minimization prob-
lem within some convenient relaxation of the class L5 of separable localizing
functions. Since C} is dense in L?, it is clear that the relaxation suggested in

Remark 3.6 does not alter the value of the minimum.

We split the proof of the above Theorem in several Lemmas. The conditions
of Theorem 4.1 are implicitly assumed in the rest of this section. We shall use

the following additional notations :

H ' = H H,; and o ‘(z) = H p;(x?) for p € L5 .
J#i J#i

Lemma 4.1 Let h be an arbitrary element in H(X). Then, for all p € L5 :

S*(e(X1)) = @ XDS" (971 (X1)) — Li(XD)S" (i (978 (X1)) -

12



Proof. By Lemma 2.1 (ii), we directly compute that :

S*(e(X1) = 8" (e XD)ST (97 (X1)))
S, (PXDSE, (¢7'(X0) = () (XDSE (97 (X))
= 0i(XDS" (p7(X1)) — (i) (X])S™ ) (7% (X1)) -

O

Remark 4.2 Let ¢ be an arbitrary separable localizing function in £4 . Under
(4.3), ¢ is in the effective domain of I"[f] (see Remark 3.4). Given a function
¥ : Ry — R with ¥(0) = 0, define the mapping from Ri into R :

dilp, vl(x) = ¢ (@)’ = v [[ei@).
j#i
Then, if ¢ is C! and has compact support, we have ¢;[¢p, p; + ] € L% and, by
(4.3), is in the effective domain of I"[f].

Lemma 4.2 Let ¢ be an arbitrary smooth separable localizing function. For all
integer i < d, we denote by V;(p) the collection of all maps ¥ : Ry — R such
that ¢;[@,"] € LS. Then, the minimization problem

min_ I"[f](¢i[0, ¥])

PEY; ()
has a unique solution zﬂ(y) = e~y for some 7" > 0 defined by
Jpar B [Hy (X7 f(X2)*S" (0" (X1 — 2))*] da™

A . : - . (4.6)
Juas B [ HZ (X7 F(X2)2S] (97 (X1 — 2))? da

() =

Proof. 1. Assume that ¢; € U;(¢) is optimal (since ¢;[¢, 1] does not depend
on the i-th component ¢; of ¢, we can use this notation to indicate the optimum)
and consider some function ¢ : Ry — R with compact support and (0) = 0.
By Remark 4.2, ¢;[p, ;i +eyp] € L7 for all e € R. Then for all ¢

I"fl(p) < Il @i +e¥]) .

By Linearity of the Skorohod integral,

MA@ < M) + 2T f(e ")
+ 2 /Rd E[Hy(X1)f(X2)?S" (o(X1 — 2)) S (07 "p(X1 — z))] dz .

13



For € > 0, we divide the above inequality by € and we let € go to 0. This implies
that :

[ B0 18" (o0 - 0) 8" (o0 (X - 0))]de = 0.
R L
Applying the same argument with ¢ < 0, it follows that equality holds in the

above inequality. By Fubini’s theorem, this provides

- Xi . , .

/ E H;l(Xf’)f(Xg)Q/ S" (p(X1 —2) S" (¢ (Xy — ) daﬂ] dr==0.
Rd-1 —oco

(4.7)

2. Now, using Lemma 4.1, and performing the change of variable y = X} — 2°

(w by w),

/_ ' sh (p(X1 — 1)) Sh (go_ii/)(Xl - x)) dz?
Xi T o o - |
= / (cpi(X{ —a"VF; — ol (X — xl)Gi) (w(X{ — ", — ' (X} — x’)Gi) dz’

- /OOO (i) Fs — i (y)Ga) (W(y) Fi — ' (y)Gi) dy

where we used the mnotations F;, := S"(¢7{(X;—z)) and G; =
Sf(i) (<p_i(X1 — m)) Recall that ¢ % does not depend on the i—th component.
Integrating by parts, and recalling that ¢ has compact support and (0) = 0,
this provides :

X1 )
S" (p(Xy — ) S" (7" (Xy — ) da’ = /O () [pi ) FY — @i (y)GF] dy -

— 00

Plug this equality in (4.7) and use again Fubini’s theorem to see that :

0 = /oo Y(y) (i (y) — Bigi (y)] dy
0

where a; and (; are the non-negative parameters defined by

Q;

/ E [H, /(X)) f(X2)*F?] da™

and [;

/W_1 E[H; (X7 f(X2)?G? da™" .

By the arbitrariness of the perturbation function 4, this implies that ; satisfies
the ordinary differential equation

a;oi(y) — Bigl(y) = 0 forall y>0,
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together with the boundary condition ¢;(0) = 1. We shall prove in the next
step that 3; > 0. Recalling that ¢ has to be bounded, as an element of £, this
provides the unique solution ¢;(y) = e~"'¥ where n° = (a;/3)"/2.

3. To see that 3; > 0, take an arbitrary z° € R, and use the trivial inequality

H;Z > H;il(Bn)d—ll(wi7oc) = Hz].(Bn)d—l to get :
Bi > / E [Hy(X1)f(X2)?G?] da™" .
(Bn)d—1

Here n is an arbitrary positive integer, and B,, := [—n,n]. By Jensen’s inequality,
this provides :

Bi

Y

(Qn)l_d {/(B yd—1 E [Hw(Xl)lf(X2)|Gz] dm_i}

= (2n)'"{E [Hxi(Xf)l(Bn)dfl(Xfi)|f(X2)H }2 ,

where we used Remark 3.7 together with the definition of G;. Since this in-
equality holds for all z* € R, we may send ' to —oo and use Fatou’s lemma to

get :

Bi = (2n)'"E [1(Bn)dfl(Xfi)|f(X2)\]}2 .

Since E|f(X2)| > 0, this proves that 8; > 0 by choosing a sufficiently large n.

4.  Conversely, let ¢; be defined as in the statement of the Lemma. Then
I"[f1(¢) < I"[fl(¢~ (ps + ¢)) for all function 9 with compact support such
that ¥(0) = 0. Using (4.3), we see by using classical density arguments that
I"f1(p) < I"[f](¢~") for all functions 1 such that Yo =% € L. O

The last lemma suggests to introduce the subset L of L% consisting of all

separable localizing functions

on(x) = exp(—n*x), T € Ri ,

for some 7 € (0,00)¢. For ease of notation we set :

") = I"[fllpy) and w[f] := inf J"[fl(n).  (4.8)

nt,...,nd>0

Lemma 4.3 Consider an arbitrary constant K > wh[f]. Then
cl ({n € (0,00) : J"f](n) < K}) is a compact subset of (0,00)% .

Proof. Fix K > w"[f], and let € (0,00)% be such that J"[f](n) < K. We

need to prove that all 7%’s are bounded and bounded away from zero.
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Let 1 <i < d be a fixed integer, and set ¢ := ¢,. By Lemma 4.1,

/Rd H,(X1)f(X2)28" (p(X1 — 2))* dz
Xi ] ; . . 2 . )
= /]Rdi1 Hz—b(Xl_Z)f(Xg)2/ (@L(Xi _ JTZ)FZ _ QO;(X{ _ ZCZ)Gi) drtdz™" ’

— 00

where we used the notations of the previous proof F; := S” ((p‘i(Xl — m)) and
G; = Sﬁ(i) (¢7"(X1 —x)). Using the fact that (Op/dx') = —n'p, it follows
from a trivial change of variable that

[ HL(X0)F(X22S" (X1 — )" da
= [ e O G [ gty
= @) [ e (TR G

We therefore have :
Koz A = [ B [H0)/00PS (o - )] de
= @) [ BTGP+ G de”
> )t [ B O G

where we use the notation B,, := [—n,n| for some arbitrary integer n. Observing
that 1 > H,: for all 2° € R, we obtain after integrating the variable 2’ over the

domain B,, :
2nK > (2771')*1/ E [H,(X1)f(X2)*(F; +0'G;)?] dw .
B
By Jensen’s inequality, this provides :
2
2K > (20')7'(2n) { / E [Ho(X1)|f(Xa)|(Fi + 1 Gy)] dx} -(4.9)
B

We now use Theorem 3.1 and Remark 3.7 to see that :

| UL IFIde = B [1y (X0)|(X0)]

UG = [ B [0 (X Ha (XD () ] da
B n

are both strictly positive for sufficiently large n. This provides the required

bound for (°)~! and 7’ out of inequality (4.9). O
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Lemma 4.4 There exists a unique solution i € (0,00)* to the optimization

problem w of (4.8), i.e.

w[f] = JPf0A) = I"[f1(eq) < I"[f1(y) forall n*,....n% >0 withn#17.

Proof. Observe that the mapping 1 — J"[f](n) is stricly convex and lower semi-
continuous. Then, existence and uniqueness of a solution 7 follow immediately
from Lemma 4.3. O
Proof of Theorem 4.1. Let (p,) be a minimizing sequence of (4.4). Us-
ing repeatedly Lemma 4.2, we can define a minimizing sequence (¢, ) in L3P,
Then, existence of a solution follows from Lemma 4.4. The uniqueness and the
characterization of the optimal solution follow from Lemma 4.2. The system
of nonlinear equations (4.5) is obtained from (4.6) by developing the Skorohod
integral on the right hand-side and then performing the integration as in the
above proof, see Remark 3.4. O

4.2 Variance reduction with general localization

We now consider the integrated mse minimization problem with the class of all
localizing functions. In contrast with the separable case, we cannot work directly

with smooth localizing functions.

4.2.1 Existence

By Remark 3.4, after a change of variable inside the expectation (w by w), the

objective function can be written in

) (X — €82 (1) ) dg
—oo —%0 \k=0

1€Jy
.

+

[ Boeteran] .

I"[f)(p)

d 2
E | f(X2)? (Z(l)’“ > aw(f)SL(l)) d¢

k=0 I1€Jk

i

|, oeter B@iQiopte)de
4

where we have introduced the column vectors

dp = (Orp )IGJk,kzo,...,d and  Qp = ((_1)kf(X2)SEI(1) )Iejk,k=o,i..,d ‘
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Notice that the matrix

Iy = E[QnQ}]

is symmetric and non-negative. We shall assume later that it is indeed positive
definite (see Theorem 4.2 below).

The above discussion leads us to consider the following Bounded Cross
Derivatives Sobolev space. Consider the space BCDy(R?) of functions ¢
Ri — R such that all partial derivatives Oy, I € Zy,k = 0,...,d, exist and
are continuous on the interior of ]le_ and can be extended continuously to the

boundary. Endow it with the inner product:
< 9,9 >pep, = /d 0™ Opdx
R+

which is clearly positive definite. Then BCDo(Ri) is a pre-Hilbert space, and
its completion is a Hilbert space, which we denote by BCD(Ri), and which is

endowed with the scalar product:

< U,V >pepi= ou* Ovdx
Rd
1
and the corresponding norm ||u||pey =< u, >éé§ .

The main purpose of this section is to prove an existence result for the inte-
grated mse minimization problem when the localizing functions are relaxed to
the space BCD(RY). To do this we need to incorporate the constraint ¢(0) = 1
which has to be satisfied by any localizing function. Since the functions of
BCD(Ri) are only defined almost everywhere, this requires some preparation.

Denote by C'* (R‘j_) the space of all functions ¢ : Rff_ — R, indefinitely
differentiable on the interior of Ri, and such that all derivatives can be extended
continuously to the boundary. Denote by C§° (Ri) the space of functions in
(Gl (R‘i) which have bounded support.

Lemma 4.5 (Localization) Take some ¢ € C§° (RL). If u € BCD(RY), then
pu € BCD(]RQZ_), and the map u — pu from BCD(Ri) into itself is continuous.

Proof. Fix I = (i1,...,ix) € I for some k = 0, ..., d. Since all the i; are different,

Leibniz’s formula takes a particularly simple form, namely:

k
dpw) = —2 (o) = Y () (Onu)

Oxi...0xt
(Il,Iz)GA
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where A is the set of all partitions of I in disjoint subsets I; and I5. It follows
from the assumption on ¢ that the 91, ¢ (z) are uniformly bounded on Ri, SO
that:

101 (bu)ll 2 < Cr [|Oul| 2

for some constant C7, and the result follows. (I

Denote by Cp (Ri) the space of all bounded continuous functions on Ri,

endowed with the topology of uniform convergence.

Proposition 4.1 There is a linear continuous map i : BCD(Ri) — C (Ri)
such that u = i (u) almost everywhere. Moreover, lim | —oo i(u)(x) = 0 for all
u € BCD(RY).

Proof. 1. Pick some number M > 0, and a function ¢y € C5° (R%) such
that:

om(x) = 1 for |jz|| < M/2
oym(z) = 0 for [jz|| > M.

For any u € BCD(R?), and = € RY set:
it () (@) = (-1 [ Haon, (paru)dy

= (—1)d/(1MHI)81d (oaru) dy (4.10)

where 1p(y) = 1 if |ly|| < M and 0 if |ly|| > M. The right-hand side of this
formula clearly is a continuous function of x, so ips (u) is continuous. In addition,
we have:

ling (u) () — inr () ()]

IN

lon (= 0)llgep (a1 Hall 2

A

< Cumllu— U”BCD HlM}IwHL2

for some constant C);, according to the localization lemma. If v converges to u
in BCD(RY), then iy (v) converges uniformly to i (u).
We next rewrite the right-hand side of (4.10) :

d u
) @) = ([ S

Yy .
+R¢i 8:1]1 8yd

For v € C* (Ri), we can apply Stokes’ formula:

@ = [ ey,

+R137y1 dy?...0y"

9! (puv)
- (-1 d—l/ -1
1) p-ipri-t Oy?..0yd W
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which corresponds, in this context, to the partial integration with respect to the

y' variable. Iterating this argument, we see that :
in(v)(z) = (pav) (z) forall zeR?L.

If u e BCD(]R{?_)7 we can find a sequence v, € C* (Ri) converging to w in
BCD(R%). Then iy (v,) converges to ip (u) uniformly and therefore iy (vy,)
— dpr (u) in L2. On the other hand, it follows from Lemma 4.5 that @av,
converges to ¢y in BCD(Ri). We can then identify the limits and conclude
that :

in (u) = @pu almost everywhere, for all u € BCD(RY) .

But ¢pu = w on the set ||z|| < M/2. It follows that iy (u) = u on the set ||z|| <
M /2. Since ipr(u) = ipv(u) almost everywhere on the set ||z|| < M A M’/2, we

can define the function ¢ by a classical localization argument :
i(u)(z) = iy(u)(z) with M := 2|z .
2. We next prove that

lim i(u)(z) = 0 forall ueBCD(RY). (4.11)

|z]|— o0

To see this, observe that for all u € BCD(R?) and x € zg + R :

i) (@)? = i(u)(wo /mo )0y, () (y)dy . (4.12)

where [ Hy, (y)Hy(z)0r,(u?)(y)dy is well-defined as a sum of L?—scalar products

of elements of L2. Then

liminf  i(u)(z)? = limsup  i(u)(x)?
v € 5o+ RY s €m+RE

=uwwtwwf%%Wm<m7

and (4.11) follows from the fact that u € L?(R,).
3. Using again (4.12), we directly estimate that :

i(u)(zo)® = i(u)(x Z Z /H y(20)0ru(y)Oru(y)dy

k=01€Jy
d
< 24N l0rull . 107ull 2
k=01€Jx
< i(u)(2)® + Callullzen 5
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where Cy is a constant which only depends on d. By sending |z| to infinity and
using (4.11), this provides |i(u)(zo)| < Cyllul|3ep- Since i(u — v) = i(u) — i(v),
this shows that :

sup [i(u)(zo) — i(v)(zo)| < Callu = vllson ,
I(]ERi

for all u, v € BCD(Ri). Hence, ¢ is a linear 1 continuous map. O

Although the functions of the space BCD(Ri) are defined almost everywhere,
the evaluation function is well defined from the previous proposition by u(z) :=
i(u)(z) for all z € RL. We can then consider the following relaxation of the

integrated mse minimization problem :

Pl =t 1) (4.13)
where L£P%® = {goeBCD(]R‘i) D p(0) =1} .

Observe that I"[f](p) is well-defined by (3.2) and (4.3). We are now ready for
the main result of this section.

Theorem 4.2 Let h € H(X) be fived, f a mapping from R? into R satisfying
Condition (4.3) and such that Ty, is positive definite. Then, there exists a unique

solution ¢ to the integrated mse minimization problem (4.13).

Proof. Clearly, I"[f] is strictly convex and continuous on BCD(R%). Since T'j,
is positive definite, it is also coercive for the norm || - ||gep. Identifying uw with
its continuous version i(u), it follows from Proposition 4.1 that the set £3? is

closed. Hence, the existence result follows by classical arguments. O

4.2.2 PDE characterization

We continue our discussion by concentrating on the two dimensional case d = 2.
Set

o= Ef(X:)], b= B[f(XG) (s"(1)]]

and introduce the vector and the symmetric non-negative matrix

Sy(1) 2 oh 2
Q = (1) c = E[f(X2)?S"(1)Q] , ¢ = E[f(X2)’QQ"].

Observing that E[f(X2)2S"(1)] = E[f(X2)25"(1)] = 0, it follows that the ob-

jective function can be written in

I"[f](¢) = /]R (bp® — 92" Vo + V" gV + api,) de . (4.14)

2
+
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Combining standard techniques of calculus of variation with Theorem 4.2,
the above representation leads to the following characterization of the optimal

localizing function.

Theorem 4.3 Let d = 2. Then, the exists a unique continuous function in V'
satisfying p(0) =1 and

bo — Tr[gD%p] + apriz2 = 0 on RY, (4.15)
—clo+ ¢ o1+ g s —auia on Ry x {0}, (4.16)
—0+q%ps + ¢Pp1 —aury on {0} xRy . (4.17)

This function is the unique solution to the integrated mse minimization problem
(4.13).

Remark 4.3 In general, no separable localizing function is optimal for the prob-
lem of integrated mse minimization within the class LZP of all localizing func-
tions. We shall verify this claim in the two-dimensional case. Clearly it is
sufficient to prove that the exponential localizing function ¢, is not optimal for
the problem v". Indeed, it follows from (4.5) that (x,y) := 7 is characterized
by :

0 = b+2yet + 42" — ary? — ¢*

0

2

b+ 2zc® + 2%¢%? — az?y® — ¢'1y? .

Suppose to the contrary that the ¢; solves the problem v". Then, it follows
from (4.15)-(4.16)-(4.17) that (z,y) has to satisfy the additional requirements :

0 = —c—q20— gy +azly
0 = —c—¢%—¢**z+axy?
0 = b—q®2a®— ¢'%y? — 202y + az?y? .

One then easily checks that, except for the special case ¢'? = 0, the above system

has no solution.

5 Numerical experiments
In this section, we consider the process X defined by the dynamics :

dX; = diag[Xy|odW; , Xj=X2=X3=1.
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where
0.2 0 0

o= 0.08 04 0
0.03 —-0.15 0.32

The assumptions of Section 2 are satisfied when considering the logarithm of X.
Our aim is to estimate the density function px, of X; and the regression

function :

r(r) = 100%xE

1 2 +
(452 x) ix- e

on a grid of points x = (x!, 22, 23). By direct computation, we see that

STxT 0 0
_ 2,
(DtX2) b= _011(;22)(11 0221X12 0 )
52132 _ 522 531 32 1
011522533 X} 02253BX2 538 X3
so that, with h := (D;X5)™* (1j01) — 1f1,2)), all Skorohod integrals

Sf” (pi(X1 —x)) are computed explicitly.

We first estimate the optimal separable localizing function. The computa-
tion of the optimal coefficients 7’ requires to solve numerically the system of
non-linear equations (4.5); this turns out to be feasible by a simple iterative pro-
cedure, and is by no means time-consuming. Next, for each point x of our grid,
we estimate the control variate function é(x) of Remark 3.3. The estimation of
7 and ¢ is based on 100, 000 simulated paths.

The simulated paths of X and W are obtained by a very standard random
numbers generator. In order to isolate the performance of the variance reduction
technique studied in this paper, we do not introduce any other variance reduction
method.

5.1. Density estimation. We start by estimating the density function px,
of X; at different points = (2!, 22,2%). Each estimation is based on 20,000
simulations of X;. We provide the empirical mean and standard deviation (in
brackets) of 1,000 different estimators.

The density estimators are computed by using Remark 3.1, i.e. we replace h
by h = illtg in the representation of Corollary 3.1.

The first results concerning the density estimation suggest that the most
important part of the variance reduction is obtained by the localizing procedure.

The introduction of the function é(x) does not significantly improve the variance.
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This may be explained by the fact that the estimation of ¢(x) is rather difficult
since it involves the Heaviside function H,.

Density estimation

Reduction by ¢ : optimal localization,

Reduction by ¢ : control variate,

zl =0.7
23 \x? 0.7 1.0 1.3

True value 1.08 0.93 0.45
Reduction by ¢, c | 1.09[0.11] | 0.94[0.08] | 0.45[0.03]
0.7 | Reduction by ¢ | 1.09[0.16] | 0.94[0.09] | 0.45[0.04]
Reduction by ¢ | 1.07[0.23] | 0.93[0.24] | 0.46[0.25]
No Reduction 1.07[0.26] | 0.93[0.26] | 0.47[0.28]

True value 1.13 0.62 0.21
Reduction by ¢, c | 1.13[0.08] | 0.62[0.04] | 0.21[0.02]
1.0 Reduction by ¢ | 1.14[0.09] | 0.62[0.04] | 0.21[0.02]
] ]
] ]

Reduction by ¢ | 1.11[0.26] | 0.61[0.26] | 0.21[0.27
No Reduction 1.12[0.29] | 0.61[0.29] | 0.22[0.31
True value 0.53 0.21 0.05
Reduction by ¢, ¢ | 0.53[0.04] | 0.21[0.02] | 0.05[0.01
1.3 | Reduction by ¢ | 0.53[0.04] | 0.21]0.02] | 0.05[0.01
Reduction by ¢ | 0.51[0.26] | 0.19[0.25] | 0.06[0.26
No Reduction 0.51[0.29] | 0.20[0.29] | 0.06[0.31

] ]
] ]
] ]
I ]

z!l =10
x3\x? 0.7 1.0 1.3
True value 1.78 2.44 1.65
Reduction by ¢, c | 1.80[0.10] | 2.44[0.07] | 1.65[0.04
0.7 Reduction by ¢ | 1.80[0.11] | 2.44[0.08] | 1.65[0.04
Reduction by ¢ | 1.78[0.26] | 2.45[0.26] | 1.67[0.27
No Reduction 1.79[0.30] | 2.45[0.31] | 1.68[0.32
True value 2.72 2.33 1.12
Reduction by ¢, c | 2.73[0.07] | 2.34[0.04] | 1.12[0.02]
1.0 | Reduction by ¢ | 2.73[0.08] | 2.34[0.04] | 1.12[0.02]
Reduction by ¢ | 2.73[0.27] | 2.35[0.27] | 1.15[0.29]
No Reduction | 2.74[0.34] | 2.36[0.35] | 1.16[0.37]
True value 1.68 1.02 0.38
Reduction by ¢, c | 1.69(0.03] | 1.02[0.01] | 0.38[0.01]
1.3 | Reduction by ¢ | 1.69[0.03] | 1.02[0.01] | 0.38[0.01]
Reduction by ¢ | 1.69[0.27] | 1.050.27] | 0.41[0.28]
No Reduction | 1.70[0.35] | 1.06[0.37] | 0.43[0.39]

] ]
] ]
] ]
] ]
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zl =13
x3\2? 0.7 1.0 1.3
True value 0.29 0.56 0.48
Reduction by ¢, c | 0.29(0.03] | 0.56[0.02] | 0.48[0.01]
0.7 Reduction by ¢ | 0.30[0.03] | 0.56[0.02] | 0.48[0.01]
] ]
] ]

Reduction by ¢ | 0.28[0.30] | 0.56[0.31] | 0.50[0.30
No Reduction 0.30[0.41] | 0.57[0.43] | 0.51[0.44
True value 0.59 0.70 0.43
Reduction by ¢, ¢ | 0.59[0.02] | 0.70[0.01] | 0.43[0.01
1.0 Reduction by ¢ | 0.59[0.02] | 0.70[0.01] | 0.45[0.27
Reduction by ¢ | 0.58[0.31] | 0.70[0.29] | 0.45[0.29
No Reduction 0.60[0.47] | 0.72[0.48] | 0.47[0.49
True value 0.44 0.38 0.18
Reduction by ¢, c | 0.44[0.01] | 0.38[0.00] | 0.18]0.00]
1.3 | Reduction by ¢ | 0.44[0.01] | 0.38[0.00] | 0.18[0.00]
Reduction by ¢ | 0.44[0.30] | 0.38[0.28] | 0.19[0.27]
No Reduction | 0.45[0.48] | 0.40[0.49] | 0.22[0.51]

]
]
]
]

5.2. Regression function estimation. We next turn to the estimation of
the regression function (5.1). Each estimation is based on 50,000 simulations.
We provide the empirical mean and standard deviation (in brackets) of 1,000
different estimators.

In view of the poor performance of the control variate technique (which
involves the time-consuming computation of é¢(z)), we concentrate on the use of
the optimal localizing function. The results reported below prove the efficiency
of this variance reduction technique, as the variance is significantly improved

when the optimal localizing function is incorporated.

Regression function estimation

Reduction by ¢ : optimal localization,

2! =0.9
x3\z? 0.9 1.0 1.1
True value 17.26 20.56 24.05
0.9 | Reduction by ¢ | 17.28[1.12] | 20.49[1.19] | 24.06[1.17]
No Reduction | 16.88[5.01] | 20.62[7.14] | 25.04[11.52]
True value 13.70 16.59 19.61
1.0 Reduction by ¢ | 13.72[0.82] | 16.59[0.92] 19.73[1.00]
No Reduction | 12.97[6.20] 16.08[10.41] | 21.35[25.48]
True value 10.88 13.39 16.11
1.1 Reduction by ¢ | 10.94[0.85] 13.48[0.90] 16.32[1.05]
No Reduction | 10.58[17.54] | 13.81[28.01] | 13.19[166.22]
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! =1.0

z3\2? 0.9 1.0 1.1
True value 20.08 23.58 27.24
0.9 Reduction by ¢ | 19.93[1.01] 23.40[1.06] 27.08[1.16]
No Reduction | 20.59[8.80] 23.94[32.24] | 30.95[63.28]
True value 16.08 19.18 22.47
1.0 Reduction by ¢ | 15.94[0.85] 19.00[0.92]] | 22.27[0.95]
No Reduction | 16.04[11.48] | 20.25[32.05] | 23.48[68.62]
True value 12.87 15.58 18.50
1.1 Reduction by ¢ | 12.77[0.76] 15.57[0.85] 18.50[0.96]
No Reduction | 11.26[55.83] | 14.11[30.39] | 25.46[325.15]
zl =11
z3\2? 0.9 1.0 1.1
True value 23.13 26.81 30.64
0.9 Reduction by ¢ | 23.12[1.08] 26.68[1.10] 30.58[1.24]
No Reduction | 24.64[28.23] | 27.94[33.39] | 30.20{116.46]
True value 18.69 21.98 25.45
1.0 Reduction by ¢ | 18.63[0.94] 21.95[0.91] 25.47[1.01]
No Reduction | 19.54[26.10] | 23.63[34.24] 27.82[110.05]
True value 15.07 17.99 21.10
1.1 Reduction by ¢ | 15.04[0.83] | 17.96[0.78] 21.17[0.96]
No Reduction | 13.98[30.29] | 22.43[623.93] | 17.37[180.44]

6 Optimal portfolio selection and option pricing

The representation of the conditional expectation presented in this paper has
already proved to be powerful for the pricing of American options (see [10]).
The algorithm developed to estimate the early exercise value is based on the
dynamic programming equation which leads to a backward induction algorithm
that requires the computation of a conditional expectation at each step (see also
[1], [5] and [11] for similar approaches).

Following [3], we propose to use the same approach to solve stochastic control
problems written in a standard form.
6.1. Problem formulation. Consider the following simple optimal portfolio
selection problem. The financial market consists in a non-risky asset, with price
process normalized to unity, and two risky assets, one of which is non-tradable.
We focus on the problem of valuation of a contingent claim, with payoff G =
9(Xr) written on the non-tradable asset X. We are then in an incomplete market
framework, where G can be partially hedged by trading on the (tradable) risky

asset Z whose price process is correlated to X.
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More precisely, we assume that the dynamics of the pair process (X, Z) is
given by

dXy = X (p'dt+otdw})
dz, = Z(pPdt+ o> dW} +o2dW}) |
where W is a standard Brownian motion in R?, and p!, 2, o't > 0, 022 > 0,
o?! are some given constants.
An admissible strategy is a U-valued predictable process (U is some compact
subset of R). We denote by U the set of such processes. Given a strategy v €
U, the corresponding wealth process Y is defined by

t t
Yy = y0+/ ve(Z,)" Yz, = YO+/ vp[pPdr + ot dW}r + o*2dW?] .
0 0

Since the contingent claim can not be perfectly hedged, we consider the valua-
tion rule induced by the utility indifference principle. Further simplification of
the problem is obtained by assuming an exponential utility function with risk
aversion parameter a > 0. In the presence of the liability G, the agent solves
the following utility maximization problem
COzy) = sup B[ 0T (X0, ¥y) = (2,9)]
veu

where T > 0 is a given time horizon. Observe that the above value function does
not depend on the state variable Z. The comparison to the maximal expected
utility v°, in the absence of any liability, leads to the so-called utility indifference
valuation rule (see e.g. [8]) :

p(G,z,y) = inf{reR : v90,z,y+m) >°0,2,9)} .
Observing that
v9(0,2,y) = e Wv9(0,z,0), (6.1)
we see that

wG x
p(G,z,y) = p(G,z) = iln( (0, 2)

wO(O,x)) where w%(0,z) := v%(0,z,0) .
Hence, the computation of the valuation rule p is reduced to the computation of
the value functions w(0, ) and w®(0, ).

Changing the time origin, one defines accordingly the dynamic version of the
problem and the induced value functions v%(t,z,y) and w®(t,z). The value
function v satisfies the dynamic programming principle

’UG(t’.’E,y) = esssug E [vG (t+AaXt+A7}/;IjrA) ’ (Xtv}/t) = (xay)} )
ve
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for any time step A > 0. In view of (6.1), this translates to w® in :

wl(t,z) = esssup B |e” Vo (t+ A Xiin) | (X0, V) = (x,O)} (6.2)
veu

Hence, in the context of the particular model studied in this section, the number

of state variables is reduced to one, which considerably simplifies the compu-

tations. The reason for considering such simplifications is that we are mainly

concerned by the dynamic application of the conditional expectation estimation

presented in the first sections of this paper.

6.2. The case G = 0. When there is no contingent claim to be delivered, the
value function v° does not depend on the state variable X. It follows from (6.2)
that the optimal control process is constant in time. The Monte Carlo estima-
tion procedure is then considerably simplified, as it is sufficient to perform it on

a single time step.

6.3. Discretization in time for v¢. Set ¢ := n kT, n € N and k =
0,...,n so that the time step is A = n~'T. By restricting the control process
to be constant on [tg,tx+1), the dynamic programming principle suggests the

following (backward) approximation of w® :

(10, X,,) = ) (©3)
v%(th, Xy,) = esssupE [e_a'/(z”kﬂ_z‘k)/z”“ ¢ (ths1, Xtnrs) ‘th] s k<n.
velU

We now can appeal to the conditional expectation representation studied in
this paper. By a trivial adaptation of Corollary 3.1 to the case where the time
intervals [0, 1] and [1, 2] are replaced by [0, tx] and [tx, tx+1] (see (3.5)), it is easily
checked that, for each v € U,

B [67&V(Ztk+172tk)/Ztk W (tk+1, th+1)

Xt:I:|

E |:1{th >x}e_au(Ztk+1_Ztk)/Ztk W (thrl? th+1> Sk:| (6.4)

E [1{th>x}sk}

tet1
where Sj, 1= / O(X7 — 2®)hdWP, p(z) = e, and
0

hy = (0—22th>71 [(tk)ill[o,tk) - (tk-‘rl - tk)ill[tkﬂflﬁrl]] :

We then use a backward induction procedure to compute the value function.
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6.4. Monte Carlo approximation. We start by simulating N paths, X?, of
the process X. Given the value function for k = n (i.e t, =T),

, —al0—a(x®
6 (t, X)) = —eme(0mee))

we use the other simulated paths, X7, j # 4, in order to build the Monte Carlo
approximation of (6.4) at the point (tn_l,X,fill). The optimization over the
parameter v is achieved by a simple Newton-Raphson algorithm. Iterating this
procedure backward, we can estimate, for each k and i, w(t, Xt(z)) together with

the corresponding optimal control (¢, Xt(z)).

6.5. Numerical experiments. We consider the contingent claim defined by
the payoff function g(z) = 5 * min{K,z}. We fix (Xo, Zo) = (1,1), (ut,p?) =
(0.1,0.1), o' = 0.15, U = [0,40], T = 1, n = 10, and we perform the compu-
tations for different values of K, 012, 622 and a. Each estimation of the value
functions v, and the induced price p©, is based on 8192 simulated paths. For
each experiment, we compute 200 estimators. The average and the standard de-
viation in percentage of the average (in brackets) are collected in the following
table.

K=12, 021 =01, 622 =0.1

G e
a=0.25 520 [0.46%] | —2.94 [0.55%]
a= 5.26 [1.54%)] | —154.04 [14.36%)
K =1.2, 02 =0.05, 022 =0.2
pC e
a=0.25| 526 [0.50%] | —2.98 [0.56%]

a=1 5.40 [0.31%)] | —177.91 [1.66%]
K =00, 6?1 =0.05, 622 =0.2

pG 0@

a=0.25|559 [0.52%] | —3.23 [0.61%]
a=1 6.29 [1.30%)] | —433.25 [8.91%]
K =00, 021 =0.15, 022 = 0.005

G e
a=025 509 [0.22%] | —2.85 [0.39%]

As expected, the price is increasing with the risk aversion parameter a and
with K. Tt is decreasing with the ”relative correlation” between X and Z. For
K = 00, G = 5% X which is close to 5% Zr (in distribution) when the volatility
21 Sy 522
parameter, we should obtain a price of order of 5% Zy = 5. In the above table,
the result is indeed close to 5 for a = 0.25.

coefficients are such that o!!' = ¢ Then, for a low risk aversion
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