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A STOCHASTIC REPRESENTATION FOR MEAN CURVATURE
TYPE GEOMETRIC FLOWS

BY H. METE SONER AND NIZAR TOUZI

Koç University and Centre de Recherche en Economie et Statistique

A smooth solution {�(t)}t∈[0,T ] ⊂ R
d of a parabolic geometric flow is

characterized as the reachability set of a stochastic target problem. In this
control problem the controller tries to steer the state process into a given
deterministic set T with probability one. The reachability set, V (t), for the
target problem is the set of all initial data x from which the state process
Xν

x(t) ∈ T for some control process ν. This representation is proved by
studying the squared distance function to �(t). For the codimension k mean
curvature flow, the state process is dX(t) = √

2P dW(t), where W(t) is a
d-dimensional Brownian motion, and the control P is any projection matrix
onto a (d − k)-dimensional plane. Smooth solutions of the inverse mean
curvature flow and a discussion of non smooth solutions are also given.

1. Introduction. Motivated by pricing problems in mathematical finance
[23], the authors introduced in [24] the stochastic target problems. In this control
problem, the controller tries to steer the state process X(·) into a prescribed
deterministic target set T by a judicious choice of controls. The main object of
this problem is the reachability set V (t): all initial points x = X(0) from which
the state X(t) at time t can be placed into the target with probability one. It is clear
that if initially x = X(0) ∈ V (t), then the state process remains in the reachability
sets for all s ∈ [0, t]: X(s) ∈ V (t −s). The converse of this statement is also proved
in [24]. Namely, if starting at x = X(0) at time s, we can place the state process
into the reachability set V (t −s) by an appropriate choice of a control process, then
necessarily x ∈ V (t). Hence, for all s > 0, the reachability set V (t) is the collection
of all initial positions starting from which, at time s, one can place the state process
into the reachability set V (t − s) by some judicious choice of controls. Intuitively,
this geometric dynamic programming principle yields a differential equation for
the reachability sets. This paper studies the corresponding geometric equation and
proves that if there is a smooth solution of the geometric differential equation
starting from the target, then the smooth solution is the reachability set.

To describe the control problem mathematically, let U be the set of all
possible control actions. In this paper, we only consider state processes which
are diffusions. So let (�,F ,F,P) be a stochastic basis for a d-dimensional
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Brownian motion W ; see Karatzas and Shreve [19] for the definitions. Then, an
admissible control process is an F adapted function of � × [0,∞) with values
in U . Let A be the set of all admissible controls. For a given ν ∈ A and an initial
point x ∈ R

d , the corresponding state process Xν
x(·) is the unique solution of the

stochastic differential equation

dXν
x(t) = µ

(
Xν

x(t), ν(t)
)
dt + σ

(
Xν

x, ν(t)
)
dW(t),

with initial data Xν
x(0) = x. Then the reachability set is the following subset of R

d :

V (t) := {
x ∈ R

d :Xν
x(t) ∈ T a.s. for some ν ∈ A

}
.

Observe that the above reachability set is closely connected to the theory of
backward and forward-backward stochastic differential equations; see [21] for an
overview and [9] for the constrained case.

In [24], under some assumptions, it is shown that the characteristic function v

of the complement of V (t) solves

vt − F(x,Dv,D2v) = 0 in the viscosity sense,(1.1)

where for x, ξ ∈ R
d and a symmetric matrix A,

F(x, ξ,A) := inf
u∈N (x,ξ )

{f u(x, ξ,A)},(1.2)

f u(x, ξ,A) := µ(x,u)ξ + 1
2 trace[a(x,u)A](1.3)

and

N (x, ξ) := {u ∈ U :a(x,u)ξ = 0}, a(x,u) := σ(x,u)σ ∗(x,u).

The above dynamic programming equation is geometric, that is, F satisfies

F(x,µξ,µA + λξ ⊗ ξ) = µF(x, ξ,A) ∀µ > 0, λ ∈ R
1,(1.4)

where (ξ ⊗ ξ)ij = ξiξj . Nonlinear equations with a geometric nonlinearity are
known to be related to geometric flows [4]. This is the starting point of our
stochastic representation. However analysis of this paper relies only on elementary
applications of the Itô’s formula, and in particular we do not use the above or any
other result from [24].

To demonstrate the connection between the geometric flows and the target
problem, we examine the codimension k mean curvature flow which is the driving
example of this study. Following a suggestion of DeGiorgi [10], and the earlier
work of Chen, Giga and Goto [7] and Evans and Spruck [11] on codimension one
flows, Ambrosio and Soner [2] showed that this flow can be characterized as the
zero level of the unique viscosity solution of

vt = Fk(Dv,D2v)
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where for ξ ∈ R
d and a d × d symmetric matrix A

Fk(ξ,A) = inf
{
trace[PA]|P ∈ Uk,P ξ = 0

}
,(1.5)

Uk := {P :P 2 = P, trace[P ] = k},(1.6)

that is, Uk is the set of all d × d projection matrices onto a (d − k)-dimensional
plane.

A brief discussion of the mean curvature flow and the level set approach to these
equations is given in Section 3 below.

An examination of the above equation indicate that the above level set equation
coincides with the dynamic programming equation (1.1) with U = Uk and

µ ≡ 0, σ (x,P ) = √
2P.

So we expect the stochastic target problem with the above choices of the
parameters is related to the mean curvature flow. Indeed, more generally we prove
that:

THEOREM 1.1. Let {�(t)}t∈[0,T ] be a smooth solution of the geometric
equation related to the target problem. Then, the reachability set V (t) is equal
to �(t).

An explanation of this result is the following. Intuitively, Brownian motion
moving on the tangent plane of a Euclidean manifold, moves away from the
manifold in the normal direction with a velocity equal to the half of its mean
curvature. Therefore, reversing time, this means that if the Brownian motion
(multiplied by

√
2) starts on the solution of the mean curvature flow, �(t), and

diffuses on the tangent plane at all times, then it will arrive �(0) at time t . On the
other hand, Brownian motion moving on some other plane would go away from
the manifold, and we could never guarantee that it would return with probability
one.

Examples studied in the Section 3 suggest that the corresponding geometric
equation related to the target problem is formally (2.1) of Section 2. As stated
this equation is not well defined and a careful definition of even smooth flows
is needed. Again the examples studied in Section 3 and the work of Professor
DeGiorgi suggest a definition in terms of the squared distance function. This
definition is given in Section 2.

The above theorem is proved by using the properties of the squared distance
function η to the smooth solution �(t). The chief calculation in this proof is a
straightforward application of the Itô’s rule to the squared distance function. The
following simple example gives insight into the proof.

EXAMPLE. Consider the mean curvature flow in the plane starting from the
initial set �(0) = R(0)S1, where R(0) is some given positive constant and S1 =
{x ∈ R

2 : |x| = 1} is the unit circle in R
2, that is, a circle with radius R(0). Then
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the solution is �(t) = R(t)S1 where R(t) is a real-valued function satisfying

d

dt
R(t) = − 1

R(t)
,

that is,

R(t) =
√

R(0)2 − 2t .

Let us show that from any initial point x ∈ �(t) we can reach �(0) in time t .
Consider the function P̂ (y) := [I2 −(y ⊗y)/|y|2] where I2 is the two-dimensional
identity matrix, and ⊗ is the standard tensor notation, that is, (y ⊗ y)ij = yiyj .
Let X̂x be the corresponding state process, that is, X̂x is the unique solution of

dX̂x(s) = √
2P̂

(
X̂x(s)

)
dW(s) = √

2
(
I2 − X̂x(s) ⊗ X̂x(s)

|X̂x(s)|2
)

dW(s),

with initial data X̂x(0) = x until the random time at which X̂x reaches the
origin. Then, X̂x is the controlled process corresponding to the control process
s 	→ P (X̂x(s)). Since this control only depends on the present value of the state
process, it is called a feedback Markov control in the control literature.

We directly calculate that

d|X̂x(s)|2 = 2X̂x(s) dX̂x(s) + 2 trace
[
P̂

(
X̂x(s)

)]
ds = 2 ds.

Hence |X̂x(t)|2 = |x|2 + 2t = R(t)2 + 2t = R(0)2. So X̂x never hits the origin and
thus defined for all time. Moreover, X̂x(t) ∈ �(0).

In conclusion, we showed that from any x ∈ �(t) we can reach the target �(0)

in time t . Hence the reachability set V (t) contains �(t).
To prove the opposite inclusion, let x ∈ V (t). There there exists a control

process P (s) ∈ U1 so that the solution X̂x of

X̂x(s) = x +
∫ s

0

√
2P (u)dW(u),

satisfies the target condition, that is, X̂x(t) ∈ �(0). Therefore, |X̂x(t)|2 = R(0)2.
We again use the Itô’s rule to obtain

|X̂x(t)|2 = R(0)2 = |x|2 +
∫ t

0
2 trace(P (s)) ds +

∫ t

0
2X̂(s) dX̂(s).

Since we are on the plane, it follows from the definition of U1 that trace(P (s)) = 1,
and therefore |x|2 = R(0)2 − 2t by taking the expected values in the above equal-
ity. This exactly means that x ∈ �(t). Hence V (t) is equal to �(t).

The proof of our main result, Theorem 2.1, uses a similar calculation based not
on |X̂|2 but rather the square distance function η. Note that in this simple example
η(t, x) = 1

2 (|x| − R(t))2 is closely related to |x|2.
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The paper is organized as follows. In the next section, we define smooth
geometric flows and then prove that any smooth solution, when it exists, is equal
to the reachability set. In Section 3, we briefly recall several properties of the mean
curvature flow and the inverse mean curvature flow. Level set equations for these
equations will also be introduced in that section. Applications to mean and inverse
mean curvature flows are stated as corollaries as well. Level set equation satisfied
by the reachability sets is given in Section 4. In the final section, we discuss an
alternate definition.

2. Stochastic representation. In this section we prove that if the geometric
flow (2.1) has a smooth solution for some time [0, T ], then it coincides with the
reachability set V (t) of the stochastic target problem in that time interval. This is
similar to the verification theorems in classical stochastic optimal control theory;
see Fleming and Soner [12].

When there are no smooth solutions, we need to consider weak solutions
of (2.1), and this will be discussed in Section 4. This part is also similar to the
results in classical stochastic optimal control theory which states that a value
function is the viscosity solution of the dynamic programming equation; see [12].

Examples of the next section suggest that the geometric equation related to the
dynamic programming equation (1.1) is

�v(t, x) = inf
{
µ(x,u) + �Ha(x,u) :u ∈ K(t, x)

}
, x ∈ �(t),(2.1)

where �v is the velocity vector of the moving manifold, �Ha(x,u) is the mean
curvature vector at (t, x) using the metric generated by the quadratic form of the
matrix a(x,u) and

K(t, x) := {
u ∈ U : Normal space to �(t) at x ⊂ Kernel a(x,u)

}
.

Note that this definition is not rigorous as we take the infimum of vector valued
functions. Therefore a careful definition of smooth flows is needed. To motivate
the definition first we briefly discuss the properties of the square distance function.

2.1. The square distance function. Let � = {�(t)}t∈[0,T ] be a collection of
smooth manifolds embedded in the Euclidean space R

d , and parameterized by
the time variable t . The chief technical tool to analyze the geometric flows is the
squared distance function:

η(t, x) := 1
2 [ρ(t, x)]2 with ρ(t, x) := distance

(
x,�(t)

)
.

As observed by Professor DeGiorgi [10], important geometric quantities of the
smooth geometric flow {�(t)}t∈[0,T ] are closely connected to the derivatives of η.
This was first used by Ambrosio and Soner [2] and later studied by Ambrosio and
Mantegazza [1].
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The first observation is that although ρ is not differentiable on the manifold
{η = 0}, η is smooth in a tubular neighborhood {η < δ} of �, for some δ > 0. The
following is proved in [2].

LEMMA 2.1. Let k be the codimension of �(t) ⊂ R
d . Then in a tubular

neighborhood of �, D2η has exactly k eigenvalues equal to one and all other
eigenvalues are on the order of

√
η. In particular, on �(t), the Hessian D2η is the

projection matrix onto the normal space.
Moreover, for x ∈ �(t),

�v(t, x) = −Dηt(t, x) and �H = −D
η(t, x),

where �v(t, x) is the velocity vector of the moving manifold, and �H(t, x) is the mean
curvature vector of the manifold at x ∈ �(t).

The following simple result will be used several times so we formulate it as a
lemma.

LEMMA 2.2. Let G := {η < δ} be a tubular neighborhood of � in which η

is smooth. Let ϕ be a C1(G,R) function with a bounded Hessian D2ϕ. Assume
further that

ϕ(t, x) = 0 and Dϕ(t, x) = 0 for x ∈ �(t).

Then, on G,

|ϕ(t, x)| ≤ Cη(t, x),

for some constant C > 0 depending only on the bound on D2ϕ.

PROOF. Fix x ∈ G, and let y ∈ � be such that |x − y|2 = 2η(t, x), that is, y is
the closest point on �(t) to x. Since t is only a parameter, in our notation we drop
the dependence on t . Set

ρ(x) := |x − y| and �n(x) := ρ(x)−1(x − y).

Consider the functions s 	→ ϕ(y +s �n(x)), and s 	→ Dϕ(y +s �n(x)) · �n on [0, ρ(x)].
By calculus,

ϕ(x) =
∫ ρ(x)

0
Dϕ

(
y + s �n(x)

) · �n(x) ds

=
∫ ρ(x)

0

∫ s

0
D2ϕ

(
y + τ �n(x)

)�n(x) · �n(x) dτ ds.

The result follows from the boundedness of D2ϕ. �
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2.2. A remark on mean curvature flow. Combining the two results we
obtain the following characterization of the mean curvature flow. A family of
codimension k smooth manifolds {�(t)} is said to be a mean curvature flow if
it satisfies the equation

�v = �H ∀x ∈ �(t).

By Lemma 2.1, in a tubular neighborhood of �, k eigenvalues of D2η(t, x) equal to
one and the others are smaller than one. Observing that Dη(t, x) is an eigenvector
of D2η(t, x) with unit eigenvalue, we see that, in this neighborhood,

Fk(Dη,D2η) = 
η − k and DFk(Dη,D2η) = D
η,

where Fk is as in (1.5). Then, using again Lemma 2.1, it follows that

Dηt(t, x) = D
η(t, x) = DFk

(
Dη(t, x),D2η(t, x)

)
for all x ∈ �(t).

Combining this with Lemma 2.2, we obtain the following property of the square
distance function to a mean curvature flow.∣∣ηt − Fk

(
Dη(t, x),D2η(t, x)

)∣∣ ≤ Cη in {η < δ}
for some constants C and δ. More details of this calculation is given in Section 3.1.

Lemma 2.1 also yields a remarkable identity for the squared distance function
in a tubular neighborhood

Fk(Dη,D2η) = Gk(D
2η),(2.2)

where

Gk(A) = inf{trace[PA] :P ∈ Uk}
and Uk is as in (1.6). Notice that the only difference between the definition of Fk ,
(1.5) and the above definition for Gk is that in the latter we remove the requirement
that Pξ = 0. So in general Gk ≤ Fk but for the square distance function they agree.

2.3. Definition. The following definition is a natural extension of DeGiorgi’s
ideas for the mean curvature flow in this context, and motivated by the calculations
of Section 3 and [2]. Let F be as in (1.2).

DEFINITION 2.1. We say that {�(t)}t∈[0,T ] is a smooth solution of (2.1) if the
square distance function η satisfies the following conditions:

(i) ηt and Dη are Lipschitz continuous in a tubular neighborhood {η < δ}.
(ii) On �(t),

Dηt = D[F(x,Dη,D2η)].
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There are several observations:

1. In view of Lemma 2.2, on a tubular region {η < δ},
|ηt − F(x,Dη,D2η)| ≤ Cη,

for some appropriate constant C.
2. Due to the calculations in Section 3 and in [2], smooth solutions of the mean

curvature flow as well as the inverse mean curvature flow are smooth solutions
in the above sense; see (3.2) and (3.8).

3. In the above definition, the square distance function η is assumed to be
sufficiently smooth (in a tubular neighborhood) in order for the generalized
Itô’s lemma [20] to apply.

4. In the above definition we have not made any assumption on the dimension
of the solution. In particular, when either the sign of the curvature or more
generally the orientation of the solution is needed to define the flow, it is
appropriate to consider solid sets with full dimension as the solution �(·).
An instance of this is the inverse mean curvature flow. In these examples, the
boundary of �(·) is an hypersurface satisfying the corresponding geometric
equation. Note that in such cases, η is identically equal to zero inside the solid
set and there the conditions on η are trivially satisfied.

An alternate definition using the dimension information is discussed in
Section 5 below. This definition is obtained by using a more complicated
nonlinear function. Since both the definition and the proofs with the alternate
definition is more technical we chose to use the above definition although the
alternate definition seems to be more general.

2.4. Main result. Let F , f u and N be as in (1.2) and (1.3). Let {�(t)}t∈[0,T ] be
a smooth solution of (2.1) . Motivated by the mean curvature, in particular by (2.2),
we assume that in a tubular neighborhood of the smooth flow

|G(x,Dη,D2η) − F(x,Dη,D2η)| ≤ Cη,(2.3)

for some constant C, where

G(x, ξ,A) := inf
u∈U

{
µ(x,u) · ξ + 1

2 trace[a(x,u)A]}.
Notice that as in the definition of Gk in (2.2), in the definition of G above we allow
all controls, while in the definition of F controls are restricted to be in N (x, ξ).

We are now ready for the chief result of this paper.

THEOREM 2.1. Suppose that {�(t)}t∈[0,T ] is a smooth solution of (2.1)
satisfying (2.3). Assume that there exists a Lipschitz continuous map

ν̂ : [0, T ] × R
d → U,
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satisfying {η < δ}, ν̂(t, x) ∈ N (x,Dη(t, x)) and

f ν̂(t,x)
(
x,Dη(t, x),D2η(t, x)

) = F
(
x,Dη(t, x),D2η(t, x)

)
.

Further assume that for any initial data x ∈ R
d and t ∈ [0, T ], there is exists a

unique solution X̂ of

dX̂(s) = µ
(
X̂(s), ν̂

(
t − s, X̂(s)

))
ds

+ σ
(
X̂(s), ν̂

(
t − s, X̂(s)

))
dW(s), s ∈ (0, t),

with initial data X̂(0) = x. Then the reachability set V (t) of the corresponding
stochastic target problem with target set T = �(0) is equal to the smooth
solution �(t) of (2.1) for all t ∈ [0, T ]. Moreover, for x ∈ �(t), X̂(·) is the state
process Xν∗

x corresponding to the Markov control ν∗(·) = ν̂(t − ·, X̂(·)), and for

s ∈ [0, t], X̂(s) ∈ �(t − s) with probability one. In particular, it reaches the target
in time t .

Smooth solutions of both the mean curvature and the inverse mean curvature
flows satisfy the assumptions of the theorem. These are stated in Corollaries
3.1 and 3.2.

PROOF OF THEOREM 2.1. We first prove the inclusion V (t) ⊂ �(t). Let
x ∈ V (t). Then there is ν ∈ A so that Xν

x(t) ∈ �(0) with probability one, or
equivalently η(0,Xν

x(t)) = 0.
Step 1. By the definition of a smooth flow, η is smooth in a tubular neighborhood

{η < δ}. We extend η smoothly to the whole domain by setting η̂(x, t) :=
φ(η(x, t)) for some smooth, nondecreasing φ which satisfies φ(r) = r for r small
and φ(r) is constant for r ≥ δ. By the definition of a smooth flow,∣∣η̂t − F(x,Dη̂,D2η̂)

∣∣ ≤ βη̂ on R
d × [0, T ],

and by assumption (2.3),∣∣η̂t − G(x,Dη̂,D2η̂)
∣∣ ≤ βη̂ on R

d × [0, T ],(2.4)

possibly with a different constant β .
Step 2. We apply the Itô’s lemma to η̂(t − ·,Xν

x(·)). The result is

η̂
(
t − s,Xν

x(s)
) = η̂

(
t − τ,Xν

x(τ )
)

+
∫ s

τ

(−η̂t + f ν(r)
(
Xν

x(r),Dη̂,D2η̂
))(

t − r,Xν
x(r)

)
dr

+
∫ s

τ
σ

(
Xν

x(r), ν(r)
)∗

Dη̂
(
t − r,Xν

x(r)
)
dW(r).

(2.5)

By the definition of G,

f ν(r)
(
Xν

x(r),Dη̂,D2η̂
)(

t − r,Xν
x(r)

) ≥ G
(
Xν

x(r),Dη̂,D2η̂
)(

t − r,Xν
x(r)

)
,
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almost surely. Set α(s) := Eη̂(t − s,Xν
x(s)). We use the above inequality in (2.5)

then take the expected value to arrive at

α(s) ≥ α(τ ) + E

[∫ s

τ

(−η̂t + G
(
Xν

x(r),Dη̂,D2η̂
))(

t − r,Xν
x(r)

)
dr

]
.

Step 3. By (2.4),

α(s) ≥ α(τ ) − CE

[∫ s

τ
α(r) dr

]
for all τ ≤ s ∈ [0, t).

We now use the Gronwall lemma, to conclude that E[η̂(t − s,Xν
x(s))] ≥

η̂(t, x)e−Cs for all s ∈ [0, t]. Since η̂(0,Xν
x(t)) = 0, this proves that η̂(t, x) = 0.

Hence x ∈ �(t).
Next we prove the opposite inclusion �(t) ⊂ V (t). Let x ∈ �(t) so that

η(t, x) = 0. We will construct a control ν ∈ A so that Xν
x(t) ∈ �(0) with

probability one, or equivalently η(0,Xν
x(t)) = 0.

Step 4. Let ν̂, X̂ be as in the statement of the theorem. Then, X̂(·) is the state
process Xν∗

x corresponding to the Markov control ν∗(·) = ν̂(t − ·, X̂(·)). Set

θ := t ∧ θδ where θδ := inf
{
s ≥ 0 :η

(
t − s, X̂(s)

)
> δ

}
.

By continuity of the state process X̂, it follows that,

η
(
t − θδ, X̂(θδ)

)
> 0 a.s.(2.6)

Step 5. By the definition of θ , η(·, X̂(·)) is smooth on [[t, θ]]. We ap-
ply the Itô’s lemma to η(t − ·, X̂(·)) on this interval and use the fact that
η(t, X̂(0)) = η(t, x) = 0. The result is

η
(
t − θ, X̂(θ)

) =
∫ θ

0

(−ηt + f ν∗(s)(X̂(s),Dη,D2η
))(

t − s, X̂(s)
)
ds

+
∫ θ

0

(
σ

(
X̂(s), ν∗(s)

)∗
Dη

(
t − s, X̂(s)

))
dW(s).

Since ν∗(s) = ν̂(t − s, X̂(s)) ∈ N (Xν
x(s),Dη(t − s, X̂(s))),

σ
(
X̂(s), ν∗(s)

)∗
Dη

(
t − s, X̂(s)

) = 0

on [[0, θ]], recall that a = σσ ∗. Again by hypothesis on [[0, θ]],
f ν∗(s)(X̂(s),Dη,D2η

)(
t − s, X̂(s)

) = F
(
X̂(s),Dη,D2η

)(
t − s, X̂(s)

)
.

Hence

η
(
t − θ, X̂(θ)

) =
∫ θ

0

(−ηt + F
(
X̂(s),Dη,D2η

))(
t − s, X̂(s)

)
ds.

Step 6. By (2.4),

η
(
t − θ, X̂(θ)

) ≤ C

∫ θ

0
η
(
t − s, X̂(s)

)
ds.
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By Gronwall’s lemma, this proves that η(t − θ, X̂(θ)) = 0. Then, it follows
from (2.6) that θ = t < θδ and η(0, X̂(t)) = 0. Since ν∗ ∈ A and X̂ is the state
process corresponding to ν∗, this implies that x ∈ V (t). �

3. Examples of geometric flows. In this section, we briefly discuss the mean
curvature, the inverse mean curvature flows and an anisotropic flow from material
science. At the end of the section we state a geometric equation related to the
general stochastic target problem.

3.1. Mean curvature flow. This is a geometric initial value problem in which
the solution is a collection of smooth manifolds without boundary {�(t)}t∈[0,T ]
embedded in the Euclidean space R

d parametrized by the time variable t . They are
said to be a mean curvature flow starting from the initial data �(0) if they satisfy

�v(t, x) = �H(t, x) for all t ∈ (0, T ], x ∈ �(t),(3.1)

that is, the velocity of �(t) is given by the mean curvature vector. The mean
curvature flow of planar curves is known as the curve shortening equation
and it has smooth solutions due to the work of Gage and Hamilton [13] and
Grayson [14]. Convex hypersurfaces also flow smoothly in time until they shrink
to a point as proved by Huisken [17]. In general the mean curvature flow develops
singularities [15]. Starting from the pioneering work of Brakke [6] several weak
solutions have been proposed, most notably the level set solutions of Evans and
Spruck [11] and Chen, Giga and Goto [7]. We also refer to [2] for the level set
approach in arbitrary codimension as well as for other references.

We continue by defining the flow by means of the square distance function η.
In view of Lemma 2.1, {�(t)}t∈[0,T ] is a mean curvature flow if and only if

Dηt(t, x) = D
η(t, x) for all t ∈ (0, T ], x ∈ �(t).

It is convenient to extend this equation to a tubular neighborhood in the following
way. For x ∈ �(t), it follows from Lemma 2.1 that 
η(t, x) is equal to the
dimension k of the normal space. Moreover, the squared distance function η(t, x)

is nonnegative everywhere and zero for x ∈ �(t). Then, ηt (t, x) = 0 for x ∈ �(t).
Hence, for x ∈ �(t), we have

ηt − 
η + k = 0 and D(ηt − 
η + k) = 0.

By Lemma 2.2, this shows that {�(t)}t∈[0,T ] is a smooth mean curvature flow if
and only if,

|ηt − 
η + k| ≤ Cη in {η < δ}
for some appropriate constants C and δ.
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In view of Lemma 2.1, in a tubular neighborhood


η − k = Fk(Dη,D2η),

where Fk is as in (1.5). Then, we rewrite the above inequality as∣∣ηt − Fk(Dη,D2η)
∣∣ ≤ Cη on {η < δ}.(3.2)

Hence the smooth solutions of the mean curvature satisfy the definition given in
the previous section.

As discussed in the Introduction, the level set equation for the mean curvature
flow can be seen as the dynamic programming equation (1.1) with the choices

U = Uk, µ ≡ 0, σ (x,P ) = √
2P,

where Uk is as in (1.6).
Then the corresponding nonlinearity in (1.1) has the form

F(x, ξ,A) := inf
u∈N (x,ξ )

{
µ(x,u) · ξ + 1

2 trace[a(x,u)A]}
= inf

{
trace[PA] :P ∈ Uk,P ξ = 0

}
= Fk(ξ,A).

Hence the dynamic programming equation (1.1) is the level set equation for the
codimension k mean curvature flow. The stochastic target problem with the above
choices of the parameters is related to the mean curvature flow. Indeed, we have
the following representation of the mean curvature flow.

COROLLARY 3.1 (Representation of the mean curvature flow). Suppose that
{�(t)}t∈[0,T ] are smooth codimension k manifolds satisfying (3.1). Then,

�(t) = {
x ∈ R

d :Xν
x(t) ∈ �(0) a.s. for some ν ∈ A

}
,

where

dXν
x(s) = √

2ν(s) dW(s),

A is the set of all adapted maps ν(·)with values in Uk—the set of all d × d

projection matrices onto a d − k plane.

PROOF. It is sufficient to check that the conditions of Theorem 2.1 are
satisfied. Indeed, for a smooth solution of the mean curvature flow, D2η has
exactly k eigenvalues equal to one in the tubular region {η < δ}. In this region,
we take ν̂(t, x) to be the projection on the (d − k)-dimensional plane orthogonal
to all eigendirections of D2η with eigenvalue one. Then we extend ν̂ smoothly to
the whole space. This feedback control satisfies the assumptions of Theorem 2.1.
Assumption (2.3) is proved in Section 2.1. �
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3.2. Level set equation. Although in this paper we only consider smooth
flows, the level set equations are useful in guessing the form of the stochastic
target problem. So here we briefly recall the derivation of the level set equation for
the codimension one mean curvature flow. For codimension one flow, the solutions
are hypersurfaces and therefore they can be represented as the zero level set of an
auxiliary scalar-valued function φ:

�(t) = {x :φ(t, x) = 0}.
By calculus, the unit normal vector �n is given by �n = Dφ/|Dφ|, and �v, �H are
parallel to �n satisfying

normal velocity = V = �v · �n = − φt

|Dφ| ,

mean curvature = H := − �H · �n
(3.3)

= D ·
(

Dφ

|Dφ|
)

= 1

|Dφ|
[

φ − D2φDφ · Dφ

|Dφ|2
]

= 1

|Dφ|F1(Dφ,D2φ),

where for ξ ∈ R
d and a symmetric matrix A, F1(ξ,A) is defined in (1.5), that is,

F1(ξ,A) = inf
{
trace[AP ] :P ∈ U1,P ξ = 0

}
= trace

[
A

(
Id − ξ ⊗ ξ

|ξ |2
)]

for ξ �= 0,

where Id is the d-dimensional identity matrix. Then �(t) = {φ = 0} is a smooth
mean curvature flow, if

φt = F1(Dφ,D2φ) on �(t) = {φ = 0},(3.4)

In [7, 11] a weak-viscosity solution of the mean curvature flow is defined by
solving (3.4) on all of the space not just on {φ = 0}. This corresponds to moving
all level sets of φ by their curvature not only the zero level set. This approach was
extended to mean curvature flows with arbitrary codimension by Ambrosio and
Soner [2]. The corresponding level set equation is φt = Fk(Dφ,D2φ) where the
nonlinear term Fk is as in (1.5).

3.3. Inverse mean curvature flow. Another important parabolic flow is the
inverse mean curvature flow for hypersurfaces

�v = − �H
H2

∀ t ∈ (0, T ], x ∈ �(t).(3.5)

Recall that the mean curvature H is defined in (3.3). This equation was recently
used by Huisken and Ilmanen [18] to prove the Riemannian Penrose inequality
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of general relativity. Clearly this flow is not defined when H = 0 and the flow is
studied for surfaces with positive mean curvature, H > 0. Even starting from a
smooth hypersurface, the inverse mean curvature flow creates singularities and a
weak formulation is given in [18]. Here we only consider the smooth flows and
follow the preceding arguments to obtain a characterization in terms of the square
distance function η. The new ingredient needed is the following identity

−1

x
= inf

α≥0
{α2x − 2α} for x > 0.(3.6)

We continue by deriving the level set equation for the inverse mean curvature
flow. The equation will only be used to guess the stochastic target problem related
to this flow. Since for this the flow sign convention for the curvature is important,
we are forced to consider sublevel sets instead of level sets. So suppose that
�(t) = {φ ≤ 0} for some scalar function. We rewrite (3.5) in a scalar form by
taking the inner product of (3.5) with −�n. The result is

φt

|Dφ| = −�n · �v = �n · �H
H2

= − H
H2

= − 1

H
.

Since H > 0, we may use the identity (3.6) together with (3.3) to arrive at

φt

|Dφ| = inf
α≥0

{α2H − 2α}

= inf
α≥0

{
α2 F1(Dφ,D2φ)

|Dφ| − 2α

}

= 1

|Dφ| inf
{
α2 trace[AP ] − 2α|Dφ| :α ≥ 0,P ∈ U1 and PDφ = 0

}
,

where F1 and U1 are as defined in (1.5) and (1.6). Hence the level set equation for
the inverse mean curvature flow is

φt = Finv(Dφ,D2φ),

where for ξ ∈ R
d and a symmetric matrix A,

Finv(ξ,A) = inf
{
α2 trace[AP ] − 2α|ξ | :α ≥ 0,P ∈ U1 and Pξ = 0

}
.(3.7)

We continue by rewriting the level set equation for the inverse mean curvature
flow in the form (1.1). An examination of the nonlinearity (3.7) suggests the
choice U = U1 × [0,∞). Note that any P ∈ U1 has the form P = Id − �w ⊗ �w
for some unit vector �w ∈ Sd−1. So we may use Sd−1 instead of U1. We set
U = Sd−1 × [0,∞), and for ( �w,α) ∈ U set µ( �w,α) = −2α �w and σ( �w,α) =√

2α(Id − �w ⊗ �w), so that

N (ξ) = {( �w,α) ∈ U :σ( �w,α)ξ = 0} = {( �w,α) ∈ U : �w = ±ξ} for ξ �= 0,
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and for ξ �= 0, the corresponding nonlinearity F has the form

F(x, ξ,A) := inf
u∈N (ξ )

{
µ(x,u) · ξ + 1

2
trace[a(x,u)A]

}

= inf
{−2α �w · ξ + 2α2(Id − �w ⊗ �w) :α ≥ 0, �w = ±ξ

}
= inf

α≥0

{
−2α|ξ | + 2α2

(
Id − ξ ⊗ ξ

|ξ |2
)}

= Finv(ξ,A).

The following result is the analogue of (3.2) and it proves that smooth solutions
of the inverse mean curvature flow satisfy the definition of the previous section.

LEMMA 3.1. Let the boundary of an open set �(t) = ∂�(t) be a smooth
inverse mean curvature flow on t ∈ [0, T ] with H > 0. Then there are constants
C and δ satisfying ∣∣ηt − Finv(Dη,D2η)

∣∣ ≤ Cη on {η < δ}.(3.8)

PROOF. We proceed in several steps.
Step 1. Since �(t) is an hypersurface we can use the signed distance function d

in our calculations:

d(t, x) :=
{

ρ(t, x) = distance
(
x,�(t)

)
, if x /∈ �(t),

−ρ(t, x) = −distance
(
x,�(t)

)
, if x ∈ �(t).

Then, d is smooth in a tubular neighborhood and dt = −v, 
d = −H on �(t),
where v = ‖�v‖ and H = ‖ �H‖ are respectively the velocity and the mean curvature
of �. Hence on �(t), d solves

dt = − 1


d
.(3.9)

Step 2. Set

ϕ(t, x) :=
{

ηt (t, x) − Finv(Dη,D2η), if x /∈ �(t),

0, if x ∈ �(t).

In the following steps, we will show that ϕ is continuous and satisfies the
inequality (3.8).

Step 3. The continuity of ϕ is clear away from the boundary. We now prove the
continuity of ϕ by showing that limits from inside and outside of �(t) are both
zero. Indeed, since �(t) is open, ηt , Dη and D2η are all identically zero in �(t)

and so is ϕ. For x /∈ ¯�(t) but sufficiently close to �(t), we calculate that

Finv(Dη,D2η) = − d


d
.
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Hence

ηt − Finv(Dη,D2η) = d

[
dt + 1


d

]
.

So ϕ is Lipschitz continuous in a tubular neighborhood.
Step 4. Using the above equation we calculate that

Dϕ = Dd

[
dt + 1


d

]
+ dD

[
dt + 1


d

]

for x /∈ ¯�(t). Hence, by (3.9),

lim
d↓0

Dϕ = Dd

[
dt + 1


d

]
= 0.

Therefore Dϕ is Lipschitz continuous with Dϕ = 0 on �(t). We obtain (3.8) by
applying Lemma 2.2 to ϕ. �

We are now ready to state the representation for the inverse mean curvature flow.

COROLLARY 3.2 (Representation for the inverse m.c.f.). Suppose that
{�(t)}t∈[0,T ] are subsets of R

d with smooth codimension one boundaries. Further
assume that ∂�(t) satisfy (3.5). Then,

�(t) = {
x ∈ R

d :Xν
x(t) ∈ �(0) a.s. for some ν ∈ A

}
,

where

dXν
x(s) = −2α(s) �w(s) ds + α(s)

√
2
(
Id − �w(s) ⊗ �w(s)

)
dW(s),

A is the set of all adapted maps ν(·) = (α(·), �w(·)) with values in [0,∞) × Sd−1.

PROOF. Let ŵ be a smooth extension of the unit normal vector and let α̂ be
a smooth extension of 1/H. Since in (3.6) α = 1/x is the minimizer, ν̂ = (α̂, ŵ)

satisfies the hypothesis of the theorem.
We continue by verifying assumption (2.3). Indeed by Lemma 2.1, for any �w,

trace[D2η(Id − �w ⊗ �w)] ≥ 
η − 1 and − �w · Dη ≥ −|Dη|.
Hence

Finv(Dη,D2η)

= inf
α>0

{−2α|Dη| + α2[
η − 1]}
≤ inf

{−2α �w · Dη + α2trace[D2η(Id − �w ⊗ �w)] :α > 0, �w ∈ Sd−1}
:= Ginv(Dη,D2η).

By definition, Ginv ≤ Finv. Hence (2.3) holds for the inverse mean curvature flow
with C = 0. �
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3.4. Gurtin’s anisotropic flow. In materials science geometric equations are
often used to model the evolution of a crystal. Due to the underlying crystalline
structure these equations often are anisotropic having different speeds for different
directions. The following two dimensional equation is derived by Gurtin [16] as a
simple model. In this model a planar curve moves according to

v = g(θ)κ + c,

where as before v is the normal velocity, κ = −H is the curvature of the curve, θ is
the angle between the normal and the x-axis, c is the energy difference between the
two phases, and g is positive function related to the surface energy S :S1 	→ R

1.
Indeed if we extend S to whole of R2 as a homogeneous of degree one function,

S(x) = |x|S
(

x

|x|
)
,

then for �n = (cos θ, sin θ)

D2S(�n) = g(θ)[I2 − �n ⊗ �n].
The level set equation for this flow is

φt = Fgurtin(ξ,A),

where with ξ̄ := ξ/|ξ |,
Fgurtin(ξ,A) = g(ξ̄ ) trace[(I2 − ξ̄ ⊗ ξ̄ )A] − c|ξ |.

In material science, it is natural to assume that both g, c are positive and that
g is even. Under these assumptions,

Fgurtin(ξ,A) = inf
{
g(�n) trace[(I2 − �n ⊗ �n)A] + c�nξ : �n = ±ξ̄

}
.

Hence the corresponding target problem has the coefficients

U = S1, µ(x, �n) = c�n, σ (x, �n) =
√

2g(�n)[I2 − �n ⊗ �n].
A stochastic representation for the Gurtin flow can be proved exactly as in the other
examples.

4. Weak solutions. In the preceding discussion we always assume the
existence of a smooth solution and then proved that this solution is the reachability
set of the target problem. However it is well known that most geometric flows,
including the mean and the inverse mean curvature flows create singularities in
finite time even if the initial data is very smooth. For instance, a dumbell shape
in R

3 flowing by its mean curvature would split into two pieces if the connecting
tube is sufficiently thin [15].

The connection between the target problem and geometric flows is not restricted
to smooth flows. Indeed under some assumptions, the authors in [24] proved that
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the characteristic function v of the complement of the reachability set is a viscosity
solution of the dynamic programming equation (1.1); see the seminal paper of
Crandall, Evans and Lions [8] or the book [12] for information on viscosity
solutions. Afterwards a similar result for codimension one mean curvature flow
was also obtained independently by Buckdahn, Cardaliaguet and Quincampoix [5].

Results of [24] apply to mean curvature flow but not to the inverse mean
curvature flow. Indeed it is known that the solutions of the inverse mean curvature
flow may not be continuous in time and therefore a careful definition of the
controlled process is needed in order to obtain such a characterization. This is
discussed in the forthcoming paper of the authors [25].

In view of this result of [24], it is possible to give a representation of the
viscosity solutions of the level set equations of the general geometric equation.
This characterization and several other properties of the weak solutions are
discussed in [25]. Here we briefly discuss this characterization.

Let v be a continuous viscosity solution of the (1.1) with initial data

v(0, x) = g(x), x ∈ R
d .(4.1)

Then, it is known that any nondecreasing function � : R1 	→ R
1, �(v) is also a

viscosity solution of (1.1) with initial data �(g). This is an immediate consequence
of the geometric property (1.4); see, for instance, [7, 4].

For a real number τ set

�τ (r) =
{

1, if r > τ,

0, if r ≤ τ.

Then �τ is the characteristic function of the complement of the τ sublevel set of v:
{v ≤ τ }. In view of the results of [25], this construction suggests the following
connection between the target problem and v.

For τ ∈ R
1 consider the control problem with target T = {g ≤ τ } and define

Vτ (t) := reachability set at time t with target Tτ

= {
x ∈ R

d :g
(
Xν

x(t)
) ≤ τ a.s. for some ν ∈ A

}
.

Clearly

Vτ (t) ⊂ Vρ(t), τ ≤ ρ,

so that we may define

v̂(t, x) := inf{τ :x ∈ Vτ (t)}.
Provided that (1.1) has “good” uniqueness properties, this discussion implies that
v̂ is equal to the unique solution v of (1.1) with initial data g. This is proved in [25].

We close this section with a brief comment on the inverse mean curvature flow.
Starting from a thick enough torus, the inverse mean curvature flow develops points
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with zero mean curvature. Since the flow is defined for mean convex surfaces,
such points create singularities. Indeed in [18] solutions are allowed to jump in
time should this situation arise. This is seen in the stochastic target problem as the
possible singular behavior of the state process. Recall that for the inverse mean
curvature flow, the controlled state process is

dXν
x(s) = −2α �w ds + √

2α(Id − �w ⊗ �w)dW(s),

and there is no upper bound for the control parameter α. For smooth flows it is
optimal to choose α = 1/H. However for singular surfaces the definition of α has
to be revisited. This will be studied in the future.

5. Alternative definition. The nonlinearity and therefore the definition given
involve the dimension of the flow. A definition using this information possibly
gives a larger class of smooth functions. In this section we discuss such a definition.
Let f u and N be as in the Introduction. We define a subset of N as follows.

As before let Uk be the set of all projection matrices onto a (d −k)-dimensional
plane. Given ξ ∈ R

d and a d × d symmetric matrix A, let Mk(ξ,A) be the set of
all P ∈ Uk satisfying the following:

Pξ = 0 and trace[AP ] = inf{trace[AQ] :Q ∈ Uk,Qξ = 0}.
Finally we say that u ∈ Vk(x, ξ,A) if there exists P ∈ Mk(ξ,A) such that

Pσ(x,u) = σ(x,u).

The nonlinearity corresponding to a codimension k flow is

Gk(x, ξ,A) = inf
{
f u(x, ξ,A) :u ∈ Vk(x, ξ,A)

}
.

Note that G1 = N . We then define the smooth flow as in Section 2.3 but by using
Gk instead of F . Then, the representation result Theorem 2.1 still holds. However
we need to modify the proof. Instead of just using the square distance function η we
use k smooth functions, ρi such that on �(t) the vectors Dρi form an orthogonal
basis for the normal space.

The difference between F and Gk is this. If we want to characterize the flow
with one level set function, then we are forced to use a nonnegative function and
the zero level set as the solution �. In this case, generically almost all level sets
of the auxiliary function are codimension one. Then it is not appropriate to use the
dimension information and the corresponding level set function is F . If however,
we use k auxiliary functions and represent the solution � as the intersection of any
level sets of this functions, the resulting level set function is Gk .

Note that Gk is also geometric in the sense of (1.4).
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