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Abstract. In this paper, we define and study a new class of optimal stochastic control problems
which is closely related to the theory of backward SDEs and forward-backward SDEs. The controlled
process (Xν , Y ν) takes values in R

d×R and a given initial data for Xν(0). Then the control problem
is to find the minimal initial data for Y ν so that it reaches a stochastic target at a specified terminal
time T . The main application is from financial mathematics, in which the process Xν is related to
stock price, Y ν is the wealth process, and ν is the portfolio.

We introduce a new dynamic programming principle and prove that the value function of the
stochastic target problem is a discontinuous viscosity solution of the associated dynamic programming
equation. The boundary conditions are also shown to solve a first order variational inequality in the
discontinuous viscosity sense. This provides a unique characterization of the value function which is
the minimal initial data for Y ν .
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1. Introduction. Let (Ω,F , P ) be a probability space, T > 0, and let {W (t),
0 ≤ t ≤ T} be a d-dimensional Brownian motion whose P -completed natural filtration
is denoted by F. Given a control process ν = {ν(t), 0 ≤ t ≤ T} with values in the
control set U , we consider the controlled process Zν

y = (Xν
y , Y

ν
y ) ∈ R

d × R satisfying

dZ(t) = α (t, Z(t), ν(t)) dt + β (t, Z(t), ν(t)) dW (t), 0 ≤ t < T,(1.1)

together with the initial data Zν(0) = (X(0), y).
For a given real-valued function g, the stochastic target control problem is to

minimize the initial data y while satisfying the random constraint Y ν
y (T ) ≥ g(Xν

y (T ))
with probability one, i.e.,

v(0, X(0)) := inf
{
y ∈ R : ∃ ν ∈ U , Y ν

y (T ) ≥ g
(
Xν

y (T )
)

P − a.s.
}
,

which we call the stochastic target problem.
The chief goal of this paper is to obtain a characterization of the value function

v as a discontinuous viscosity solution of an associated Hamilton–Jacobi–Bellman
(HJB) second order PDE with suitable boundary conditions. We do not address the
important uniqueness issue associated to the HJB equation in this paper. We simply
refer to Crandall, Ishii, and Lions [5] for some general uniqueness results.

The main step in the derivation of the above-mentioned PDE characterization is
a nonclassical dynamic programming principle. To the best of our knowledge, this
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dynamic programming is new; it was only partially used by the authors in a previous
paper [23].

This dynamic programming principle is closely related to the theory of viscosity
solutions. In the derivation of the supersolution property of the HJB equation, the
notion of viscosity solutions is only used to handle the lack of a priori regularity of the
value function. However, the use of the notion of viscosity solutions seems necessary
in order to derive the subsolution property from our dynamic programming principle,
even if the value function were known to be smooth.

This study is mainly motivated by applications to financial mathematics. Indeed,
a special specification of the coefficients α and β (see section 6) leads to the so-called
superreplication problem; see, e.g., El Karoui and Quenez [11], Cvitanić and Karatzas
[6], Broadie, Cvitanić, and Soner [4], Cvitanić, Pham, and Touzi [9], and Cvitanić and
Ma [8].

In the financial mathematics literature, the superreplication problem is usually
solved via convex duality. In this approach, a classical optimal control problem is
derived by first applying the duality; see Jouini and Kallal [15], El Karoui and Quenez
[11], Cvitanić and Karatzas [6], and Föllmer and Kramkov [13]. Then, one may
use classical dynamic programming to obtain the PDE characterization of the value
function v. However, this method cannot be applied to the general stochastic target
problem because of the presence of the control ν in the diffusion part of the state
process Xν . The methodology developed in this paper precisely allows us to avoid
this step and to obtain the PDE characterization directly from the initial (nonclassical)
formulation of the problem without using the duality.

The stochastic target problem is also closely related to the theory of backward
SDEs and forward-backward SDEs; see Antonelli [1], Cvitanić, Karatzas, and Soner
[7], Hu and Peng [16], Ma, Protter, and Yong [18], Ma and Yong [19], Pardoux [20],
and Pardoux and Tang [21]. Indeed, an alternative formulation of the problem is this:
find a triple of F-adapted processes (X,Y, ν) satisfying

(X,Y ) solves (1.1) with ν ∈ U ,X(0) fixed, Y (T ) + A(T ) = g(X(T ))(1.2)

for some nondecreasing F-adapted process A with A(0) = 0 as well as the minimality
condition

(X̃, Ỹ , ν̃, Ã) satisfies (1.2) =⇒ Y (.) ≤ Ỹ (.) P − a.s.

Notice that the nondecreasing process A is involved in the above definition to account
for possible constraints on the control ν; see [7]. In financial applications, this con-
nection has been observed by Cvitanić and Ma [8] and El Karoui, Peng, and Quenez
[12].

The paper is organized as follows: the definition of the stochastic target problem
is formulated in section 2. In section 3, we state the dynamic programming prin-
ciple. Section 4 studies the HJB equation satisfied by the value function v in the
discontinuous viscosity sense. In section 5, the terminal condition of the problem is
characterized by a first order variational inequality again in the discontinuous viscos-
ity sense. Finally, in section 6, we apply our results to the problem of superreplication
under portfolio constraints in a large investor financial market.

2. Stochastic target problem. In this section, we define a nonstandard stochas-
tic control problem.

Let T > 0 be the finite time horizon, and let W = {W (t), 0 ≤ t ≤ T} be a
d-dimensional Brownian motion defined on a complete probability space (Ω,F , P ).
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We denote by F = {F(t), 0 ≤ t ≤ T} the P -augmentation of the filtration generated
by W .

We assume that the control set U is a convex compact subset of R
d with a

nonempty interior, and we denote by U the set of all progressively measurable pro-
cesses ν = {ν(t), 0 ≤ t ≤ T} with values in U .

The state process is defined as follows: given the initial datum z = (x, y) ∈ R
d×R,

an initial time t ∈ [0, T ], and a control process ν ∈ U , let the controlled process
Zν
t,z = (Xν

t,x, Y
ν
t,z) be the solution of the SDE

dXν
t,x(u) = µ

(
u,Xν

t,x(u), ν(u)
)
du + σ∗ (u,Xν

t,x(u), ν(u)
)
dW (u), u ∈ (t, T ),

dY ν
t,x,y(u) = b

(
u, Zν

t,z(u), ν(u)
)
du + a∗

(
u, Zν

t,z(u), ν(u)
)
dW (u), u ∈ (t, T ),

with initial data

Xν
t,x(t) = x, Y ν

t,x,y(t) = y,

where M∗ denotes the transpose of the matrix M , and µ, σ, b, a are bounded functions
on [0, T ] × R

k × U (k = d or d + 1) satisfying the usual conditions in order for the
process Zν

t,z to be well defined.
Throughout the paper, we assume that the matrix σ(t, x, r) is invertible and the

function

r �→ σ−1(t, x, r)a(t, x, y, r)

is one to one for all (t, x, y). Let ψ be its inverse; i.e.,

σ−1(t, x, r)a(t, x, y, r) = p ⇐⇒ r = ψ(t, x, y, p).(2.1)

This is a crucial assumption which enables us to match the stochastic parts of the X
and the Y processes by a judicial choice of the control process ν. Similar assumptions
were also utilized in the backward-forward SDEs. See also Remark 2.2.

Now we are in a position to define the “stochastic target” control problem. Let
g be a real-valued measurable function defined on R

d. We shall denote by Epi(g) :=
{(x, y) ∈ R

d × R : y ≥ g(x)} the epigraph of g. Let

v(t, x) := inf
{
y ∈ R : ∃ ν ∈ U , Zν

t,x,y(T ) ∈ Epi(g) P − a.s.
}
.(2.2)

In some cases, it is possible to find initial datum and a control so that Y ν
t,x,y(T ) =

g(Xν
t,x(T )). In that case, this problem is equivalent to a backward-forward SDE; see

the discussion in our introduction. In particular, when U = R
d, the corresponding

backward-forward SDE has a solution (see, e.g., [21]), and it is equal to v. However,
when the control set U is bounded, in general there is no solution of the backward-
forward equation, and v is the natural generalization of the backward-forward SDE.
An alternative generalization can be obtained by involving a nondecreasing process,
as discussed in the introduction; see [7].

We conclude this section by introducing several sets to simplify the notation. Let

A(t, x, y) :=
{
ν ∈ U : Zν

t,x,y(T ) ∈ Epi(g) P − a.s.
}
.

Note that A(t, x, y) may be empty for some initial datum (t, x, y). Next we define

Y(t, x) := {y ∈ R : A(t, x, y) �= ∅} .
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Then the stochastic target problem can be written as

v(t, x) = inf Y(t, x) = inf {y ∈ R : y ∈ Y(t, x)} .

Remark 2.1. The set Y(t, x) satisfies the following important property:

for all y ∈ R, y ∈ Y(t, x) =⇒ [y,∞) ⊂ Y(t, x).

This follows from the facts that Xν
t,x is independent of y and Y ν

t,x,y(T ) is nondecreasing
in y.

Remark 2.2. A more general formulation of this problem, as discussed in our ac-
companying paper [24], is obtained by defining the reachability set of the deterministic
target Epi(g):

V (t) :=
{
z ∈ R

d+1 : Zν
t,z(T ) ∈ Epi(g) P − a.s. for some ν ∈ A} .

From the previous remark, the set V (t) is “essentially” characterized as the epigraph
of the scalar function v(t, .). A standing assumption in [24] is

N (t, z, p) :=

{
ν ∈ R

d : [σ|a](t, z, ν)

[
p
−1

]
= 0

}
�= ∅;

i.e., since we wish to hit the deterministic target Epi(g) with probability one, the
diffusion process has to degenerate along certain directions captured by the kernel N .
This degeneracy assumption is directly related to our condition (2.1).

3. Dynamic programming. In this section, we introduce a new dynamic pro-
gramming equation for the stochastic target problem. This will allow us to charac-
terize the value function of the stochastic target problem as a viscosity solution of a
nonlinear PDE. For the classical stochastic control problem, this connection between
the dynamic programming principle and the PDEs is well known (see, e.g., [14]). The
chief goal of this paper is to develop the same tools for this nonstandard target control
problem. Namely, we will formulate an appropriate dynamic programming principle
and then derive the corresponding nonlinear PDE as a consequence of it.

A discussion of general dynamic programming of this type is the subject of an
accompanying paper by the authors [24].

Theorem 3.1. Let (t, x) ∈ [0, T ]× R
d.

(DP1) For any y ∈ R, set z := (x, y). Suppose that A(t, z) �= ∅. Then, for all
ν ∈ A(t, z) and a [t, T ]-valued stopping time θ,

Y ν
t,x,y(θ) ≥ v

(
θ,Xν

t,x(θ)
)

P − a.s.

(DP2) Set y∗ := v(t, x). Let θ be an arbitrary [t, T ]-valued stopping time. Then, for
all ν ∈ U and η > 0,

P
[
Y ν
t,x,y∗−η(θ) > v

(
θ,Xν

t,x(θ)
) ]

< 1.

Proof. We provide only the main idea of the proof. We refer to [24] for the
complete argument. Let z = (x, y) and ν be as in the statement of (DP1). By the
definition of A(t, z), Zν

t,z(T ) ∈ Epi(g). Since Zν
t,z(T ) = Zν

θ,Zν
t,z(θ)(T ), it follows that

ν(·) ∈ A (θ(w), Zν
t,z(t + θ(w))

)
for P almost every w ∈ Ω .
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Then, again for P almost every w ∈ Ω, Y ν
t,z(θ(w)) ∈ Y (θ(w), Xν

t,x(θ(w))
)
, and, by

the definition of the value function, v
(
θ(w), Xν

t,x(θ(w))
) ≤ Y ν

t,z(θ(w)).
We prove (DP2) by contraposition. So, toward a contradiction, suppose that

there exists a [t, T )-valued stopping time θ such that

Y ν
t,x,y∗−η(θ) > v

(
θ,Xν

t,x(θ)
)

P − a.s.

In view of Remark 2.1, this proves that Y ν
t,x,y∗−η(θ) ∈ Y (θ,Xν

t,x(θ)
)
. Then there

exists a control ν̂ ∈ U such that

Y ν̂
θ,Zν

t,x,y∗−η
(θ)(T ) ≥ g

(
X ν̂

θ,Xν
t,x(θ)(T )

)
P − a.s.

Since the process (X ν̂
θ,Xν

t,x(θ), Y
ν̂
θ,Zν

t,x,y∗−η
(θ)) depends on ν̂ only through its realizations

in the stochastic interval [t, θ], we may chose ν̂ so that ν̂ = ν on [t, θ]. (This is the
difficult part of this proof.) Then Z ν̂

θ,Zν
t,x,y∗−η

(θ)(T ) = Z ν̂
t,x,y∗−η(T ), and therefore

y∗ − η ∈ Y(t, x); hence y∗ − η ≤ v(t, x). Recall that, by definition, y∗ = v(t, x) and
η > 0.

The dynamic programming principle stated in Theorem 3.1 does not require all
of the assumptions made in the first section. Namely, the control set U does not need
to be convex or compact, and the function σ−1(t, x, r)a(t, x, y, r) is not required to be
one to one in the r variable.

For completeness, we mention that the statement of Theorem 3.1 is equivalent to
the following, apparently stronger but more natural, dynamic programming principle.

Corollary 3.1. For all (t, x) ∈ [0, T )×R
d and a [t, T ]-valued stopping time θ,

we have

v(t, x) = inf
{
y ∈ R : ∃ ν ∈ U , Y ν

t,x,y(θ) ≥ v
(
θ,Xν

t,x(θ)
)
P − a.s.} .

4. Viscosity property. In this section, we use the dynamic programming prin-
ciple stated in Theorem 3.1 to prove that the value function of the stochastic target
control problem (2.2) is a discontinuous viscosity solution to the corresponding dy-
namic programming equation.

Following the convention in the viscosity literature, let v∗ (resp., v∗) be the lower
(resp., upper) semicontinuous envelope of v; i.e.,

v∗(t, x) := lim inf
(t′,x′)→(t,x)

v(t′, x′) and v∗(t, x) := lim sup
(t′,x′)→(t,x)

v(t′, x′).

Let δU be the support function of the closed convex set U :

δU (ζ) := sup
ν∈U

(ν∗ζ), ζ ∈ R
d.

We shall denote by Ũ the effective domain of δU and by Ũ1 the restriction of Ũ to the
unit circle:

Ũ =
{
ζ ∈ R

d : δU (ζ) ∈ R
}

and Ũ1 =
{
ζ ∈ Ũ : |ζ| = 1

}
so that Ũ is the closed cone generated by Ũ1. Under our assumptions, since U is a
bounded subset of R

d,

Ũ = R
d and Ũ1 =

{
ζ ∈ R

d : |ζ| = 1
}
.
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Remark 4.1. The compactness of U is only needed in order to establish some
results which require us to extract convergent subsequences from sequences in U .
Therefore, many results contained in this paper hold for a general closed convex
subset U . For this reason, we shall keep using the notation Ũ and Ũ1.

Remark 4.2. For later reference, note that the closed convex set U can be char-
acterized in terms of Ũ (see, e.g., [22]):

ν ∈ U iff inf
ζ∈Ũ

(δU (ζ)− ζ∗ν) ≥ 0,

iff inf
ζ∈Ũ1

(δU (ζ)− ζ∗ν) ≥ 0;

the second characterization follows from the facts that Ũ is the closed cone generated
by Ũ1 and δU is positively homogeneous.

Remark 4.3. We shall also use the following characterization of int(U) in terms
of Ũ1:

ν ∈ int(U) iff inf
ζ∈Ũ1

(δU (ζ)− ζ∗ν) > 0.

To see this, suppose that the right-hand side infimum is zero. Then, for all ε > 0, there
exists some ζ0 ∈ Ũ1 such that 0 ≤ δU (ζ0)− ζ∗0ν ≤ ε/2. Then δU (ζ0)− ζ∗0 (ν + εζ0) < 0,
and therefore ν+εζ0 �∈ U by the previous remark. Since ε > 0 is arbitrary, this proves
that ν �∈ int(U). Conversely, suppose that * := infζ∈Ũ1

(δU (ζ)− ζ∗ν) > 0. Then, by
the Cauchy–Schwarz inequality and the characterization of the previous remark, it is
easily checked that the ball around ν with radius * is included in U .

Remark 4.4. Let f be the function defined on R
d by

f(ν) := inf
ζ∈Ũ1

(δU (ζ)− ζ∗ν) .

Then f is continuous. Indeed, since Ũ1 is a compact subset of R
d, the infimum in the

above definition of f(ν) is attained, say, at ζ̂(ν) ∈ Ũ1. Then, for all ν, ν′ ∈ R
d,

f(ν′) ≤ δU (ζ̂(ν))− ζ̂(ν)∗ν + ζ̂(ν)∗(ν − ν′) = f(ν) + ζ̂(ν)∗(ν − ν′) ≤ f(ν) + |ν − ν′|

by the Cauchy–Schwarz inequality. By symmetry, this proves that f is a contracting
mapping.

Finally, we introduce the Dynkin second order differential operator associated to
the process Xν :

Lνu(t, x) :=
∂u

∂t
(t, x) + µ(t, x, ν)∗Du(t, x) +

1

2
Trace

(
D2u(t, x)σ∗(t, x, ν)σ(t, x, ν)

)
,

where Du and D2u denote, respectively, the gradient and the Hessian matrix of u
with respect to the x variable.

Theorem 4.1. Assume that µ, σ, a, b are all bounded and satisfy the usual
Lipschitz conditions and that v∗, v∗ are finite everywhere. Further assume (2.1) and
that U has a nonempty interior. Then the value function v of the stochastic target
problem is a discontinuous viscosity solution of the equation on [0, T )× R

d,

min {−Lν0u(t, x) + b (t, x, u(t, x), ν0) ; H(t, x, u(t, x), Du(t, x))} = 0,(4.1)
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where

ν0(t, x) := ψ (t, x, u(t, x), Du(t, x)) ,(4.2)

H(t, x, u(t, x), Du(t, x)) = inf
ζ∈Ũ1

(δU (ζ)− ζ∗ν0(t, x)) ;(4.3)

i.e., v∗ and v∗ are, respectively, viscosity supersolution and subsolution of (4.1).
Remark 4.5. In view of Remark 4.2, H ≥ 0 iff ν0 ∈ U . Since U has a nonempty

interior, it follows from Remark 4.3 that H > 0 iff ν0 ∈ int(U).
The proof of Theorem 4.1 will be completed in the following two subsections. The

supersolution part of the claim follows from (DP1) and a classical argument in the
viscosity theory which is due to P.-L. Lions. We shall take advantage of the fact that
the inequality in (DP1) is in the a.s. sense. This allows for suitable change of measure
before taking expectations. The subsolution part is obtained from (DP2) by means
of a contraposition argument.

The above result will be completed in Theorem 5.1 by the description of the
boundary condition. The reader who is not interested in the technical proof of The-
orem 4.1 can go directly to section 5.

4.1. Proof of the viscosity supersolution property. Fix (t0, x0) ∈ [0, T )×
R

d, and let ϕ be a C2([0, T ]× R
d) function satisfying

0 = (v∗ − ϕ)(t0, x0) = min
(t,x)∈[0,T )×Rd

(v∗ − ϕ) .

Observe that v ≥ v∗ ≥ ϕ on [0, T )× R
d.

Step 1. Let (tn, xn)n≥1 be a sequence in [0, T )× R
d such that

(tn, xn) → (t0, x0) and v(tn, xn) → v∗(t0, x0).

Set yn := v(tn, xn)+(1/n) and zn := (xn, yn). Then, by the definition of the stochastic
target control problem, the set A(tn, zn) is not empty. Let νn be any element of
A(tn, zn).

For any [0, T − tn)-valued stopping time θn (to be chosen later), (DP1) yields

Y νn
tn,zn(tn + θn) ≥ v (tn + θn, Xtn,xn

(tn + θn)) P − a.s.

Set βn := yn−ϕ(tn, xn). Since, as n tends to infinity, yn → v∗(t0, x0) and ϕ(tn, xn) →
ϕ(t0, x0) = v∗(t0, x0),

βn → 0 .

Further, since v ≥ v∗ ≥ ϕ, we have v (tn + θn, Xtn,xn
(tn + θn)) ≥ ϕ(tn + θn, Xtn,xn

(tn + θn)) P -a.s. Then

βn +
[
Y νn
tn,zn(tn + θn)− yn

]− [ϕ (tn + θn, Xtn,xn(tn + θn))− ϕ(tn, xn)] ≥ 0 P − a.s.

By Itô’s lemma,

0 ≤ βn +

∫ tn+θn

tn

[
b
(
s, Zνn

tn,zn(s), νn(s)
)− Lνn(s)ϕ

(
s,Xνn

tn,xn
(s)
)]
ds

+

∫ tn+θn

tn

[
a
(
s, Zνn

tn,zn(s), νn(s)
)

− σ
(
s,Xνn

tn,xn
(s), νn(s)

)
Dϕ

(
s,Xνn

tn,xn
(s)
)]∗

dW (s).(4.4)



VISCOSITY PROPERTY FOR STOCHASTIC TARGET PROBLEMS 411

Step 2. For some large constant C, set

θn := inf
{
s > tn : |Xνn

tn,xn
(s)| ≥ C

}
.

Since U is bounded in R
d and (tn, xn) −→ (t0, x0), one can easily show that

lim inf
n→∞ t ∧ θn > t0 for all t > t0.(4.5)

For ξ ∈ R, we introduce the probability measure P ξ
n equivalent to P defined by the

density process

Mξ
n(t) := E

(
−ξ
∫ t∧θn

tn

(a− σDϕ)
(
s, Zνn

tn,zn(s), νn(s)
)
dW (s)

)
, t ≥ tn ,

where E(.) is the Doléans–Dade exponential operator. We shall denote by Eξ
n the

conditional expectation with respect to Ftn under P ξ
n.

We take the conditional expectation with respect to Ftn under P ξ
n in (4.4). The

result is

0 ≤ βn + Eξ
n

[∫ tn+h∧θn

tn

(
b
(
s, Zνn

tn,zn(s), νn(s)
)− Lνn(s)ϕ

(
s,Xνn

tn,xn
(s)
))
ds

]

− ξ Eξ
n

[∫ tn+h∧θn

tn

∣∣a (s, Zνn
tn,zn(s), νn(s)

)

− σ
(
s,Xνn

tn,xn
(s), νn(s)

)
Dϕ

(
s,Xνn

tn,xn
(s)
)∣∣2ds

]

for all h > 0. We now consider two cases:
• Suppose that the set {n ≥ 1 : βn = 0} is finite. Then there exists a subse-

quence, renamed (βn)n≥1, such that βn �= 0 for all n ≥ 1. Set hn =
√|βn|

and kn := θn ∧ (tn + hn).
• If the set {n ≥ 1 : βn = 0} is not finite, then there exists a subsequence,

renamed (βn)n≥1, such that βn = 0 for all n ≥ 1. Set hn := n−1 and
kn := θn ∧ (tn + hn).

The final inequality still holds if we replace t ∧ θn with kn. We then divide this
inequality by hn and send n to infinity by using (4.5), the dominated convergence
theorem, and the right continuity of the filtration. The result is

0 ≤ lim inf
n→∞

1

hn

∫ tn+hn

tn

[
b
(
s, Zνn

tn,zn(s), νn(s)
)− Lνn(s)ϕ

(
s,Xνn

tn,xn
(s)
)

− ξ
∣∣a (s, Zνn

tn,zn(s), νn(s)
)− σ

(
s,Xνn

tn,xn
(s), νn(s)

)
Dϕ

(
s,Xνn

tn,xn
(s)
)∣∣2]ds.

We continue by using the following result, whose proof is given after the proof of the
supersolution property.

Lemma 4.1. Let ψ : [0, T ]×R
d+1×U → R be locally Lipschitz in (t, z) uniformly

in r. Then

1

hn

∫ tn+hn

tn

[
ψ
(
s, Zνn

tn,zn(s), νn(s)
)− ψ (t0, z0, νn(s))

]
ds→ 0 P − a.s.
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along some subsequence.
In view of this lemma,

0 ≤ lim inf
n→∞

1

hn

∫ tn+hn

tn

[
b (t0, z0, νn(s))− Lνn(s)ϕ (t0, x0)

− ξ |a (t0, z0, νn(s))− σ (t0, x0, νn(s))Dϕ (t0, x0)|2
]
ds.

Then, since h−1
n

∫ tn+hn

tn
ds = 1,

1

hn

∫ tn+hn

tn

[
b (t0, z0, νn(s))− Lνn(s)ϕ (t0, x0)(4.6)

− ξ |a (t0, z0, νn(s))− σ (t0, x0, νn(s))Dϕ (t0, x0)|2
]
ds ∈ c̄oV(t0, z0),

where c̄oV(t0, z0) is the closed convex hull of the set V(t0, z0) defined by

V(t0, z0) :=
{
b(t0, z0, ν)−Lνϕ(t0, x0)−ξ |a(t0, z0, ν)− σ(t0, x0, ν)Dϕ(t0, x0)|2 : ν ∈ U

}
.

Therefore, it follows from (4.6) that

0 ≤ sup
φ∈c̄oV

φ

= sup
ν∈U

{
ξ |−a(t0, z0, ν) + σ(t0, x0, ν)Dϕ(t0, x0)|2 − Lνϕ(t0, x0) + b(t0, z0, ν)

}
(4.7)

for all ξ ∈ R.
Step 3. For a large positive integer n, set ξ = −n. Since U is compact, the

supremum in (4.7) is attained at some ν̂n ∈ U , and

−n |a(t0, z0, ν̂n)− σ(t0, x0, ν̂n)Dϕ(t0, x0)|2 − Lν̂nϕ(t0, x0) + b(t0, z0, ν̂n) ≥ 0.

By passing to a subsequence, we may assume that there exists ν̂ ∈ U such that
ν̂n → ν0. Now let n to infinity in the last inequality to prove that

|a(t0, z0, ν̂n)− σ(t0, x0, ν̂n)Dϕ(t0, x0)|2 → 0(4.8)

and

−Lν0ϕ(t0, x0) + b(t0, z0, ν0) ≥ 0.(4.9)

In view of (4.8), we conclude that

ν0 = ψ (t0, z0, Dϕ(t0, x0)) .(4.10)

Since ν0 ∈ U , it follows from Remark 4.2 that

inf
ζ∈Ũ1

(δU (ζ)− ζ∗ν0) ≥ 0.(4.11)

The supersolution property now follows from (4.9), (4.10), and (4.11).
Proof of Lemma 4.1. Since ψ(t, z, r) is locally Lipschitz in (t, z) uniformly in r,

1

hn

∫ tn+hn

tn

[
ψ
(
s, Zνn

tn,zn(s), νn(s)
)− ψ (t0, z0, νn(s))

]
ds

≤ K
1

hn

∫ tn+hn

tn

(|s− t0|+
∣∣Zνn

tn,zn(s)− z0

∣∣) ds
≤ K

(
hn + |tn − t0|+ sup

tn≤s≤tn+hn

∣∣Zνn
tn,zn(s)− z0

∣∣)
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for some constant K. Thus, to complete the proof of this lemma, it suffices to show

sup
tn≤s≤tn+hn

∣∣Zνn
tn,zn(s)− z0

∣∣ −→ 0 P − a.s.

along a subsequence. Set

γ(t, x, y, r) :=

(
µ(t, x, r)
b(t, x, y, r)

)
and α(t, x, y, r) :=

(
σ∗(t, x, r)
a∗(t, x, y, r)

)
.

Functions α and γ inherit the pointwise bounds from µ, b, σ, and a. We directly
calculate that, for tn ≤ s ≤ tn + hn,

Zνn
tn,zn(s)− z0 ≤ |zn − z0|+ ‖γ‖∞hn +

∣∣∣∣
∫ s

tn

α
(
s, Zνn

tn,zn(s), νn(s)
)
dW (s)

∣∣∣∣ ,
and, therefore,

sup
tn≤s≤tn+hn

∣∣Zνn
tn,zn(s)− z0

∣∣ ≤ |zn − z0|+ ‖γ‖∞hn

+ sup
tn≤s≤tn+hn

∣∣∣∣
∫ s

tn

α
(
s, Zνn

tn,zn(s), νn(s)
)
dW (s)

∣∣∣∣ .
The first two terms on the right-hand side converge to zero. We estimate the third
term by Doob’s maximal inequality for submartingales.

The result is

E

[(
sup

tn≤s≤tn+hn

∣∣∣∣
∫ s

tn

α
(
s, Zνn

tn,zn(s), νn(s)
)
dW (s)

∣∣∣∣
)2
]

≤ 4 E

[∫ tn+hn

tn

α
(
s, Zνn

tn,zn(s), νn(s)
)2

ds

]

≤ 4 ‖α‖2∞hn.

This proves that

sup
tn≤s≤tn+hn

∣∣Zνn
tn,zn(s)− z0

∣∣→ 0 in L2(P ),

and, therefore, it also converges P -a.s. along some subsequence.

4.2. Subsolution property. We start with a technical lemma which will be
used both in the proof of the subsolution property and also in the next section on
the characterization of the terminal data. We first introduce some notation. Given a
smooth function ϕ(t, x), we define the open subset of [0, T ]× R

d:

M0(ϕ) :=

{
(t, x) : inf

ζ∈Ũ1

(δU (ζ)− ζ∗ν0(t, x)) > 0 and

−Lν0(t,x)ϕ(t, x) + b (t, x, ϕ(t, x), ν0(t, x)) > 0

}
,

= { (t, x) : ν0(t, x) ∈ int(U) and − Lν0(t,x)ϕ(t, x)

+b (t, x, ϕ(t, x), ν0(t, x)) > 0 },
where ν0(t, x) = ψ(t, x, ϕ(t, x), Dϕ(t, x)) .
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Lemma 4.2. Let ϕ be a smooth test function, and let B = BR(x0) be the open
ball around x0 with radius R > 0. Suppose that there are t1 < t2 ≤ T such that

cl(M) ⊂ M0(ϕ), where M := (t1, t2)×B.

Then

sup
∂pM

(v − ϕ) = max
cl(M)

(v∗ − ϕ),

where ∂pM is the parabolic boundary of M; i.e., ∂pM = ([t1, t2]× ∂B)∪({t2} × B̄
)
.

Proof. We shall denote M := cl(M). Suppose, to the contrary, that

max
M

(v∗ − ϕ)− sup
∂pM

(v − ϕ) := 2β > 0,

and let us work toward a contradiction of (DP2).
Choose (t0, x0) ∈M so that (v − ϕ)(t0, x0) ≥ −β + maxM(v∗ − ϕ), and

(v − ϕ)(t0, x0) ≥ β + sup
∂pM

(v − ϕ).(4.12)

Step 1. In view of Remark 4.5, infζ∈Ũ1
(δU (ζ)− ζ∗ν0) > 0 is equivalent to ν0 ∈

int(U). Set

N :=
{
(t, x, y) : ν̂(t, x, y) ∈ int(U) and − Lν̂(t,x,y)ϕ(t, x) + b (t, x, y, ν̂(t, x, y)) > 0

}
,

where ν̂(t, x, y) = ψ(t, x, y,Dϕ(t, x)), and, for η ≥ 0,

Mη := { (t, x) : (t, x, ϕ(t, x)− η) ∈ N } .

Note that this definition of M0 := M0(ϕ) agrees with the previous definition. More-
over, in view of our hypothesis, for all sufficiently small η, M ⊂ Mη. Fix η ≤ β
satisfying this inclusion.

Step 2. Let η be as in the previous step. Let (Xη, Yη) be the solution of the state
equation with initial data Xη(t0) = x0, Yη(t0) = ϕ(t0, x0)− η and the control ν given
in the feedback form

ν(t, x) = ψ(t, x, ϕ(t, x)− η,Dϕ(t, x)).

Set

ν(t) := ν(t,Xη(t))

so that

(Xη, Yη) = Zν
t0,x0,v(t0,x0)−η =

(
Xν

t0,x0
, Y ν

t0,x0,v(t0,x0)−η

)
.

Set

Ŷη(t) := ϕ(t,Xη(t))− η + (v − ϕ)(t0, x0),

and observe that Yη(0) = Ŷη(0) = v(t0, x0)− η. In the next step, we will compare the

processes Yη and Ŷη.
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Step 3. By Itô’s rule,

dŶη(t) = Lν(t)ϕ(t,Xη(t))dt + Dϕ(t,Xη(t)) · σ∗(t,Xη(t), ν(t))dW (t).

In view of (2.1) and the definition of ν(t),

Dϕ(t,Xη(t)) · σ∗(t,Xη(t), ν(t)) = a∗(t,Xη(t), Ŷη(t), ν(t)).

Hence

dŶη(t) = b̂(t)dt + a∗(t,Xη(t), Ŷη(t), ν(t))dW (t),

where

b̂(t) := Lν(t)ϕ(t,Xη(t)).

Recall that Yη solves the same SDE with a different drift term:

dYη(t) = b(t)dt + a∗(t,Xη(t), Yη(t), ν(t))dW (t),

where b(t) := b(t,Xη(t), Yη(t), ν(t)).
Let θ be the stopping time

θ := inf { s > 0 : (t0 + s,Xη(t0 + s)) �∈ M } .
Since M is an open set containing (t0, x0), the stopping time θ is positive a.s.

Now, from the definition of η, we haveM⊂Mη. It follows that, for t ∈ [t0, t0+θ),

(t,Xη(t)) ∈Mη a.s.; i.e., (t,Xη(t), Ŷη(t)) ∈ N a.s. by definition of Mη. Hence

b(t) > Lν(t)ϕ(t,Xη(t)) = b̂(t), t ∈ [t0, t0 + θ), P − a.s.

Since Yη(0) = Ŷη(0) = v(t0, x0)− η, it follows from stochastic comparison that

Ŷη(t) ≤ Yη(t), t ∈ [t0, t0 + θ), P − a.s.

Step 4. We now proceed to contradict (DP2). First, observe that, by continuity
of the process Xη, (t0 + θ,Xη(t0 + θ)) ∈ ∂pM. Also, from inequality (4.12), we have
v ≤ ϕ− β + (v − ϕ)(t0, x0) on ∂pM. Therefore,

Yη(t0 + θ)− v(t0 + θ,Xη(t0 + θ)) ≥ β + Yη(t0 + θ)− ϕ(t0 + θ,Xη(t0 + θ))

+ (v − ϕ)(t0, x0)

= (β − η) + Yη(t0 + θ)− Ŷη(t0 + θ)

≥ β − η ≥ 0

from step 3. By (4.12) and the definition of (Xη, Yη), we have Yη = Y ν
t0,x0,v(t0,x0)−η

and Xη = Xν
t0,x0

. Then the previous inequality contradicts (DP2).

Proof of the subsolution property. Fix (t0, x0) ∈ [0, T ) × R
d, and let ϕ be a

C2([0, T ]× R
d) function satisfying

(v∗ − ϕ)(t0, x0) = (strict) max
(t,x)∈[0,T )×Rd

(v∗ − ϕ) .

Set z0 := (x0, ϕ(t0, x0)). Let M0 := M0(ϕ) be as in the previous lemma. Since
(t0, x0) is a strict maximizer of (v∗−ϕ) and since M0 is an open set, by the previous
lemma we conclude that (x0, y0) �∈ M0. Then, by the definition of M0,

min

{
inf
ζ∈Ũ1

(δU (ζ)− ζ∗ν̂(t0, z0)) , −Lν̂(t0,z0)ϕ(t0, x0) + b (t0, z0, ν̂(t0, z0))

}
≤ 0,

and therefore v∗ is a viscosity subsolution.
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5. Terminal condition. To characterize the value function as the unique so-
lution of the dynamic programming equation, we need to specify the terminal data.
The definition of the value function implies that

v(T, x) = g(x), x ∈ R.(5.1)

However, it is known that

G(x) := lim inf
t↑T, x′→x

v(t, x′)

may be strictly larger than g(x) (see, for instance, [4] and Lemma 5.1 below).
In this section, we will characterize G as the viscosity supersolution of a first order

PDE. We will also study

G(x) := lim sup
t↑T, x′→x

v(t, x′)

and prove that G is a viscosity subsolution of the same equation. More precisely, we
have the following theorem.

Theorem 5.1. Let the assumptions of Theorem 4.1 hold, and assume that G
and G are finite for every x ∈ R

d. Suppose, further, that (g∗)∗ ≥ g. Then G and G,
respectively, are viscosity super- and subsolutions of the following equations on R

d:

min{G(x)− g∗(x); H (T, x,G(x), DG(x))} ≥ 0,

min{G(x)− g∗(x); H
(
T, x,G(x), DG(x)

)} ≤ 0.

In most cases, since a subsolution is not greater than a supersolution, this char-
acterization implies that G ≤ G and therefore that G = G. In the next section,
we provide examples for which this holds, and we will also compute G := G = G
explicitly in those examples.

The rest of this section is devoted to the proof of Theorem 5.1.
Remark 5.1. In the definition of G, we may replace v by v∗:

G(x) = lim sup
t↑T, x′→x

v∗(t, x′).

Similarly,

G(x) := lim inf
t↑T, x′→x

v∗(t, x′).

We start with the following lemma.
Lemma 5.1. Suppose that G(x) and G(x) are finite for every x ∈ R

d. Then

G(x) ≥ g∗(x) for all x ∈ R
d.

Proof. Take a sequence (xn, tn) → (x, T ) with tn < T . Set yn := v(tn, xn)+(1/n).
For each n, there exists a control νn ∈ U satisfying

Y νn
tn,xn,yn

(T ) ≥ g
(
Xνn

tn,xn
(T )
)

P− a.s.

Since a and b are bounded,

E
[
Y νn
tn,xn,yn

(T )
] ≤ yn + ‖b‖∞(T − tn) = v(tn, xn) +

1

n
+ ‖b‖∞(T − tn).
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We continue by using the following claim, whose proof will be provided later:{
Y νn
tn,xn,yn

(T ) , n ≥ 0
}

is uniformly integrable.(5.2)

Then

lim inf
n→∞ v(tn, xn) ≥ lim inf

n→∞ E
[
Y νn
tn,xn,yn

(T )
]

= E
[

lim inf
n→∞ Y νn

tn,xn,yn
(T )

]
≥ E

[
lim inf
n→∞ g

(
Xνn

tn,xn
(T )
) ]

.

Since U is compact and (tn, xn) converges to (T, x), Xνn
tn,xn

(T ) approaches x as n
tends to infinity. The required result then follows from the definition of the lower
semicontinuous envelope g∗ of g.

It remains to prove claim (5.2). Since b is bounded,

∣∣Y νn
tn,xn,yn

(T )
∣∣ ≤ |yn|+ (T − tn)‖b‖∞ +

∣∣∣∣∣
∫ T

tn

a
(
u, Zνn

tn,xn,yn
(u), νn(u)

)∗
dW (u)

∣∣∣∣∣
≤ T‖b‖∞ + |v(tn, xn)|+

∣∣∣∣∣
∫ T

tn

a
(
u, Zνn

tn,xn,yn
(u), νn(u)

)∗
dW (u)

∣∣∣∣∣ .
Now observe that lim sup v(tn, xn) ≤ lim sup v∗(tn, xn) ≤ G(x) and lim inf v(tn, xn) ≥
lim inf v∗(tn, xn) ≥ G(x). This proves that the sequence v(tn, xn) is bounded. In
order to complete the proof, it suffices to show that the sequence{

Un :=

∫ T

tn

a
(
u, Zνn

tn,xn,yn
(u), νn(u)

)∗
dW (u), n ≥ 0

}

is uniformly integrable. Since a is bounded,

sup
n≥0

E
[
U2
n

] ≤ sup
n≥0

(T − tn)‖a∗a‖∞ ≤ T‖a∗a‖∞.

Hence {Un, n ≥ 0} is bounded in L2, and, therefore, it is uniformly integrable.
Next, we will show that G is a viscosity supersolution of H ≥ 0, where H is as in

(4.3).
Lemma 5.2. Suppose that G(x) is finite for every x ∈ R

d. Then G is a viscosity
supersolution of

H(T, x,G(x), DG(x)) ≥ 0.

Proof. By definition, G is lower semicontinuous. Let f be a C2(Rd) function
satisfying

0 = (G− f)(x0) = min
x∈Rd

(G− f)

at some x0 ∈ R
d. Observe that G ≥ f on R

d.
Step 1. In view of Remark 5.1, there exists a sequence (sn, ξn) converging to

(T, x0) such that sn < T and

lim
n→∞ v∗(sn, ξn) = G(x0).
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For a positive integer n, consider the auxiliary test function

ϕn(t, x) := f(x)− 1

2
|x− x0|2 +

T − t

(T − sn)2
.

Let B := B1(x0) be the unit open ball in R
d centered at x0. Choose (tn, xn) ∈

[sn, T ]× B̄, which minimizes the difference v∗ − ϕn on [sn, T ]× B̄.
Step 2. We claim that, for sufficiently large n, tn < T , and xn converges to x0.

Indeed, for sufficiently large n,

(v∗ − ϕn)(sn, ξn) ≤ − 1

2(T − sn)
.

On the other hand, for any x ∈ B̄,

(v∗ − ϕn)(T, x) = G(x)− f(x) +
1

2
|x− x0|2 ≥ G(x)− f(x) ≥ 0.

Comparing the two inequalities leads us to conclude that tn < T for large n. Suppose
that, on a subsequence, xn converges to x∗. Since tn ≥ sn and (tn, xn) minimizes the
difference (v∗ − ϕn),

(G− f)(x∗) − (G− f)(x0)

≤ lim inf
n→∞ (v∗ − ϕn)(tn, xn)− (v∗ − ϕn)(sn, ξn)− 1

2
|xn − x0|2

≤ lim sup
n→∞

(v∗ − ϕn)(tn, xn)− (v∗ − ϕn)(sn, ξn)− 1

2
|xn − x0|2

≤ −1

2
|x∗ − x0|2.

Since x0 minimizes the difference G− f ,

0 ≤ (G− f)(x∗)− (G− f)(x0) ≤ −1

2
|x∗ − x0|2.

Hence x∗ = x0. The above argument also proves that

0 = lim
n→∞(v∗ − ϕn)(tn, xn)− (v∗ − ϕn)(sn, ξn)

= −G(x0) + lim
n→∞ v∗(tn, xn) +

(T − sn)− (T − tn)

(T − sn)2

≥ −G(x0) + lim sup
n→∞

v∗(tn, xn).

This proves that lim supn→∞ v∗(tn, xn) ≤ G(x0). Since lim sup v∗(tn, xn) ≥
lim inf v∗(tn, xn) ≥ G(x0), by definition of G, this proves that

lim
n→∞ v∗(tn, xn) = G(x0).(5.3)

This implies that, for all sufficiently large n, (tn, xn) is a local minimizer of the
difference (v∗ − ϕn). In view of the general theory of viscosity solutions (see, for
instance, Fleming and Soner [14]), the viscosity property of v∗ holds at (tn, xn).

Step 3. We now use the viscosity property of v∗ in [0, T )× R
d: for every n,

H(tn, xn, v∗(tn, xn), Dϕn(xn, tn)) ≥ 0.
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Note that Dϕn(xn, tn) = Df(xn, tn)− (xn−x0), and recall that H is continuous; see
Remark 4.4. Since (tn, xn) tends to (T, x0), (5.3) implies that

H(T, x0, G(x0), Df(x0)) ≥ 0.

These results imply that G is a viscosity supersolution of

min {G(x)− g∗(x); H(T, x,G(x), DG(x))} ≥ 0,(5.4)

proving the first part of Theorem 5.1. The following result concludes the proof of the
theorem.

Lemma 5.3. Suppose that G(x) and G(x) are finite for every x ∈ R
d and that

(g∗)∗ ≥ g. Then G is a viscosity subsolution on R
d of

min
{
G(x)− g∗(x); H(T, x,G(x), DG(x))

} ≤ 0.

Proof. By definition, G is upper semicontinuous. Let x0 ∈ R
d and f ∈ C2(Rd)

satisfy

0 = (G− f)(x0) = max
x∈Rd

(G− f).

We need to show that, if G(x0) > g∗(x0), then

H(T, x0, G(x0), DG(x0)) ≤ 0.(5.5)

So we assume that

G(x0) > g∗(x0).(5.6)

For a positive integer n, set

sn := T − 1

n2
,

and consider the auxiliary test function

ϕn(t, x) := f(x) +
1

2
|x− x0|2 + n(T − t), (t, x) ∈ [sn, T ]× R

d.

In order to obtain the required result, we shall first prove that the test function ϕn

does not satisfy the condition of Lemma 4.2 on [sn, T ]×BR(x0) for some R > 0, and
then we shall pass to the limit as n→∞.

Step 1. By definition, G ≥ G. From Lemma 5.1, this provides G ≥ g∗ and then
G ≥ (g∗)∗ by upper semicontinuity of G. Hence, by assumption of the lemma,

G ≥ g.(5.7)

This proves that (v − ϕn)(T, x) = (g − f)(x) − |x − x0|2/2 ≤ (G − f)(x) ≤ 0 by
definition of the test function f . Then, for all R > 0,

sup
BR(x0)

(v − ϕn)(T, .) ≤ 0.

Now suppose that there exists a subsequence of (ϕn), still denoted (ϕn), such that

lim
n→∞ sup

BR(x0)

(v − ϕn)(T, .) = 0,
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and let us work toward a contradiction. For each n, let (xk
n)k be a maximizing sequence

of (v − ϕn)(T, .) on BR(x0); i.e.,

lim
n→∞ lim

k→∞
(v − ϕn)(T, xk

n) = 0.

Then it follows from (5.7) that (v − ϕn)(T, xk
n) ≤ −|xk

n − x0|2/2, which provides

lim
n→∞ lim

k→∞
xk
n = x0.

Therefore,

0 = limn→∞ limk→∞(v − ϕn)(T, xk
n) = limn→∞ limk→∞ g(xk

n)− f(x0)
≤ lim supx→x0

g(x)− f(x0) = (g∗ − f)(x0) < (G− f)(x0)

by (5.6). Since (G − f)(x0) = 0, this cannot happen since (G − f)(x0) = 0. The
consequence of this is

lim sup
n→∞

sup
BR(x0)

(v − ϕn)(T, .) < 0 for all R > 0.(5.8)

Step 2. Let (tn, xn)n be a maximizing sequence of (v∗−ϕn) on [sn, T ]×∂BR(x0).
Then, since T − tn ≤ T − sn = n−2,

lim sup
n→∞

sup
[sn,T ]×∂BR(x0)

(v∗ − ϕn) ≤ lim sup
n→∞

(v∗(tn, xn)− f(xn))− 1

2
R2.

Since tn −→ T and, after passing to a subsequence, xn −→ x∗ for some x∗ ∈ ∂BR(x0),
we get

lim sup
n→∞

sup
[sn,T ]×∂BR(x0)

(v∗ − ϕn) ≤ (G− f)(x∗)− 1

2
R2 ≤ −1

2
R2.

This, together with (5.8), implies that, for all R > 0, there exists n(R) such that, for
all n > n(R),

max{ (v − ϕn) : ∂p ((sn, T )×BR(x0)) } < 0 = (v∗ − ϕn)(T, x0).

Hence it follows from Lemma 4.2 that

(sn, T )×BR(x0) is not a subset of M0(ϕn) for all n > n(R).(5.9)

Step 3. Observe that, for all ν ∈ U and (t, x, y),

−Lνϕn(t, x) = n− Lνf(x)− µ(t, x, ν)∗(x− x0)− 1

2
Trace[σ∗σ](t, x, ν) > b(t, x, y, ν),

provided that n is sufficiently large. Then, for large n,

M0(ϕn) ∩ ((sn, T )×BR(x0))

= { (t, x) ∈ (sn, T )×BR(x0) : H(t, x, ϕn(t, x), Dϕn(t, x)) > 0 }.
In view of this, it follows from (5.9) that there is a sequence (tn, xn) converging to
(T, x0) such that

H(tn, xn, ϕn(tn, xn), Dϕn(tn, xn)) ≤ 0.

We now let n tend to infinity to obtain (5.5).
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6. Application: Superreplication problem in finance. Consider a financial
market consisting of

• a nonrisky asset with price process X̃0 normalized to unity,
• a risky asset X̃ defined by a positive price process with dynamics described

by an SDE.
A trading strategy is an F-adapted process ν = {ν(t), 0 ≤ t ≤ T} valued in the

closed interval [−*, u] with *, u ∈ [0,∞) and * + u > 0. At each time t ∈ [0, T ],
ν(t) represents the proportion of wealth invested in the risky asset X̃. The set of all
trading strategies is denoted by U .

Given an initial capital ỹ > 0 and a trading strategy ν, the wealth process Ỹ is
defined by

Ỹ ν
ỹ (0) = ỹ and dỸ ν

ỹ (t) = Ỹ ν
ỹ (t)ν(t)

dX̃(t)

X̃(t)
.

We shall consider a “large investor” model in which the dynamics of the risky asset
price process may be affected by trading strategies. Namely, given a trading strategy
ν ∈ U ,

X̃ν(0) = eX
ν(0) = eX(0), X̃ν(t) = eX

ν(t),

dXν(t) = µ (t,Xν(t), ν(t)) dt + σ (t,Xν(t), ν(t)) dW (t),

where W is a one-dimensional Brownian motion. Define the log-wealth process:

Y ν
y (0) = y := ln (ỹ) and Y ν

y (t) = ln
(
Ỹ ν
ỹ (t)

)
.

Then a direct application of Itô’s lemma provides

dY ν
y (t) = b (t,Xν(t), ν(t)) dt + ν(t)σ (t,Xν(t), ν(t)) dW (t),

where

b(t, x, r) = r

(
µ +

1

2
σ2

)
(t, x, r)− 1

2
r2σ2(t, x, r).

Let f be a positive function defined on [0,∞). The superreplication problem is defined
by

ṽ(0, X(0)) := inf
{
ỹ > 0 : ∃ ν ∈ U , Ỹ ν

ỹ (T ) ≥ f (Xν(T )) P − a.s.
}
.

Here f (Xν(T )) is a contingent claim. The value function of the above superreplication
problem is then the minimal initial capital which allows the seller of the contingent
claim to face the promised payoff f (Xν(T )) through some trading strategy ν ∈ U .

To see that the superreplication problem belongs to the general class of stochastic
target problems studied in the previous sections, we introduce

v(0, X(0)) := ln ṽ(0, X(0)) and g := ln f.

Then

v(0, X(0)) := inf
{
y ∈ R : ∃ ν ∈ U , Y ν

y (T ) ≥ g (Xν(T )) P − a.s.
}
.
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Remark 6.1. Assume that function g is bounded. Then the value function v is
bounded. Using the notation of previous sections, we also have that v∗, v∗, G, and G
are bounded functions.

Let us introduce the support function of the interval [−*−1, u−1]:

h(p) := u−1p+ + *−1p−,

with the convention 1/0 = +∞, and the usual notation p+ := p∨ 0 and p− := (−p)+.
Observe that h is a mapping from R into R∪{+∞}. We also denote by F and F the
functions

F := eG = lim sup
t↑T,x′→x

ṽ(t, x′) and F := eG = lim inf
t↑T,x′→x

ṽ(t, x′).

Applying Theorems 4.1 and 5.1, we obtain the following characterization of the super-
replication problem ṽ by a change of variable.

Theorem 6.1. Let µ and σ be bounded Lipschitz functions uniformly in the t
variable, and σ > 0. Suppose further that g is bounded and satisfies (g∗)∗ ≥ g. Then

(i) ṽ is a discontinuous viscosity solution of

min

{
−ṽt(t, x)− 1

2
σ2 (t, x, ṽx(t, x)) ṽxx(t, x) ; ṽ(t, x)− h (ṽx(t, x))

}
= 0

on [0, T )× R .

(ii) The terminal value functions F and F satisfy in the viscosity sense

min{ F − f∗; F − h(F x) } ≥ 0,

min{ F − f∗; F − h(F x) } ≤ 0 on R.

The rest of this section is devoted to the characterization of the terminal functions
F and F . It is known that the first order variational inequality appearing in part (ii)
of the above theorem could fail to have a unique bounded discontinuous viscosity
solution: under our condition (f∗)∗ ≥ f , all viscosity discontinuous bounded solutions
have the same lower semicontinuous envelope; see Barles [3]. Therefore, we do not
have much to say in the case where the payoff function f is not continuous.

We provide a characterization of the terminal condition of the superreplication
problem in the case of Lipschitz payoff function f .

Proposition 6.1. Let the conditions of Theorem 6.1 hold. Assume, further, that
the payoff function f is Lipschitz on R. Then

F (x) = F (x) = f̂(x) := sup
y∈R

f(x + y)e−δ(y),

where δ := δU is the support function of the interval U = [−*, u].
Proof. From Theorem 6.1, functions F and F are, respectively, upper and lower

semicontinuous viscosity sub- and supersolutions of

(VI) min {u− f ; u− h(ux)} = 0 on R.

In order to obtain the required result, we shall first prove that f̂ is a (continuous)

viscosity supersolution of (VI) (step 1). Then we will prove that F ≥ f̂ (step 2). The
proof is then concluded by means of a comparison theorem (Barles [2, Theorem 4.3,
p. 93]); since f is Lipschitz, conditions (H1), (H4), and (H11) of this theorem are easily

seen to hold. Since F ≥ F by definition, the above claims provide f̂ ≥ F ≥ F ≥ f̂ .
Step 1. Let us prove that f̂ is a continuous viscosity supersolution of (VI).
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(i) f̂ is a Lipschitz function. To see this, observe that, since δ is a sublinear

function, it follows that
ˆ̂
f = f̂ , where

ˆ̂
f is defined by the same formula as f̂

with f̂ substituted to f . Then, since f̂ and δ are nonnegative,

f̂(x + y)− f̂(x) ≤ f̂(x + y)(1− e−δ(y)) for all y ∈ R

≤ f̂(x + y)δ(y) ≤ ‖f‖∞ max(u, *)|y|.

(ii) f̂ is a supersolution of (VI). To see this, let x0 ∈ R and ϕ ∈ C1(R) be such

that 0 = (f̂ − ϕ)(x0) = min(f̂ − ϕ). Observe that f̂ ≥ ϕ. Since f̂ > 0, we
can assume without loss of generality that ϕ > 0. By definition, we have
f̂(x0) ≥ f(x0).

It remains to prove that (ϕ′/ϕ)(x0) ∈ [−*, u]. Since
ˆ̂
f = f̂ , we have

ϕ(x0) = f̂(x0) ≥ f̂(x0 + h)e−δ(h) ≥ ϕ(x0 + h)e−δ(h)

for all h ∈ R. Now let h be an arbitrary positive constant. Then

ϕ(x0 + h)− ϕ(x0)

h
≤ ϕ(x0 + h)

1− e−uh

h
,

and, by sending h to zero, we get ϕ′(x0) ≤ uϕ(x0). Similarly, by considering an
arbitrary constant h < 0, we see that ϕ′(x0) ≥ −*ϕ(x0).

Step 2. We now prove that F ≥ f̂ . From the supersolution property of F , we
have that F ≥ f , and, for all y ∈ R, F satisfies in the viscosity sense

δ(y)F − yF x ≥ 0.

By an easy change of variable, we see that G = lnF satisfies in the viscosity sense

δ(y)− yGx ≥ 0.

This proves that the function x �−→ δ(y)x−yG(x) is nondecreasing (see, e.g., Cvitanić,
Pham, and Touzi [9]), and therefore

δ(y)(x + y)− yG(x + y) ≥ δ(y)x− yG(x) for all y > 0,

δ(y)(x + y)− yG(x + y) ≤ δ(y)x− yG(x) for all y < 0.

Recalling that F ≥ f , this provides

F (x) ≥ sup
y∈R

F (x + y)e−δ(y) ≥ sup
y∈R

f(x + y)e−δ(y) = f̂(x).
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