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Abstract

This paper is on developing stochastic analysis simultaneously under a general fam-
ily of probability measures that are not dominated by a single probability measure.
The interest in this question originates from the probabilistic representations of fully
nonlinear partial differential equations and applications to mathematical finance. The
existing literature relies either on the capacity theory (Denis and Martini [5]), or on
the underlying nonlinear partial differential equation (Peng [13]). In both approaches,
the resulting theory requires certain smoothness, the so called quasi-sure continuity, of
the corresponding processes and random variables in terms of the underlying canonical
process. In this paper, we investigate this question for a larger class of “non-smooth”
processes, but with a restricted family of non-dominated probability measures. For
smooth processes, our approach leads to similar results as in previous literature, pro-

vided the restricted family satisfies an additional density property.
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1 Introduction

It is well known that all probabilistic constructions crucially depend on the underlying prob-
ability measure. In particular, all random variables and stochastic processes are defined up
to null sets of this measure. If, however, one needs to develop stochastic analysis simultane-
ously under a family of probability measures, then careful constructions are needed as the
null sets of different measures do not necessarily coincide. Of course, when this family of
measures is dominated by a single measure this question trivializes as we can simply work
with the null sets of the dominating measure. However, we are interested exactly in the
cases where there is no such dominating measure. An interesting example of this situation
is provided in the study of financial markets with uncertain volatility. Then, essentially all
measures are orthogonal to each other.

Since for each probability measure we have a well developed theory, for simultaneous
stochastic analysis, we are naturally led to the following problem of aggregation. Given a
family of random variables or stochastic processes, X, indexed by probability measures P,
can one find an aggregator X that satisfies X = X¥, P—almost surely for every probability
measure P? This paper studies exactly this abstract problem. Once aggregation is achieved,
then essentially all classical results of stochastic analysis generalize as shown in Section 6
below.

This probabilistic question is also closely related to the theory of second order back-
ward stochastic differential equations (2BSDE) introduced in [3]. These type of stochastic
equations have several applications in stochastic optimal control, risk measures and in the
Markovian case, they provide probabilistic representations for fully nonlinear partial differ-
ential equations. A uniqueness result is also available in the Markovian context as proved
in [3] using the theory of viscosity solutions. Although the definition given in [3] does
not require a special structure, the non-Markovian case, however, is better understood only
recently. Indeed, [17] further develops the theory and proves a general existence and unique-
ness result by probabilistic techniques. The aggregation result is a central tool for this result
and in our accompanying papers [15, 16, 17]. Our new approach to 2BSDE is related to
the quasi sure analysis introduced by Denis and Martini [5] and the G-stochastic analysis
of Peng [13]. These papers are motivated by the volatility uncertainty in mathematical fi-
nance. In such financial models the volatility of the underlying stock process is only known
to stay between two given bounds 0 < a < @. Hence, in this context one needs to define
probabilistic objects simultaneously for all probability measures under which the canonical
process B is a square integrable martingale with absolutely continuous quadratic variation
process satisfying

adt < d(B); < adt.

Here d(B); is the quadratic variation process of the canonical map B. We denote the set



of all such measures by Py, but without requiring the bounds a and @, see subsection 2.1.

As argued above, stochastic analysis under a family of measures naturally leads us to
the problem of aggregation. This question, which is also outlined above, is stated precisely
in Section 3, Definition 3.1. The main difficulty in aggregation originates from the fact
that the above family of probability measures are not dominated by one single probability
measure. Hence the classical stochastic analysis tools can not be applied simultaneously
under all probability measures in this family. As a specific example, let us consider the
case of the stochastic integrals. Given an appropriate integrand H, the stochastic integral
IF = fot HdB; can be defined classically under each probability measure P. However, these
processes may depend on the underlying probability measure. On the other hand we are free
to redefine this integral outside the support of P. So, if for example, we have two probability
measures P!, P? that are orthogonal to each other, see e.g. Example 2.1, then the integrals
are immediately aggregated since the supports are disjoint. However, for uncountably many
probability measures, conditions on H or probability measures are needed. Indeed, in order
to aggregate these integrals, we need to construct a stochastic process I; defined on all
of the probability space so that I; = I for all ¢, P—almost surely. Under smoothness
assumptions on the integrand H this aggregation is possible and a pointwise definition
is provided by Karandikar [10] for cadlag integrands H. Denis and Martini [5] uses the
theory of capacities and construct the integral for quasi-continuous integrands, as defined
in that paper. A different approach based on the underlying partial differential equation was
introduced by Peng [13] yielding essentially the same results as in [5]. In Section 6 below,
we also provide a construction without any restrictions on H but in a slightly smaller class
than Pyy.

For general stochastic processes or random variables, an obvious consistency condition
(see Definition 3.2, below) is clearly needed for aggregation. But Example 3.3 also shows
that this condition is in general not sufficient. So to obtain aggregation under this minimal
condition, we have two alternatives. First is to restrict the family of processes by requiring
smoothness. Indeed the previous results of Karandikar [10], Denis-Martini [5], and Peng
[13] all belong to this case. A precise statement is given in Section 3 below. The second
approach is to slightly restrict the class of non-dominated measures. The main goal of this
paper is to specify these restrictions on the probability measures that allows us to prove
aggregation under only the consistency condition (3.4).

Our main result, Theorem 5.1, is proved in Section 5. For this main aggregation result,
we assume that the class of probability measures are constructed from a separable class
of diffusion processes as defined in subsection 4.4, Definition 4.8. This class of diffusion
processes is somehow natural and the conditions are motivated from stochastic optimal

control. Several simple examples of such sets are also provided. Indeed, the processes



obtained by a straightforward concatenation of deterministic piece-wise constant processes
forms a separable class. For most applications, this set would be sufficient. However, we
believe that working with general separable class helps our understanding of quasi-sure
stochastic analysis.

The construction of a probability measure corresponding to a given diffusion process,
however, contains interesting technical details. Indeed, given an F-progressively measurable
process «, we would like to construct a unique measure P®. For such a construction, we start
with the Wiener measure Py and assume that « takes values in S;O (symmetric, positive
definite matrices) and also satisfy fg laslds < oo for all t > 0, Pg-almost surely. We then

consider the Py stochastic integral
t
X9 = / al/2dB,. (1.1)
0

Classically, the quadratic variation density of X under Py is equal to a. We then set
P¢ := Pyo (X¥) ™! (here the subscript S is for the strong formulation). It is clear that
B under P§ has the same distribution as X® under Py. One can show that the quadratic
variation density of B under P§ is equal to a satisfying a(X*(w)) = a(w) (see Lemma 8.1
below for the existence of such a). Hence, Pg € Pw. Let Ps C Pw be the collection
of all such local martingale measures P§. Barlow [1] has observed that this inclusion is
strict. Moreover, this procedure changes the density of the quadratic variation process to
the above defined process a. Therefore to be able to specify the quadratic variation a priori,
in subsection 4.2, we consider the weak solutions of a stochastic differential equation ((4.4)
below) which is closely related to (1.1). This class of measures obtained as weak solutions
almost provides the necessary structure for aggregation. The only additional structure we
need is the uniqueness of the map from the diffusion process to the corresponding probability
measure. Clearly, in general, there is no uniqueness. So we further restrict ourselves into
the class with uniqueness which we denote by Ayy. This set and the probability measures
generated by them, Py, are defined in subsection 4.2.

The implications of our aggregation result for quasi-sure stochastic analysis are given
in Section 6. In particular, for a separable class of probability measures, we first construct
a quasi sure stochastic integral and then prove all classical results such as Kolmogrov con-
tinuity criterion, martingale representation, Ito’s formula, Doob-Meyer decomposition and
the Girsanov theorem. All of them are proved as a straightforward application of our main
aggregation result.

If in addition the family of probability measures is dense in an appropriate sense, then
our aggregation approach provides the same result as the quasi-sure analysis. These type
of results, of course, require continuity of all the maps in an appropriate sense. The details

of this approach are investigated in our paper [16], see also Remark 7.5 in the context of



the application to the hedging problem under uncertain volatility. Notice that, in contrast
with [5], our approach provides existence of an optimal hedging strategy, but at the price
of slightly restricting the family of probability measures.

The paper is organized as follows. The local martingale measures Py and a universal
filtration are studied in Section 2. The question of aggregation is defined in Section 3. In
the next section, we define Ay, Py and then the separable class of diffusion processes. The
main aggregation result, Theorem 5.1, is proved in Section 5. The next section generalizes
several classical results of stochastic analysis to the quasi-sure setting. Section 7 studies the
application to the hedging problem under uncertain volatility. In Section 8 we investigate
the class Pg of mutually singular measures induced from strong formulation. Finally, several
examples concerning weak solutions and the proofs of several technical results are provided

in the Appendix.

Notations. We close this introduction with a list of notations introduced in the paper.

e O := {w e C(R4,RY : w(0) = 0}, B is the canonical process, Py is the Wiener

measure on §2.
e For a given stochastic process X, FX is the filtration generated by X.
o F:=TFB = {Fi}i>0 is the filtration generated by B.
o F:={F" t >0}, where ;" := Fpy == N,o; Fs,
o FP = FF VNF(FEN) and F, = FF V NP(Fu), where

NE(G) = {E C Q: there exists E € G such that F C E and P[E] = 0} .

e N7 is the class of P—polar sets defined in Definition 2.2.

o 7P = Mpep (FF V Np) is the universal filtration defined in (2.3).

e 7 is the set of all F—stopping times 7 taking values in R U {oo}.

o 77 is set of all Fp—stopping times.

e (B) is the universally defined quadratic variation of B, defined in subsection 2.1.
e G is the density of the quadratic variation (B), also defined in subsection 2.1.

e S, is the set of d x d symmetric matrices.

° Sgo is the set of positive definite symmetric matrices.



e Py is the set of measures defined in subsection 2.1.
e Pg C Py is defined in the Introduction, see also Lemma 8.1.
e Pure C P are the measures with the martingale representation property, see (2.2).

e Sets Py, Psg, Pure are defined in subsection 4.2 and section 8, as the subsets of Py,

Ps, Pure with the additional requirement of weak uniqueness.
e A is the set of integrable, progressively measurable processes with values in Sjo.
o Ay = Upep,, Aw (P) and Ay (P) is the set of diffusion matrices satisfying (4.1).
o Ay, As, Awvrp are defined as above using Py, Ps, Purp, see section 8.
e Sets Qf, Qg’b and the stopping time % are defined in subsection 4.3.

e Function spaces L°, LP(P), P, and the integrand spaces H, HP(P), HZ (P%), HP,

loc

IF]IZQOC are defined in Section 6.

2 Non-dominated mutually singular probability measures

Let Q := C(R,,R%) be as above and F = F? be the filtration generated by the canonical
process B. Then it is well known that this natural filtration [ is left-continuous, but is not
right-continuous. This paper makes use of the right-limiting filtration F*, the P—completed
filtration F¥ := {F',¢ > 0}, and the P—augmented filtration F = {?2}, t > 0}, which are

all right continuous.

2.1 Local martingale measures

We say a probability measure P is a local martingale measure if the canonical process
B is a local martingale under P. It follows from Karandikar [10] that there exists an
F—progressively measurable process, denoted as fg BydB,, which coincides with the Itd’s
integral, P—almost surely for all local martingale measure P. In particular, this provides a

pathwise definition of

t
1
(B); = BtBtT—Q/ BydB, and a; := 111101—[<B>t— (B);_].
0 € 13

Clearly, (B) coincides with the P—quadratic variation of B, P—almost surely for all local
martingale measure P.

Let Py denote the set of all local martingale measures P such that

P-almost surely, (B); is absolutely continuous in ¢ and a takes values in S>0, (2.1)



where Sjo denotes the space of all d x d real valued positive definite matrices. We note
that, for different P, [Py € Pyy, in general P; and Py are mutually singular, as we see in the

next simple example. Moreover, there is no dominating measure for Pyy .

Example 2.1 Let d = 1, P; :=Pyo (v2B)™!, and Q; := {(B); = (1 +i)t,t >0}, i =0, 1.
Then, Py, P, € ﬁw, Po(Qo) = Pl(Ql) =1, PQ(Ql) = Pl(QQ) = 0, and 2y and € are
disjoint. That is, Py and P; are mutually singular. O

In many applications, it is important that P € Py, has martingale representation prop-
erty (MRP, for short), i.e. for any (FP, [P)-local martingale M, there exists a unique (P-almost

surely) Fp—progressively measurable R? valued process H such that
t t
/ ’di/QHSIQdS < oo and M; = M, +/ H,dB,, t >0, P-almost surely.
0 0
We thus define
Pure = {P € Pw : B has MRP under P} . (2.2)

The inclusion Pygp C Py is strict as shown in Example 9.3 below.
Another interesting subclass is the set Pg defined in the Introduction. Since in this

paper it is not directly used, we postpone its discussion to Section 8.

2.2 A universal filtration

We now fix an arbitrary subset P C Py . By a slight abuse of terminology, we define the

following notions introduced by Denis and Martini [5].

Definition 2.2 (i) We say that a property holds P-quasi-surely, abbreviated as P-q.s., if it
holds P-almost surely for all P € P.

(i) Denote Np := NpepNT (Fao) and we call P-polar sets the elements of Np.

(iii) A probability measure P is called absolutely continuous with respect to P if P(E) = 0
for all E € Np.

In the stochastic analysis theory, it is usually assumed that the filtered probability space
satisfies the usual hypotheses. However, the key issue in the present paper is to develop
stochastic analysis tools simultaneously for non-dominated mutually singular measures. In
this case, we do not have a good filtration satisfying the usual hypotheses under all the
measures. In this paper, we shall use the following universal filtration FP for the mutually

singular probability measures {P,P € P}:

FP .= {F}i>0 where FJ = ﬂ (F{ vV Np) for t > 0. (2.3)
PeP



Moreover, we denote by 7 (resp. T 7) the set of all F-stopping times 7 (resp., [FP-
stopping times 7) taking values in R} U {oo}.

Remark 2.3 Notice that Ft ¢ F¥ ¢ T . The reason for the choice of this completed
filtration F¥ is as follows. If we use the small filtration F*, then the crucial aggregation
result of Theorem 5.1 below will not hold true. On the other hand, if we use the augmented
filtrations F]P, then Lemma 5.2 below does not hold. Consequently, in applications one will
not be able to check the consistency condition (5.2) in Theorem 5.1, and thus will not be
able to apply the aggregation result. See also Remarks 5.3 and 5.6 below. However, this

choice of the completed filtration does not cause any problems in the applications. O

We note that F” is right continuous and all P-polar sets are contained in .7:"33 . But
F? is not complete under each P € P. However, thanks to the Lemma 2.4 below, all the
properties we need still hold under this filtration.

For any sub-c—algebra G of F., and any probability measure P, it is well-known that
an ﬁo—measurable random variable X is [G V NF(F4)]—measurable if and only if there
exists a G-measurable random variable X such that X = X, P-almost surely. The follow-
ing result extends this property to processes and states that one can always consider any
process in its Ft-progressively measurable version. Since F* C FP, the [FT-progressively
measurable version is also Fp—progressively measurable. This important result will be used
throughout our analysis so as to consider any process in its I@‘P—progressively measurable
version. However, we emphasize that the I@P—progressively measurable version depends on

the underlying probability measure P.

Lemma 2.4 Let P be an arbitrary probability measure on the canonical space (Q, Foo), and
let X be an FP—progressively measurable process. Then, there exists a unique (P-almost
surely) FT-progressively measurable process X such that X = X, P—almost surely. If, in

addition, X is cadlag P-almost surely, then we can choose X to be cadlag P-almost surely.

The proof is rather standard but it is provided in Appendix for completeness. We note that,
the identity X = X, P-almost surely, is equivalent to that they are equal dt x dP-almost
surely. However, if both of them are cadlag, then clearly X, = X;, 0 <t <1, P-almost

surely.

3 Aggregation

We are now in a position to define the problem.



Definition 3.1 Let P C Py, and let {XF P € P} be a family of I@‘P—progressively measur-
able processes. An I@P—progressively measurable process X is called a P-aggregator of the
family {X*,P € P} if X = X¥, P-almost surely for every P € P.

Clearly, for any family {X¥,P € P} which can be aggregated, the following consistency

condition must hold.

Definition 3.2 We say that a family {X¥,P € P} satisfies the consistency condition if, for
any Py, Ps € P, and 7 € TP satisfying Py = P, on ]}f we have

XF = XP2 on [0,7], Py — almost surely. (3.4)

Example 3.3 below shows that the above condition is in general not sufficient. Therefore,

we are left with following two alternatives.

e Restrict the range of aggregating processes by requiring that there exists a sequence
of I@'P—progressively measurable processes {X"},>; such that X" — XP P-almost
surely as n — oo for all P € P. In this case, the P-aggregator is X := lim,, ., X".
Moreover, the class P can be taken to be the largest possible class Py,. We observe
that the aggregation results of Karandikar [10], Denis-Martini [5], and Peng [13] all

belong to this case. Under some regularity on the processes, this condition holds.

e Restrict the class P of mutually singular measures so that the consistency condition
(3.4) is sufficient for the largest possible family of processes {XF P € P}. This is the

main goal of the present paper.

We close this section by constructing an example in which the consistency condition is

not sufficient for aggregation.

Example 3.3 Let d = 2. First, for each z,y € [1,2], let P*Y := Py o (\/EBl,\/ﬂBz)_1
and Qg = {(B') = at,(B?*); = yt,t > 0}. Cleary for each (z,y), P*¥ € Py and
P*¥[Q, ] = 1. Next, for each a € [1,2], we define

1 /2
P,[E] := 5/1 (P“*[E] + P**[E])dz for all E € Fi.

We claim that P, € Py . Indeed, for any t; < t3 and any bounded Fi,-measurable random

variable 7, we have

2
2E"[(By, — By, )n) = /1 {E¥""[(By, — By, )] + EF""[(By, — By, )n]}dz = 0.

Hence PP, is a martingale measure. Similarly, one can easily show that Iodt < d(B); < 2I5dt,

P,-almost surely, where I3 is the 2 x 2 identity matrix.



For a € [1,2] set
Qq:={(BY): =at,t >0} U{(B*); =at,t >0} D U,cp 9 [,z Ul

so that P,[Q,] = 1. Also for a # b, we have Q, N = Qg U Dy, and thus Pg[Q, N Q] =
Pb[Qa N Qb] =0.

Now let P := {P,,a € [1,2]} and set X/ (w) = a for all t,w. Notice that, for a # b,
P, and P, disagree on F;~ C FJ. Then the consistency condition (3.4) holds trivially.
However, we claim that there is no P-aggregator X of the family {X% a € [1,2]}. Indeed,
if there is X such that X = X%, P,-almost surely for all a € [1,2], then for any a € [1,2],

1 = Po[X% = a] = P[X =a] = %/12(1@“72[)(, = a] +P*[X = a]>dz.

Let A, the Lebesgue measure on [1,2]" for integer n > 1. Then, we have
Al({z . P%[X. = a] = 1}) - )\1<{z . P*9[X. = a] = 1}) —1, forallae[l,2).

Set Ay :={(a,z) : P**[X =a] =1}, Ay := {(2,a) : P*?[X = a] = 1} so that \y(4;) =
A2(Ag) = 1. Moreover, A1NAs C {(a,a) : a € (0,1]} and A2(A; N As) = 0. Now we directly
calculate that 1 > )\Q(Al U AQ) = )\2(141) + )\Q(AQ) — )\Q(Al N AQ) = 2. This contradiction

implies that there is no aggregator. O

4 Separable classes of mutually singular measures

The main goal of this section is to identify a condition on the probability measures that
yields aggregation as defined in the previous section. It is more convenient to specify this
restriction through the diffusion processes. However, as we discussed in the Introduction
there are technical difficulties in the connection between the diffusion processes and the
probability measures. Therefore, in the first two subsections we will discuss the issue of
uniqueness of the mapping from the diffusion process to a martingale measure. The separa-
ble class of mutually singular measures are defined in subsection 4.4 after a short discussion

of the supports of these measures in subsection 4.3.

4.1 Classes of diffusion matrices

Let

t
A= {a : Ry — S;° | F-progressively measurable and / las|ds < oo, for all t > O}.
0

For a given P € Py, let

Aw (P) := {a € A:a=a, P-almost surely}. (4.1)

10



Recall that a is the density of the quadratic variation of (B) and is defined pointwise. We

also define

Ay = U Aw (P).

PcPw
A subtle technical point is that Ay is strictly included in A. In fact, the process
at = 1gz,>01 + 314, <0y s clearly in AN\ Aw.

For any P € Py and a € A (P), by the Lévy characterization, the following Ito’s

stochastic integral under P is a P-Brownian motion:
t t
Wk = / a;'/%dB, = / a;'%2dB,, t>0. P—as. (4.2)
0 0
Also since B is the canonical process, a = a(B.) and thus

dB; = ai/2 (B.)dW{, P-almost surely, and W} is a P-Brownian motion. (4.3)

4.2 Characterization by diffusion matrices

In view of (4.3), to construct a measure with a given quadratic variation a € Ay, we

consider the stochastic differential equation,

dX; = ai/Q(X.)dBt, Py-almost surely. (4.4)
In this generality, we consider only weak solutions P which we define next. Although the
following definition is standard (see for example Stroock & Varadhan [18]), we provide it

for specificity.

Definition 4.1 Let a be an element of Ay .
(i) For F—stopping times 71 < 7o € 7 and a probability measure P! on F,,, we say that P is
a weak solution of (4.4) on [y, 2] with initial condition P, denoted as P € P(7y, 12, P!, a),
if the followings hold:

1.P=Plon 7 ;

2. The canonical process By is a P-local martingale on [ry, 72];

3. The process W; := thl a;1/2(B.)st, defined P—almost surely for all t € [1, 2], is a
P-Brownian Motion.
(ii) We say that the equation (4.4) has weak uniqueness on [t1, T3] with initial condition P*
if any two weak solutions P and P in P(y, 72, P!, a) satisfy P =P’ on F,,.
(iii) We say that (4.4) has weak uniqueness if (ii) holds for any 7,72 € 7 and any initial

condition P! on F,,.

11



We emphasize that the stopping times in this definition are F-stopping times.

Note that, for each P € Py and a € Ay (P), P is a weak solution of (4.4) on R, with
initial value P(By = 0) = 1. We also need uniqueness of this map to characterize the measure
P in terms of the diffusion matrix a. Indeed, if (4.4) with a has weak uniqueness, we let
P¢ € Py be the unique weak solution of (4.4) on R, with initial condition P?(By = 0) = 1,
and define,

Aw = {a € Ay : (4.4) has weak uniqueness} , Pw :={P?:a € Aw}. (4.5)
We also define
,PI\ARP = ﬁ]\/]RP ﬂ PW7 AI\/]RP = {a S AW : Pa < PN]RP}' (4.6)

For notational simplicity, we denote

a =a

F .= F™, F* .= FPQ, for all a€ Aw. (4.7)

It is clear that, for each P € Py, the weak uniqueness of the equation (4.4) may depend
on the version of a € Ay (P). This is indeed the case and the following example illustrates

this observation.

Example 4.2 Let ag(t) := 1, as(t) := 2 and
— Bp— By
al(t) :=1+1gl t), where E::{hm—
1) 0 () n0 v/2hInIn b
Then clearly both ag and as belong to Ayy. Also a; = ag, Pg-almost surely and a; = as,
P_almost surely. Hence, a; € Aw (Py) N Aw (P?2). Therefore the equation (4.4) with
coefficient a; has two weak solutions Py and P?2. Thus a; ¢ Ay . O

A1} e 7

Remark 4.3 In this paper, we shall consider only those P € Py C Pw. However, we do
not know whether this inclusion is strict or not. In other words, given an arbitrary P € Pyy,

can we always find one version a € Ay (P) such that a € Ay ? O

It is easy to construct examples in Ay, in the Markovian context. Below, we provide
two classes of path dependent diffusion processes in Ay,. These sets are in fact subsets of
Ag C Ay, which is defined in (8.11) below. We also construct some counter-examples in

the Appendix. Denote
Q= {(t,x) : tzO,xeC([O,t],Rd)}. (4.8)
Example 4.4 (Lipschitz coefficients) Let
a; = 0(t,B.) where o:Q — S;"

is Lebesgue measurable, uniformly Lipschitz continuous in x under the uniform norm, and

02(-,0) € A. Then (4.4) has a unique strong solution and consequently a € Ay . O

12



Example 4.5 (Piecewise constant coefficients) Let a =} anly, 7,.,) where {7, }n>0 C
T is a nondecreasing sequence of F—stopping times with 79 = 0, 7, T o0 as n — oo, and
ap € F, with values in S;O for all n. Again (4.4) has a unique strong solution and a € Ayy.

This example is in fact more involved than it looks like, mainly due to the presence of

the stopping times. We relegate its proof to the Appendix. O

4.3 Support of P

In this subsection, we collect some properties of measures that are constructed in the pre-
vious subsection. We fix a subset A C Ay, and denote by P := {P* : a € A} the

corresponding subset of Pyy. In the sequel, we may also say
a property holds A—quasi surely if it holds P—quasi surely.

For any a € A and any F¥ —stopping time 7 € 77, let

t t 1
= | {/ dsds :/ asds, for all t € [0,7 + —]}. (4.9)
n>1 Y0 0 n
It is clear that
Q% e FL, Q% is non-increasing in t, 4, =0Qf, and P(Q%) = 1. (4.10)

We next introduce the first disagreement time of any a,b € A, which plays a central role in

t t
gb ;:inf{tzoz/ asdssé/ bsds},
0 0

and, for any FP—stopping time 7 € 77, the agreement set of a and b up to 7

Section 5:

QP = {7 < 0P} U {F = 0% = oo}
Here we use the convention that inf @ = co. It is obvious that
9ot e TP, Q¥ e FL and Q2N Q% c 2P, (4.11)

Remark 4.6 The above notations can be extended to all diffusion processes a,b € A. This

will be important in Lemma 4.12 below. O

4.4 Separability

We are now in a position to state the restrictions needed for the main aggregation result
Theorem 5.1.
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Definition 4.7 A subset Ay C Ay is called a generating class of diffusion coefficients if
(i) Ao satisfies the concatenation property: aljg ) + blj o) € Ag for a,b € Ao, t > 0.
(ii) Ag has constant disagreement times: for all a,b € Ag, 6% is a constant or, equiva-
lently, Q?’b =0 or Q forall t > 0.

We note that the concatenation property is standard in the stochastic control theory in
order to establish the dynamic programming principle, see, e.g. page 5 in [14]. The constant
disagreement times property is important for both Lemma 5.2 below and the aggregation
result of Theorem 5.1 below. We will provide two examples of sets with these properties,

after stating the main restriction for the aggregation result.

Definition 4.8 We say A is a separable class of diffusion coefficients generated by Ag if
Ag C Aw is a generating class of diffusion coefficients and A consists of all processes a of

the form,

00 00
a = ZZG?IEZL]‘[Tn,Tn+1)’ (412)

n=0 i=1
where (a'); , C Ao, (Tn)n C T is nondecreasing with 79 = 0 and
e inf{n: 7, = o0} < oo, 7, < Tpy1 whenever 7,, < oo, and each 7, takes at most
countably many values,

e for each n, {El',i > 1} C F;, form a partition of €.

We emphasize that in the previous definition the 7,’s are F—stopping times and E[' €

F+, - The following are two examples of generating classes of diffusion coefficients.

Example 4.9 Let Ay C A be the class of all deterministic mappings. Then clearly Ay C
Ap and satisfies both properties (the concatenation and the constant disagreement times

properties) of a generating class. O

Example 4.10 Recall the set Q defined in (4.8). Let Dy be a set of deterministic Lebesgue
measurable functions o : Q — S;O satisfying,

- ¢ is uniformly Lipschitz continuous in x under L>-norm, and o2(-,0) € A and

- for each x € C (R+,Rd) and different 01,09 € Dy, the Lebesgue measure of the set

A(oq,09,%) is equal to 0, where

A(o1,00,%) = {t co1(t x[j,) = 02(t,x|[0,t})}'

Let D be the class of all possible concatenations of Dy, i.e. o € D takes the following form:
o
o(t,x) = Zai(t,x)l[thtiﬂ)(t), (t,x) € Q,
i=0
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for some sequence t; T oo and o; € Dy, i > 0. Let Ag := {02(t, B.) : 0 € D}. It is immediate
to check that Ag C Ay and satisfies the concatenation and the constant disagreement times

properties. Thus it is also a generating class. O
We next prove several important properties of separable classes.

Proposition 4.11 Let A be a separable class of diffusion coefficients generated by Ag.
Then A C Aw, and A-quasi surely is equivalent to Ag-quasi surely. Moreover, if Ay C A ppp,
then A C Augp-

We need the following two lemmas to prove this result. The first one provides a conve-

nient structure for the elements of A.

Lemma 4.12 Let A be a separable class of diffusion coefficients generated by Agy. For any
a € A and F-stopping time T € T, there exist 1 < T € T, a sequence {a,,n > 1} C Ay, and
a partition {E,,n > 1} C Fr of Q, such that T > 7 on {1 < oo} and

a; = Zan(t)lEn forall t<T.

n>1

In particular, E, C QF" and consequently U,Q7"" = Q. Moreover, if a takes the form

(4.12) and T > 7, then one can choose T > Tp41.

The proof of this lemma is straightforward, but with technical notations. Thus we postpone
it to the Appendix.

We remark that at this point we do not know whether a € Ay,. But the notations %%
and Q2" are well defined as discussed in Remark 4.6. We recall from Definition 4.1 that
P € P(r, 72, P! a) means P is a weak solution of (4.4) on [7{, 7] with coefficient a and

initial condition PL.

Lemma 4.13 Let 71,75 € T with 1y < 7, {a’,i > 1} C Aw (not necessarily in Aw)
and {E;,i > 1} C F,, be a partition of Q. Let P be a probability measure on F,, and
P! € P(1y,79,P% a’) fori > 1. Define

P(E) = ZPi(Eﬂ E;) forall E€F, and a;:= ZailEi, t € [11, 7).
i>1 i>1

Then P € P(11,72,P% a).

Proof. Clearly, P = P° on Fr . It suffices to show that both B, and BtBtT — f:l asds are

P-local martingales on |11, 73].
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By a standard localization argument, we may assume without loss of generality that all
the random variables below are integrable. Now for any m < 73 < 74 < 7% and any bounded

random variable n € F,, we have

EP[(BM - BTS)U] = ZEPZ |:(BT4 - BT3)771E1}
1>1
= Y B [ET(Br, - BylFy Jnls | =o0.
1>1

Therefore B is a P-local martingale on [y, 7»]. Similarly one can show that B; B} — ffl asds

is also a P-local martingale on |11, T2]. O

Proof of Proposition 4.11. Let a € A be given as in (4.12).

(i) We first show that a € Aw. Fix 01,05 € T with ; < 05 and a probability measure P°
on Fy,. Set

To:=61 and 7, := (1, VO)Aby, n>1.

We shall show that P (61,02, P% a) is a singleton, that is, the (4.4) on [0y, 03] with coefficient
a and initial condition P has a unique weak solution. To do this we prove by induction on
n that P(7y, 7n, P, a) is a singleton.

First, let n = 1. We apply Lemma 4.12 with 7 = 7y and choose 7 = 7;. Then,
ag = Y~ ai(t)1Eg, for all t < 71, where a; € Ay and {E;,i > 1} C F5, form a partition of
Q. For i_Z 1, let P% be the unique weak solution in P (7, 71, PY, a;) and set

PYE) = > PY(ENE) forall EcFs.
i>1
We use Lemma 4.13 to conclude that P%® e 73(7:0,7:1,19’0,(1). On the other hand, suppose
P € P(7,71,P%, a) is an arbitrary weak solution. For each i > 1, we define P* by

PYE) :=P(ENE;)+PY(EN(E)) forall E € Fs.

We again use Lemma 4.13 and notice that alg, + a;l(gye = a;. The result is that P! €
P(70,71,P% a;). Now by the uniqueness in P (7, 71, P", a;) we conclude that P! = P%¢ on
F:. This , in turn, implies that P(E N E;) = PYE N E;) for all E € F7 and i > 1.
Therefore, P(E) = Y., PY(E N E;) = PY%(E) for all E € F7,. Hence P(7y,71,P,a) is a
singleton. -

We continue with the induction step. Assume that P (7, 7,,P’,a) is a singleton, and
denote its unique element by P". Without loss of generality, we assume 7,, < 75, +1. Follow-

ing the same arguments as above we know that P(7,, 7,41, P", a) contains a unique weak
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solution, denoted by P"*!. Then both B; and BtBtT — fg asds are P"*1-local martingales on
[70, 7] and on [7,, Ty 1]. This implies that P+ € P (5, 7uy1, PP, a). On the other hand, let
P € P(%, Fui1,P?,a) be an arbitrary weak solution. Since we also have P € P (7, 7, PY, a),
by the uniqueness in the induction assumption we must have the equality P = P" on F5,.
Therefore, P € P(7n, Tnr1, P?,a). Thus by uniqueness P = P"*! on F:

Tn+1"

This proves the
induction claim for n + 1.

Finally, note that P™(E) = P*(E) for all E € F;, and m > n. Hence, we may define
P>(E) :=P"(E) for E € F5,. Since inf{n : 7, = 0o} < oo, then inf{n : 7, = #2} < oo and
thus Fp, = Vp>1F5,. So we can uniquely extend P> to Fy,. Now we directly check that
P> € P(61,62,P% a) and is unique.

(ii) We next show that P*(E) = 0 for all Ag—polar set E. Once again we apply Lemma
4.12 with 7 = oo. Therefore a; = >, a;(t)1p, for all t > 0, where {a;,i > 1} C Ap and
{E;,i > 1} C F form a partition of Q. Now for any Ag-polar set F,

PYE) =Y PYENE)=>» P“ENE,)=0.
i>1 121

This clearly implies the equivalence between A-quasi surely and Ag-quasi surely.

(iii) We now assume Ay C Ayre and show that a € Aygp. Let M be a P%-local martingale.
We prove by induction on n again that M has a martingale representation on [0, 7,,] under
P for each n > 1. This, together with the assumption that inf{n : 7,, = co} < oo, implies
that M has martingale representation on R, under P® and thus proves that P* € Aygp.
Since 1y = 0, there is nothing to prove in the case of n = 0. Assume the result holds on
[0,7,]. Apply Lemma 4.12 with 7 = 7, and recall that in this case we can choose the 7 to
be 7,+1. Hence a; = Zi21 a;(t)1g,, t < Tpy1, where {a;,i > 1} C Ap and {E;,i > 1} C F,

form a partition of 2. For each i > 1, define

M} = [Mypr,,, — M,

n

1151, o0)(t) forall ¢>0.

Then one can directly check that M? is a P%-local martingale. Since a; € Ay C Awge,
there exists H' such that dM} = H}dB;, P%-almost surely. Now define H; := > ;o H{1p,,
Tn <t < Tpy1. Then we have dM; = HydBy, 17, < t < Tp41, P*-almost surely. O

We close this subsection by the following important example.

Example 4.14 Assume Ay consists of all deterministic functions a : Ry — S7 Y taking the
form a; = zg‘:_ol at; L t,01) + at, 11, 00) Where ; € Q and ay;, has rational entries. This
is a special case of Example 4.9 and thus Ay C Aw. In this case Ag is countable. Let
Ao = {a;}i>1 and define P := S22 27"P%. Then P is a dominating probability measure
of all P* a € A, where A is the separable class of diffusion coefficients generated by Aj.
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Therefore, A-quasi surely is equivalent to P-almost surely. Notice however that A is not

countable. O

5 Quasi-sure aggregation
In this section, we fix
a separable class A of diffusion coefficients generated by Ay (5.1)

and denote P := {P? a € A}. Then we prove the main aggregation result of this paper.
For this we recall that the notion of aggregation is defined in Definition 3.1 and the

. b . . .
notations 0% and Qf_ are introduced in subsection 4.3.

Theorem 5.1 (Quasi sure aggregation) For A satisfying (5.1), let {X* a € A} be
a family of I@'P—progressively measurable processes. Then there exists a unique (P—gq.s.)

P-aggregator X if and only if {X? a € A} satisfies the consistency condition
X=X P — almost surely on [0,0%°) for any a € Ay and b € A. (5.2)

Moreover, if X% is cadlag P*-almost surely for all a € A, then we can choose a P-q.s.

cadlag version of the P-aggregator X.

We note that the consistency condition (5.2) is slightly different from the condition (3.4)
before. The condition (5.2) is more natural in this framework and is more convenient to
check in applications. Before the proof of the theorem, we first show that, for any a,b € A,

the corresponding probability measures P* and P? agree as long as a and b agree.

Lemma 5.2 For A satisfying (5.1) and a,b € A, 0% is an F-stopping time taking countably

many values and
PYENQLY) =PY(ENQLY) forall 7€ T” and E € FL. (5.3)

Proof. (i) We first show that #%? is an F-stopping time. Fix an arbitrary time ¢o. In view

of Lemma 4.12 with 7 = tg, we assume without loss of generality that

a; = Zan(t)lEn and b = an(t)lEn for all ¢t < T,

n>1 n>1

where 7 > tg, an, b, € Ag and {E,,n > 1} C F, form a partition of Q. Then

{6 < toy = J [{e%vbn <t} N En] .

18



By the constant disagreement times property of Ag, 8%+ is a constant. This implies that
{ganbn < t0} is equal to either () or Q. Since E, € Fy,, we conclude that {4 < to} € F,
for all ¢y > 0. That is, #*? is an F-stopping time.

(ii) We next show that #%° takes only countable many values. In fact, by (i) we may now

apply Lemma 4.12 with 7 = #%®. So we may write

a; = Zdn(t)lﬁn and b = Zl;n(t)lén for all ¢ <6,

n>1 n>1

where 6 > 0% or § = 0% = 0o, ay,, b, € Ay, and {En,n > 1} C Fpap form a partition of
Q. Then it is clear that §%0 = §:bn on E,, for all n > 1. For each n, by the constant
disagreement times property of Ag, 8% is constant. Hence §%° takes only countable many

values.

(iii) We now prove (5.3). We first claim that,
EN Qg’b € |:.7:9a,b v NE (foo)] for any E € F7. (5.4)
Indeed, for any ¢t > 0,

ENQYn{g** <t} = En{r<"n{g*’ <t}
= Une<enng<i- Sy <.
m

m>1
By (i) above, {#%* <t} € F;. For each m > 1,
1 al a a
En{r <o yn{7 <t— —}e Jﬁ% c fj_% VNP (Fy) € Fi VN (Fu),

and (5.4) follows.
By (5.4), there exist E%, Eb e Fpap, © = 1,2, such that

B c EnQ2’ c B*?, EM ¢ EnQ® € BY?, and PYEV?\E™) = PY(E"2\EP!) = 0.
Define E! := E%!' U E®! and E? := E“2 N E»2, then
EYE* € Fpov, E'C ECE? and PYE*\E') =P(E\E") =0.

Thus P*(ENQ%") = P4(E?) and PY(ENQ2Y) = PY(E?). Finally, since E? € Fyas, following
the definition of P* and P?, in particular the uniqueness of weak solution of (4.4) on the
interval [0,0%], we conclude that P*(E?) = P?(E?). This implies (5.3) immediately. O

Remark 5.3 The property (5.3) is crucial for checking the consistency conditions in our

aggregation result in Theorem 5.1. We note that (5.3) does not hold if we replace the
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completed o—algebra F¢ N F¥ with the augmented o—algebra F. N ?ﬁ. To see this, let
d=1,a;:=1, by := 1+ 1}; ,)(t). In this case, 64> = 1. Let 7 := 0, E := Qf. One can
easily check that Qg’b = Q, PY(E) = 1, P(E) = 0. This implies that £ € Fo N ?8 and
E C Qg’b. However, P4(E) = 1 # 0 = P*(E). See also Remark 2.3. O

Proof of Theorem 5.1. The uniqueness of P—aggregator is immediate. By Lemma 5.2 and
the uniqueness of weak solutions of (4.4) on [0,0%"], we know P¢ = P® on Fyas. Then the
existence of the P-aggregator obviously implies (5.2). We now assume that the condition
(5.2) holds and prove the existence of the P-aggregator.

We first claim that, without loss of generality, we may assume that X is cadlag. Indeed,
suppose that the theorem holds for cadlag processes. Then we construct a P-aggregator for
a family {X“ a € A}, not necessarily cadlag, as follows:

- If | X% < R for some constant R > 0 and for all a € A, set Y := fg X%ds. Then,
the family {Y% a € A} inherits the consistency condition (5.2). Since Y is continuous for
every a € A, this family admits a P-aggregator Y. Define X; := lim. g %[Ytﬁ —Y;]. Then
one can verify directly that X satisfies all the requirements.

- In the general case, set X% := (—R)V X?AR. By the previous arguments there exists
P-aggregator X7 of the family {X% a € A} and it is immediate that X := limp .o X
satisfies all the requirements.

We now assume that X® is cadlag, P%-almost surely for all a € A. In this case, the

consistency condition (5.2) is equivalent to
X! = Xf, 0 <t< 0, P%almost surely for any a € Ay and b € A. (5.5)

Step 1. We first introduce the following quotient sets of Ag. For each ¢, and a,b € Ay,
we say a ~y b if Qf’b = Q (or, equivalently, the constant disagreement time #%* > t). Then
~¢ is an equivalence relationship in Ag. Thus one can form a partition of 4y based on ~y.
Pick an element from each partition set to construct a quotient set Ay(t) C Ap. That is,
for any a € Ay, there exists a unique b € Ag(t) such that » — Q. Recall the notation Qf
defined in (4.9). By (4.11) and the constant disagreement times property of Ay, we know
that {Qf,a € Ay(t)} are disjoint.

Step 2. For fixed t € R, define

&(w) = Z X (w)lgg(w) forall we Q. (5.6)
a€Ao(t)

The above uncountable sum is well defined because the sets {Q2f,a € Ay(t)} are disjoint.

In this step, we show that

& is F/-measurable and & = X, P%almost surely for all a € A. (5.7)
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We prove this claim in the following three sub-cases.

2.1. For each a € Ay(t), by definition & = X on Qf. Equivalently {& # X[} C (Q¢)°.
Moreover, by (4.10), P*((Q2¢)) = 0. Since Qf € F;" and F? is complete under P?, & is
Fl-measurable and P%(§ = X7') = 1.

2.2. Also, for each a € Ay, there exists a unique b € Ay(t) such that a ~; b. Then
& = XP on Q. Since Qta’b = Q, it follows from Lemma 5.2 that P* = P® on F," and
Pe(QY) = P*(Q0) = 1. Hence P*(& = X?) = 1. Now by the same argument as in the first
case, we can prove that & is Ff-measurable. Moreover, by the consistency condition (5.8),
P4(X{ = XP) = 1. This implies that P*(¢§ = X) = 1.

2.3. Now consider a € A. We apply Lemma 4.12 with 7 = ¢t. This implies that there exist
a sequence {a;,j > 1} C Ag such that Q = sztha’aj. Then

a#x = U [{gt £ X} N Q;““f].

Jj=1
Now for each j > 1,
(e Xepnap® ¢ ({6 £ X7y 00 U [0 # X7y nap ],
Applying Lemma 5.2 and using the consistency condition (5.5), we obtain
(P 4 x0o) = (05 4 )
= P ({XP £ X7} {t<oms}) =o.

Moreover, for a; € Ag, by the previous sub-case, {& # X’} € N P (FF). Hence there
exists D € F;" such that P% (D) = 0 and {& # X;”} C D. Therefore

{6 # X NP ¢ DNQY™ and PYDNQYY) =P%(DNQSY) =0.

This means that {& # X7} N QY'Y € NP (F). All of these together imply that {& #
X2} € NP (F). Therefore, & € F# and P(& = X)) = 1.

Finally, since & € F} for all a € A, we conclude that & € .7:}73 . This completes the proof
of (5.7).
Step 3. For each n > 1, set t}' := %,i > 0 and define

o0 o0
XO" = X1y + > Xjhlgn g forallac A and X" =&l + > &nlgn |,
i=1 i=1
where & is defined by (5.6). Let Fn .= {]::Zil,t > 0}. By Step 2, X*™ X" are [Fn-

progressively measurable and P*(X}' = X" t > %) =1 for all a € A. We now define

X := lim X"

n—oo
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Since F" is decreasing to FP and F” is right continuous, X is I@'P—progressively measurable.

Moreover, for each a € A,
p = X4t > i D = X"t > is cadlag}.
(X, = X7,t > 0} [{X is cadlag} 2 [ﬂ{xn X0 > o}} ()X is cadlag)
n>1

Therefore X = X and X is cadlag, P*almost surely for all ¢ € A. In particular, X is
cadlag, P-quasi surely. O

Let 7 € 77 and {{* a € A} be a family of ]:'f—measurable random variables. We say an
]}f -measurable random variable £ is a P-aggregator of the family {£%,a € A} if £ = &%, P9-
almost surely for all a € A. Note that we may identify any .7:"77_) -measurable random variable
& with the I@'P—progressively measurable process X; := {11z ). Then a direct consequence

of Theorem 5.1 is the following.

Corollary 5.4 Let A be satisfying (5.1) and 7 € TP. Then the family of ﬁf—measumble
random wvariables {£*,a € A} has a unique (P-q.s.) P-aggregator & if and only if the

following consistency condition holds:

=€ on Q?’b, P%-almost surely for any a € Ay and b € A. (5.8)

For the next result, we recall that the P-Brownian motion W¥ is defined in (4.2). As a

direct consequence of Theorem 5.1, the following result defines the P-Brownian motion.

Corollary 5.5 For A satisfying (5.1), the family (W™ a € A} admits a unique P-aggregator
W. Since WP is a P%-Brownian motion for every a € A, we call W a P-universal Brownian

motion.

Proof. Let a,b € A. For each n, denote
t
- inf{t >0 / las|ds > n} Ao,
0

Then B.,,, is a P’-square integrable martingale. By standard construction of stochastic

integral, see e.g. [11] Proposition 2.6, there exist F-adapted simple processes Y™ such that

. pof [T =512
lim E {/ laz (B2 —as ?)| ds} =0. (5.9)
0

m—00

Define the universal process

t
Wi = / g dB,.
0
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Then

2
W — wE } —0. (5.10)

lim pr{ sup
By Lemma 2.4, all the processes in (5.9) and (5.10) can be viewed as F-adapted. Since
7, < %% applying Lemma 5.2 we obtain from (5.9) and (5.10) that
2
}=o.

Tnoo1 1 .
lim EP {/ a3 (@ —a)Pasy =0, im B sup [wpm -
0

m—00 m—00 0<t<my

The first limit above implies that
b,m a
Wy =Wy

2
=

which, together with the second limit above, in turn leads to

. a
lim EP { sup

wE :thb, 0<t<m, P*—as.
Clearly 7, T 8% as n — co. Then
WE =WE', 0<t<6*t, P*—as.

That is, the family {W** a € A} satisfies the consistency condition (5.2). We then apply
Theorem 5.1 directly to obtain the P—aggregator W. O

The P—Brownian motion W is our first example of a stochastic integral defined simul-

taneously under all P, a € A:

t
W, = /a;l/Qst, t>0, P—aqs. (5.11)
0

We will investigate in detail the universal integration in Section 6.

Remark 5.6 Although a and WF" are F-progressively measurable, from Theorem 5.1 we
can only deduce that a and W are I@P—progressively measurable. On the other hand, if
we take a version of WF* that is progressively measurable to the augmented filtration F*,
then in general the consistency condition (5.2) does not hold. For example, let d = 1,
ar :=1, and by := 14 1} 5y(t), t > 0, as in Remark 5.3. Set W/ (w) := By(w) + 1(qa)e(w)
and thb(w) = By(w) + [Bt(w) — B1(w)]1}1,50)(t). Then both WP and WP are F* N F-
progressively measurable. However, 0% = 1, but P*(W}" = W[ b) = P*(Q¢) = 0, so we do
not have WP = WP Pb-almost surely on [0, 1]. O
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6 Quasi-sure stochastic analysis

In this section, we fix again a separable class A of diffusion coefficients generated by Ay,
and set P := {P* : a € A}. We shall develop the P-quasi sure stochastic analysis. We
emphasize again that, when a probability measure P € P is fixed, by Lemma 2.4 there is
no need to distinguish the filtrations F, FF, and T

We first introduce several spaces. Denote by L° the collection of all ﬁg—measurable
random variables with appropriate dimension. For each p € [1,00] and P € P, we denote

by LP(IP) the corresponding ILP space under the measure P and

P = [ LP(P).
PeP
Similarly, HO = HO(Rd) denotes the collection of all R? valued I@P—progressively measurable
processes. HP(P?) is the subset of all H € HY satisfying

a T p/2
1B, 110 ey = B [(/O (a2 H,%ds) "] < o0 forall T >0,

and H? (P%) is the subset of H® whose elements satisfy fOT ]ai/ °H s|2ds < oo, P%almost

surely, for all "> 0. Finally, we define

P = (HP(P) and Hj, := (| Hp.(P).
PeP PeP
The following two results are direct applications of Theorem 5.1. Similar results were
also proved in [5, 6], see e.g. Theorem 2.1 in [5], Theorem 36 in [6] and the Kolmogorov

criterion of Theorem 31 in [6].

Proposition 6.1 (Completeness) Fizp > 1, and let A be satisfying (5.1).

(i) Let (X)), C LP be a Cauchy sequence under each P*, a € A. Then there exists a unique
random variable X € P such that X,, — X in LP(P*, FF) for every a € A.

(ii) Let (X,)n C HP be a Cauchy sequence under the norm || - |7 5p (pay for all T > 0 and
a € A. Then there exists a unique process X € HP such that X, — X under the norm
| |7 me@ay for all T >0 and a € A.

Proof. (i) By the completeness of LP(P® FT), we may find X¢ € LP(P%, F7) such that
X, — X%in IU’(IP’“,]:'ZZ). The consistency condition of Theorem 5.1 is obviously satisfied
by the family {X“, a € A}, and the result follows. (ii) can be proved by a similar argument.

g
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Proposition 6.2 (Kolmogorov continuity criteria) Let A be satisfying (5.1), and X
be an FP—pTogressively measurable process with values in R™. We further assume that for
somep>1, Xy € Lp for allt > 0 and satisfy

EF [| X}, — X,|P] < colt — s[5 for some constants cq,e, > 0.

Then X admits an I@'P—progressively measurable version X which is Holder continuous, P-

q.s. (with Hélder exponent o, < £4/p, P*-almost surely for every a € A).

Proof. We apply the Kolmogorov continuity criterion under each P*, a € A. This yields a
family of F -progresswely measurable processes { X a € A} such that X* = X P%-almost
surely, and X is Holder continuous with Holder exponent «, < &,/p, P*-almost surely for
every a € A. Also in view of Lemma 2.4, we may assume without loss of generality that X
is I@P—progressively measurable for every a € A. Since each X is a P*modification of X
for every a € A, the consistency condition of Theorem 5.1 is immediately satisfied by the
family {X? a € A}. Then, the aggregated process X constructed in that theorem has the
desired properties. O

Remark 6.3 The statements of Propositions 6.1 and 6.2 can be weakened further by al-
lowing p to depend on a. O

We next construct the stochastic integral with respect to the canonical process B which is
simultaneously defined under all the mutually singular measures P*, a € A. Such construc-
tions have been given in the literature but under regularity assumptions on the integrand.

Here we only place standard conditions on the integrand but not regularity.

Theorem 6.4 (Stochastic integration) For A satisfying (5.1), let H € Hloc be given.
Then, there exists a unique (P-q.s.) Fp—progressz’vely measurable process M such that M is

a local martingale under each P* and
t
M, = / HdBg, t >0, P%almost surely for all a € A.
0

If in addition H € H2, then for every a € A, M is a square integrable P*-martingale.
Moreover, EF*[M?] = EF* [f(f atH, %ds] for all t > 0.

Proof. For every a € A, the stochastic integral M := fot H,dB; is well-defined P%-almost
surely as a FPa—progreSSively measurable process. By Lemma 2.4, we may assume without
loss of generality that M? is [FP-adapted. Following the arguments in Corollary 5.5, in
particular by applying Lemma 5.2, it is clear that the consistency condition (5.2) of Theorem
5.1 is satisfied by the family {M®* a € A}. Hence, there exists an aggregating process
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M. The remaining statements in the theorem follows from classical results for standard
stochastic integration under each P%. O

We next study the martingale representation.

Theorem 6.5 (Martingale representation) Let A be a separable class of diffusion co-
efficients generated by Ay C Aypp. Let M be an I@P—pmgressz'vely measurable process which
is a P—quasi sure local martingale, that is, M is a local martingale under P for all P € P.

Then there exists a unique (P-q.s.) process H € H?Oc such that
t
M; = M, +/ HydBs;, t>0, P—gq.s..
0

Proof. By Proposition 4.11, A C Aygp. Then for each P € P, all P—martingales can be
represented as stochastic integrals with respect to the canonical process. Hence, there exists

unique (P—almost surely) process H” € H? (P) such that
M; = My + /Ot Hdes, t >0, P-almost surely.
Then the quadratic covariation under P satisfies
(M,B)f)b = /Ot HYa,ds, t >0, P— almost surely. (6.1)

Now for any a,b € A, from the construction of quadratic covariation and that of Lebesgue

integrals, following similar arguments as in Corollary 5.5 one can easily check that
/Ot H4,ds = (M, B} = (M,B)f)b = /Ot H]spbdsds, 0<t<6® P?— almost surely.
This implies that

HPal[Oﬂa,b) = HPbl[Oﬂa,b), dt x dP”* — almost surely.

That is, the family {H",P € P} satisfies the consistency condition (5.2). Therefore, we
may aggregate them into a process H. Then one may directly check that H satisfies all the

requirements. O

There is also P-quasi sure decomposition of super-martingales.

Proposition 6.6 (Doob-Meyer decomposition) For A satisfying (5.1), assume an [FP-
progressively measurable process X is a P-quasi sure supermartingale, i.e., X is a P%-
supermartingale for all a € A. Then there exist a unique (P-q.s.) FP -progressively measur-
able processes M and K such that M is a P-quasi sure local martingale and K is predictable
and increasing, P-q.s., with My = Ko =0, and Xy = Xog+ My — Ky, t > 0, P-quasi surely.

If further X is in class (D), P-quasi surely, i.e. the family {X;,7 € f} is P-uniformly

integrable, for oll P € P, then M is a P-quasi surely uniformly integrable martingale.
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Proof. For every P € A, we apply Doob-Meyer decomposition theorem (see e.g. Dellacherie-
Meyer [4] Theorem VII-12). Hence there exist a P-local martingale M* and a P-almost
surely increasing process KT such that M(])P = Kg = 0, P-almost surely. The consistency
condition of Theorem 5.1 follows from the uniqueness of the Doob-Meyer decomposition.

Then, the aggregated processes provide the universal decomposition. O

The following results also follow from similar applications of our main result.

Proposition 6.7 (Ité’s formula) For A satisfying (5.1), let A, H be FP -progressively
measurable processes with values in R and R%, respectively. Assume that A has finite varia-
tion over each time interval [0,t] and H € Hlro' Fort >0, set X; := A; + f(f H,dBs. Then
for any C? function f: R — R, we have

t t
f(Xy) = f(AO)—i—/O f'(XS)(dAS—i—HSdBS)—i—%/O HYa,H,f"(X,)ds, t >0, P-g.s..

Proof. Apply 1t6’s formula under each P € P, and proceed as in the proof of Theorem 6.4.
O

Proposition 6.8 (local time) For A satisfying (5.1), let A, H and X be as in Proposition
6.7. Then for any x € R, the local time {L{,t > 0} exists P-quasi surely and is given by,

¢
2L = |Xt_x|—|X0—g:|—/ sgn(Xs — x)(dAs + HydBg), t >0, P — g.s..
0

Proof. Apply Tanaka’s formula under each P € P and proceed as in the proof of Theorem
6.4. O

Following exactly as in the previous results, we obtain a Girsanov theorem in this context

as well.

Proposition 6.9 (Girsanov) For A satisfying (5.1), let ¢ be I@‘P—progressively measurable
and f(f |ps|?ds < oo for all t >0, P-quasi surely. Let

t 1 [t ~ t
7, = exp < / LA / |¢s|2ds) and W, := W, - / bods, £ >0,
0 0 0

where W is the P-Brownian motion of (5.11). Suppose that for each P € P, E¥[Zr] =1 for
some T > 0. On Fr we define the probability measure QF by dQF = ZpdP. Then,

QoW =PoW™! for every PeP,

i.e. W is a QF-Brownian motion on [0,T,] for every P € P.
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We finally discuss stochastic differential equations in this framework. Set Q™ := {(¢,x) :
t>0,x € C[0,t]™}. Let b,o be two functions from ©Q x Q™ to R™ and M,, 4(R), respec-
tively. Here, M, 4(R) is the space of m x d matrices with real entries. We are interested
in the problem of solving the following stochastic differential equation simultaneously under
all P € P,

t t
X, =X +/ bs(X,)ds +/ os(X,)dBs, t>0, P—qs., (6.2)
0 0
where X, := (X5,5 <1).

Proposition 6.10 Let A be satisfying (5.1), and assume that, for everyP € P and 1T € T,
the equation (6.2) has a unique F¥ -progressively measurable strong solution on interval [0, 7).

Then there is a P-quasi surely aggregated solution to (6.2).

Proof. For each P € A, there is a P-solution X* on [0,00), which we may consider in its
Fp—progressively measurable version by Lemma 2.4. The uniqueness on each [0,7],7 € T

implies that the family {X¥,P € P} satisfies the consistency condition of Theorem 5.1. O

7 An application

As an application of our theory, we consider the problem of super-hedging contingent claims
under volatility uncertainty, which was studied by Denis and Martini [5]. In contrast with
their approach, our framework allows to obtain the existence of the optimal hedging strategy.
However, this is achieved at the price of restricting the non-dominated family of probability
measures.

We also mention a related recent paper by Fernholz and Karatzas [8] whose existence
results are obtained in the Markov case with a continuity assumption on the corresponding
value function.

Let A be a separable class of diffusion coefficients generated by Agp, and P := {P? :
a € A} be the corresponding family of measures. We consider a fixed time horizon, say
T = 1. Clearly all the results in previous sections can be extended to this setting, after
some obvious modifications. Fix a nonnegative Fi—measurable real-valued random variable

&. The superhedging cost of £ is defined by
1
v(§) = inf {x: x—l—/ H,dBs > &, P-q.s. for some H € H},
0

where the stochastic integral fo H,dB; is defined in the sense of Theorem 6.4 and H € HY
belongs to H if and only if

1 )
/ HtT&thdt < 0o P-q.s. and / H.dB; is a P-q.s. supermartingale.
0 0
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We shall provide a dual formulation of the problem v(§) in terms of the following dynamic

optimization problem,
Vi = ess sup 'EF’ [€|F;], Phas., ac A 7T, (7.1)
beA(T,a)
where

A(f,a) :={be A: 9% > 2 or 9% =+ = 1}

Theorem 7.1 Let A be a separable class of diffusion coefficients generated by Ao C Aygp-

Assume that the family of random variables {VE,T € f} 1s uniformly integrable under all
PeP. Then

v(€) = V() == sup Vg Lo (pa- (7.2)
acA

Moreover, if v(§) < oo, then there exists H € H such that v(§) + fol Hy dBs > &, P-q.s..

To prove the theorem, we need the following (partial) dynamic programming principle.

Lemma 7.2 Let A be satisfying (5.1), and assume V(£) < oo. Then, for any 71,73 € T

with 7A'1 S ’722,
Vi > EF’ [nglﬁﬁ] ,P*-almost surely for all a € A and b € A(a,71).

Proof. By the definition of essential supremum, see e.g. Neveu [12] (Proposition VI-1-1),
there exist a sequence {b;,j > 1} C A(b, 72) such that V%Izb = Sup;>; EP” €| F%,], PP-almost
surely. For n > 1, denote V%bg’" = SUP<jcp EP"” [€|F3,]). Then V%bg’" 7 ng, PP-almost
surely as n — co. By the monotone convergence theorem, we also have EP’ [Vé’nui}l] T
pr[V£b|ﬁﬁ], PY-almost surely, as n — oco. Since b € A(a,7,), P’ = P* on F;,. Then
EP’ [V%I;’"\ﬁﬁ] 1 EP’ [ng[ﬁﬁ], P¢-almost surely, as n — oo. Thus it suffices to show that

Vfﬂfa > EF [V;;’nui}l], P?-almost surely for all n > 1. (7.3)

Fix n and define

By Lemma 5.2, 8% are F-stopping times taking only countably many values, then so is 92.
Moreover, since b; € A(b, 72), we have either 6% > 5 or 6% = 75 = 1. Following exactly the

same arguments as in the proof of (5.4), we arrive at

Fi C (fgz vN“”(fQ).
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Since P% = PP on .7:}2, without loss of generality we may assume the random variables
EP” €| F5,] and V;;’n are Fg -measurable. Set A; := {prj (€| F5] = V;;’"} and A; := A,
flj = Aj\ Uic; Ai, 2 < j < n. Then Ay, A, are Fop-measurable and form a partition
of 2. Now set

B( ) b 072) +Zb 1~j1['?2,1}(t)'

We claim that b € A. Equivalently, we need to show that b takes the form (4.12). We know
that b and b; have the form

:iibf’ 1gomle oy and by ZZbgm [T R

m=0 i=1 m=0 =1

with the stopping times and sets as before. Since b;(t) = b(t) for t < 6% and j =1,--- ,n,

B(t) - 1[09b +Zl b 1[917 }()

= E E 2™ o, 1
i E OL70, <08} [T A0SO, L ABY)
m=0 =1
n (o]

o
bj’ml = . 1. . )
+ 2 2 D M et oo kvt v

j=1m=0 i=1

By Definition 4.8, it is clear that 790 A 62 and v 6% are F-stopping times and take only
countably many values, for all m > 0 and 1 < j <mn. For m > 0 and 1 < j < n, one can
easily see that Eom N{rd <l is Fo o ng»-measurable and that EJ o N A;n {7 S > 00
is ]:Trjn v ~measurable. By ordering the stopping times 79 A 68 and TV 92 we prove our
claim th;t be A

It is now clear that b € A(b,7s) C A(a,71). Thus,

” 5 N b b S ~
VE 2 EP[IF] =B [EM )|
b o p -
= EP[SOE(e1, |50 |75
j=1
_ EPE 'ZEW [51[1]-"7:-?2] jﬁ-ﬁ]
L=
_ P van i ‘ f—ﬁ} :EPE[V%Z’" F»], P%almost surely.
7j=1

Finally, since PP =P on F;, and P’ = P% on F;,, we prove (7.3) and hence the lemma. O
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Proof of Theorem 7.1. We first prove that v(§) > V(). If v(§) = oo, then the inequality
is obvious. If v(§) < oo, there are z € R and H € H such that the process X; := :U—i—f(f H,dB,
satisfies X1 > &, P—quasi surely. Notice that the process X is a PP-supermartingale for
every b € A. Hence

x=Xo > EV[X|F] > EF[¢|Fy), PP —as. Ve A
By Lemma 5.2, we know that P* = P? on F, whenever a € A and b € A(0,a). Therefore,
z>EY (€| Fo], P%as..

The definition of V" and the above inequality imply that = > VO]Pa, P?-almost surely. This
implies that z > ||V" oo (pay for all @ € A. Therefore, x > V/(£). Since this holds for any
initial data x that is super-replicating £, we conclude that v(£) > V (£).

We next prove the opposite inequality. Again, we may assume that V(£) < co. Then
¢ e L. For each P € P, by Lemma 7.2 the family {VE 7 € ’ZA’} satisfies the (partial) dynamic
programming principle. Then following standard arguments (see e.g. [7] Appendix A2), we
construct from this family a cadlag (IAF'P, P)-supermartingale VP defined by,

VE .= @?rﬁt VE telo,1]. (7.4)

Also for each 7 € 7T, it is clear that the family {V%P,IP) € P} satisfies the consistency
condition (5.8). Then it follows immediately from (7.4) that {V;¥,P € P} satisfies the
consistency condition (5.8) for all ¢ € [0,1]. Since P-almost surely V¥ is cadlag, the family
of processes {VF P € P} also satisfy the consistency condition (5.2). We then conclude
from Theorem 5.1 that there exists a unique aggregating process V.

Note that V is a P-quasi sure supermartingale. Then it follows from the Doob-Meyer
decomposition of Proposition 6.6 that there exist a P-quasi sure local martingale M and
a P-quasi sure increasing process K such that My = Ky = 0 and Vi = Vo + M, — K,

€ [0,1), P-quasi surely. Using the uniform integrability hypothesis of this theorem, we
conclude that the previous decomposition holds on [0, 1] and the process M is a P-quasi
sure martingale on [0, 1].

In view of the martingale representation Theorem 6.5, there exists an Fp—progressively
measurable process H such that fol Hérdthdt < 0o and ‘Zg = VO + fg HydBs; — Ky, t > 0,
P-quasi surely. Notice that Vi, = & and Ky > Ky = 0. Hence Vo + fol Hy dBs > &, P-quasi
surely. Moreover, by the definition of V' (€), it is clear that V(€) > Vj, P-quasi surely. Thus
V() + fol HydBs > &, P-quasi surely.

Finally, since ¢ is nonnegative, V > 0. Therefore,

t t
V(e) +/ HydBs >V +/ H, B, >V, >0, P —gq.s.
0 0
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This implies that H € H, and thus V(£) > v(¢). O

Remark 7.3 Denis and Martini [5] require
a<a<a forall acA, (7.5)

for some given constant matrices a < @ in Sjo. We do not impose this constraint. In other
words, we may allow a = 0 and @ = co. Such a relaxation is important in problems of static
hedging in finance, see e.g. [2] and the references therein. However, we still require that
each a € A takes values in S;°. O

We shall introduce the set Ag C Ayge induced from strong formulation in Section 8.

When Ay C Ag, we have the following additional interesting properties.

Remark 7.4 If each P € P satisfies the Blumenthal zero-one law (e.g. if Ay C Ag by
Lemma 8.2 below), then V" is a constant for all a € A, and thus (7.2) becomes

(&) = V(§) =supVy
acA

Remark 7.5 In general, the value V(&) depends on A, then so does v(£). However, when

¢ is uniformly continuous in w under the uniform norm, we show in [16] that

1
sup Ep[g] = inf {x D —|—/ H,dBg > ¢, P-as. for all P € Pg, for some H € ﬂ} ,(7.6)
PePg 0

and the optimal superhedging strategy H exists, where H is the space of F-progressively
measurable H such that, for all P € Pg, fol Hg&thdt < 00, P-almost surely and fo H,dB;

is a P-supermartingale. Moreover, if 4 C Ag is dense in some sense, then
V(&) = v(€) = the Pg-superhedging cost in (7.6).

In particular, all functions are independent of the choice of A. This issue is discussed
in details in our accompanying paper [16] (Theorem 5.3 and Proposition 5.4), where we
establish a duality result for a more general setting called the second order target problem.
However, the set-up in [16] is more general and this independence can be proved by the

above arguments under suitable assumptions. O

8 Mutually singular measures induced by strong formulation

We recall the set Pg introduced in the Introduction as
Ps:={P¢:a € A} where P§:=Pjo (x4, (8.7)
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and X is given in (1.1). Clearly Ps C Py . Although we do not use it in the present paper,
this class is important both in theory and in applications. We remark that Denis-Martini
[5] and our paper [15] consider the class Py, while Denis-Hu-Peng [6] and our paper [17]
consider the class Pg, up to some technical restriction of the diffusion coefficients.

We start the analysis of this set by noting that

o is the quadratic variation density of X¢ and dB, = a; 7/?dX®, under Py.  (8.8)
Since B under P¢ has the same distribution as X under Py, it is clear that

the P¢-distribution of (B, a, W) is equal to the Po-distribution of (X, o, B).  (8.9)
In particular, this implies that

a(X*) = a(B), Po-as., a(B)=a(Wrs), Plas.,

— 8.10
and for any a € Ay (Pg), X is a strong solution to SDE (4.4) with coefficient a. (8.10)

Moreover we have the following characterization of Pg in terms of the filtrations.

_ _ —P _
Lemma 8.1 Pg = {]P’ € Py FW" = FP} .

Proof. By (8.8), a and B are Wpo—progressively measurable. Since F is generated by B,
we conclude that F C IFWPO. By completing the filtration we next obtain that Fe C WPO.
Moreover, for any o € A, it is clear that FX* C Fe. Thus, FWPO —F°. Now, we invoke
(8.9) and conclude A o for any P =P¢ € Pg.

Conversely, suppose P € Py be such that WP — 7. Then B = B(WEF) for some
measurable mapping 5 : Q — Sjo. Set o := (B.), we conclude that P = Pg. O

The following result shows that the measures P € Pg satisfy MRP and the Blumental

zero-one law.
Lemma 8.2 Pg C P and every P € Pg satisfies the Blumenthal zero-one law.

Proof. Fix P € Pg. We first show that P € Pyge. Indeed, for any (FP, [P)-local martingale
——P

M, Lemma 8.1 implies that M is a (FW® |P)-local martingale. Recall that WP is a P

Brownian motion. Hence, we now can use the standard martingale representation theorem.

—]ID ~
Therefore, there exists a unique FW" -progressively measurable process H such that
t _ + ~
[ 1P <00 and Mo= Mo+ [ BAWE 020, Pas.
0 0

Since @ > 0, dW¥ = a~Y2dB. So one can check directly that the process H = a~'/2H

satisfies all the requirements.
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We next prove the Blumenthal zero-one law. For this purpose fix £ € Fy;. By Lemma

——P
8.1, F € ]:S/V o Again we recall that W is a P Brownian motion and use the standard

Blumenthal zero-one law for the Brownian motion. Hence P(E) € {0, 1}. O

We now define analogously the following spaces of measures and diffusion processes.
Pg := Ps N Py, Ags :={a € Ay : P* € Ps}. (8.11)
Then it is clear that
Ps C Pure C Pw and Ag C Ay C Aw.

The conclusion Ps C Py is strict, see Barlow [1]. We remark that one can easily check that
the diffusion process a in Examples 4.4 and 4.5 and the generating class Ay in Examples
4.9, 4.10, and 4.14 are all in Ag.

Our final result extends Proposition 4.11.

Proposition 8.3 Let A be a separable class of diffusion coefficients generated by Ag. If
Ao C Ag, then A C Ag.

Proof. Let a be given in the form (4.12) and, by Proposition 4.11, P be the unique weak

solution to SDE (4.4) on [0, 00) with coefficient a and initial condition P(By = 0) = 1. By
——p

Lemma 8.1 and its proof, it suffices to show that a is FW" -adapted. Recall (4.12). We

prove by induction on n that
. TP F
arlyper,y 18 .7-?;‘\/% — measurable for all ¢ > 0. (8.12)

Since 19 = 0, ag is Fp-measurable, and P(By = 0) = 1, (8.12) holds when n = 0. Assume
(8.12) holds true for n. Now we consider n + 1. Note that

arlpper, v = @lpger y +atlin <icr, 13-

By the induction assumption it suffices to show that

— P
atlyer, ) 18 ffﬁmmﬂ — measurable for all ¢ > 0. (8.13)

Apply Lemma 4.12, we have a; = Zle am(t)1g,, for t < 7,41, where a,, € Ay and
{E;,m > 1} C F;, form a partition of Q. Let P denote the unique weak solution to SDE
(4.4) on [0,00) with coefficient a,, and initial condition P"(By = 0) = 1. Then by Lemma

5.2 we have, for each m > 1,

P(ENEy) =P*(ENE,), YEEF,,,. (8.14)

34



Morover, by (4.2) it is clear that

I/VtIFD = thm, 0<t<741 ,P—as. on E, (and P™ —as. on E). (8.15)

m

Now since a,, € Ay C Ag, we know am(t)l{t<7—n+1} 18 -7:

MT ... —measurable. This, together

m

with the fact that E,, € Fy,, implies that am (t)1y<r, . y1E,, is F2. —measurable.

Tn\/t/\Tn+1
By (8.14), (8.15) and that a; = a,(t) for t < 7,11 on Ey,, we see that a;1g<r,, y15,, is

P
WP . . .
F i vinr,, —measurable. Since m is arbitrary, we get

atlgrcr, 1y = Z arlyer, V16,

m>1

is FW

Tn\/t nrny, —measurable. This proves (8.13), and hence the proposition. O

9 Appendix

In this Appendix we provide a few more examples concerning weak solutions of (4.4) and

complete the remaining technical proofs.

9.1 Examples

Example 9.1 (No weak solution) Let ag = 1, and for ¢ > 0,

By, — By
a;:=1+1p, where EF:=4lim——— #£2
' r {hlo N J

Then E € Fo.. Assume P is a weak solution to (4.4). On E, a = 2, then limy,o —BnbBo__ _

V2hinlnh=1
2, P-almost surely, thus P(E) = 0. On E¢, a = 1, then limyg \/% = 1, P-almost
surely and thus P(E¢) = 0. Hence there can not be any weak solutions. O

Example 9.2 (Martingale measure without Blumenthal 0-1 law) Let ' := {1,2} and
Pi(1) = Py(2) = % Let Q := Q x Q' and Py the product of Py and P}. Define

Bi(w,1) :==wy, By(w,2) = 2w,
Then P := Py o (B)~! is in Py. Denote
=~ B — DBy
E=<lm——==1.
{tlo V2hInlnh—1 }

Then E € .7:5, and Py(E) = Py(1) = 3. .
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Example 9.3 (Martingale measure without MRP) Let Q := (C[0,1])2, (W, W’) the canon-
ical process, and Py the Wiener measure so that W and W’ are independent Brownian

motions under Py. Let ¢ : R — [0, 1] be a measurable function, and
t
B, := / asdWs where & :=[1+ gp(WtI)]%, t>0,
0

This induces the following probability measure P on €2 with d =1,

Then P is a square integrable martingale measure with d(B);/dt € [1,2], P-almost surely.

We claim that B has no MRP under P. Indeed, if B has MRP under P, then so does B
under Py. Let € := EPo [Wﬂflg |. Since £e flg and is obviously Py-square integrable, then
there exists H* € HQ(]?’O,IF'B) such that

~ ~ 1 ~ ~ = ~ 1 ~ ~
£ =EPo[¢ + / H{dB, = EFo[¢] + / Hea dWy, Py —a.s..
0 0

Since W and T’ are independent under Py, we get 0 = EFo [EW]] = EH}"HQZP]. Then £ = 0,
dPg-almost surely, and thus

ER(WiBP) = EREBP) = o. (9.1)
However, it follows from Ito’s formula, together with the independence of W and W, that

~ - ~ _ _ 1 5 5 N _ 1
EPo (W By 2] = EPo [W{ / th&tth} +EPo [W{ / ozfdt}
0 0

- 1 B - 1 B
= Eh [/ Wi (1 + (W) dt| = EPO{/ Wip(W))dt },
0 0
and we obtain a contradiction to (9.1) by observing that the latter expectation is non-zero
for p(x) := 1r (). O

We note that, however, we are not able to find a good example such that a € Ay (so
that (4.4) has unique weak solution) but B has no MRP under P* (and consequently (4.4)

has no strong solution).

9.2 Some technical proofs

Proof of Lemma 2.4. The uniqueness is obvious. We now prove the existence.
(i) Assume X is cadlag, P-almost surely. Let Ey := {w : X.(w) is not cadlag}. For each
r € QN (0,00), there exists X, € FI such that E, := {X, # X,} € NF(Fy). Let

E := EyU (U, E,). Then P(E) = 0. For integers n > 1 k > 0, set t}! := k/n, and define

X[ = Xtﬁﬂ for t € (¢}, t7,,], and X = (lim X™)

oo 1{H,Hoo XneR}
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n o4n n + n + . NI .
Then for any t € (tk;, thl, XP e ;Ftﬁﬂ and X"|j04 € B([0,1]) x ffﬁﬂ' Since F7 is right
continuous, we get X; € F,;" and X o, € B([0,]) x F;". That is, X € F*. Moreover, for
any w ¢ Eand n > 1,if t € (t},1], ], we get

Jim X(w) = lim X, (@) = lm X,

So {w : there exists ¢ > 0 such that X;(w) # X;(w)} C E. Then, X is P-indistinguishable
from X and thus X also has cadlag paths, P-almost surely.

(ii) Assume X is Fp—progressively measurable and is bounded. Let Y; := fg Xsds. Then Y
is continuous. By (i), there exists F'-progressively measurable continuous process Y such
that Y and Y are P-indistinguishable. Let Ey := {there exists ¢t > 0 such that Y; # Y;},
then P(Ey) = 0 and Y.(w) is continuous for each w ¢ Ey. Define,

X[ = n[fﬁ —Y/;_;]; X = (lim X™)

n—oo

I{Enﬁw XneR) for n>1.

As in (i), we see X € F*. Moreover, for each w ¢ Ey, X{'(w) = n [’ 1 Xs(w)ds. Then
X (w) = X.(w), dt-almost surely. Therefore, X = X, P-almost surely.

(iii) For general Fp—progressively measurable X, let X} := (—=m)V (X Am), for any m > 1.
By (ii), X™ has an F™-adapted modification X™_. Then obviously the following process X

satisfies all the requirements: X := (limyy, 00 X ™1 (oo X ER}- O
To prove Example 4.5, we need a simple lemma.

Lemma 9.4 Let 7 be an F-stopping time and X is an F-progressively measurable process.
Then 7(X.) is also an F—stopping time.

Moreover, if Y is F-progressively measurable and Yy = X, for allt < 7(X.), then 7(Y.) =
T(X.).

Proof. Since 7 is an F-stopping time, we have {7(X.) <t} € FX for all t > 0. Moreover,
since X is F-progressively measurable, we know F7* C FF. Then {7(X.) <t} € FP and
thus 7(X.) is an F—stopping time.

Now assume Y; = X; for all t < 7(X.). For any ¢t > 0, on {7(X.) = t}, we have Y; = X,
for all s < t. Since {7(X.) =t} € FX and by definition FX = o(X,,s < t}, then 7(Y)) =1t
on the event {7(X.) = t}. Therefore, 7(Y.) = 7(X.). O

Proof of Example 4.5. Without loss of generality we prove only that (4.4) on Ry with Xy =0

has a unique strong solution. In this case the stochastic differential equation becomes

dXt = Za’n(X')1[Tn(X.),Tn+1(X.))dBt’ t> 0, PQ — a.s..
n=0
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We prove the result by induction on n. Let X° be the solution to SDE:

¢
XY = / aé/Q(X_O)dBS, t>0 ,Py— almost surely
0
1
Note that ag is a constant, thus X? = aj By and is unique. Denote 7y := 0 and 71 := 71 (X,O).
By Lemma 9.4, 7| is an F—stopping time. Now let X} := X for ¢t < 7, and
t
X} =Xx2 +[ al*(XNdB,, t>7, Py—as.

71
Note that a; € F-,, that is, for any y € R and ¢t > 0, {a1(B.) <y, 7 (B.) <t} € F. Thus,
for any x,%x € C(Ry,R?), if x, = %,,0 < s < t, then a1(%) 1 )<ty = a1(X) 17 5)<sy- In
particular, noting that 71(X!) = 71(X?%) = 71, for each w by choosing ¢t = ¥ we obtain that
a1(X') = a1(X?). Thus X} = X2 + a1 (X?)[B — Bz ], t > 71, and is unique. Now repeat
the procedure for n = 1,2,--- we obtain the unique strong solution X in [0, 7 ), where
Too := limy 00 7 (X.). Since a is bounded, it is obvious that Xz := limyz X; exists Po-
almost surely. Then, by setting X; := X5 for ¢ € (7, 00) we complete the construction.
O

Proof of Lemma 4.12. Let a be given as in (4.12) and 7 € T be fixed. First, since {E]",i > 1}

is a partition of €2, then for any n > 0,
{O?ZOE%, (ij)o<j<n € N"H} also form a partition of €.

Next, assume 7,, takes values ¢} (possibly including the value oo), k& > 1. Then {{r, =

ty}, k> 1} form a partition of 2. Similarly we have, for any n > 0,
{ﬂ?iol{Tj = tij}, (kjo<j<n+1 € N"+2} form a partition of (.
These in turn form another partition of €2 given by,
{[ io (B N {r = tij})] (Ve =7l Y G kidosjcn € N2OHD kg € N} - (9.2)

Denote by Z the family of all finite sequence of indexes I := (i, k;)o<j<n for some n such
that 0 = ¢, < --- <} < oo. Then T is countable. For each I € Z, denote by |I| the

corresponding n, and define

I . .
Ep = <m‘j:‘0 [Ei]j n{r =1, < T}D ({751 > 7} U {41 = 7 = o0})
-1

~ - VT 1]
T = ZTIIIHIEI’ and ay := Z aijl[ti.vtﬂll)+ai\1\1[t‘,€” )"
IeT _]:0 J Jj+ | 1]

It is clear that Ej is Fr.—measurable. Then, in view of the concatenation property of Ag,

ar € Ap. In light of (9.2), we see that {E, I € Z} are disjoint. Moreover, since 7, = oo for
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n large enough, we know {Ey,I € Z} form a partition of 2. Then 7 is an F—stopping time

and either 7 > 7 or T = 7 = 0co. We now show that

= Za](t)].El for all t<T. (9.3)
IeT
In fact, for each I = (i;,kj)o<j<n € Z, w € By, and t < 7(w), we have 7;(w) = kv < 7(w)
for j <n and 7,11(w) = 7(w) > t. Let jo = jo(t,w) < n be such that 7 (w) <t TJO+1( w).
Then 1[7.].0 (w),Tj0+1(w))(t) =1 and 1[Tj(w),7'j+1(w))(t) =0 for j # jo, and thus

[e.e] [e.e]
Z Z a{ (t, w)lElj (w)l[rj (W), Tj41(w Z a]o t,w) EJO w) = a{;-)o (t,w),
j=0 i=1

where the last equality is due to the fact that w € Ef C Eg;o and that {Ego,i >1}is a
partition of 2. On the other hand, by the definition of ay, it is also straightforward to check
that ar(t,w) = a{?o (t,w). This proves (9.3). Now since Z is countable, by numerating the
elements of Z we prove the lemma.

Finally, we should point out that, if 7 = 7,, then we can choose T = 7,,41. O
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