Importance Sampling and Particles for Portfolio Credit Risk

R. Carmona, S. Crépey\(^1\)

Université d’Évry Val-d’Essonne

GT ‘événements rares’
CMAP-X, 16 mars 2009

\(^1\)The research of S Crépey benefited from the support of the ‘Chaire Risque de crédit’, Fédération Bancaire Française, and of the Europlace Institute of Finance
Outline

1. Markovian Credit Models Numerics
2. Importance Sampling vs Particles
3. Numerical Benchmark
Outline

1. Markovian Credit Models Numerics
2. Importance Sampling vs Particles
3. Numerical Benchmark
Prices, Greeks and loss distribution computable by numerical resolution of the Kolmogorov equations

<table>
<thead>
<tr>
<th>Deterministic numerical schemes</th>
<th>Monte Carlo methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Matrix exponentiation formulas (for time-homogeneous models)</td>
<td>• The only reasonable alternative for (d) greater than a few units</td>
</tr>
<tr>
<td>• Discretization schemes (stiff ODE solvers)</td>
<td>• Slow</td>
</tr>
<tr>
<td>• Precluded by the curse of dimensionality for large (d)'s</td>
<td></td>
</tr>
</tbody>
</table>
Numerics in Markovian Credit Models [Betal, FB*, LCF, H..]

Prices, Greeks and loss distribution computable by numerical resolution of the Kolmogorov equations

Deterministic numerical schemes
- Matrix exponentiation formulas (for time-homogeneous models)
- Discretization schemes (stiff ODE solvers)
- Precluded by the curse of dimensionality for large d's

Monte Carlo methods
- The only reasonable alternative for d greater than a few units
- Slow
Prices, Greeks and loss distribution computable by numerical resolution of the Kolmogorov equations

Deterministic numerical schemes
- Matrix exponentiation formulas (for time-homogeneous models)
- Discretization schemes (stiff ODE solvers)
- Precluded by the curse of dimensionality for large d’s

Monte Carlo methods
- The only reasonable alternative for d greater than a few units
- Slow
Variance Reduction Methods in Markovian Credit Models

Importance Sampling (IS) [G]
- **Explicit Girsanov** change of measure favoring the ‘important’ (‘rare’) events of interest
- Sometimes not clear which change of measure will reduce the variance
- Original measure sometimes not available (‘black box’ sampler)

Interacting Particle Systems (IPS) [DMG05-DM04]
- **Implicit Feynman–Kac** change of measure forcing the process into the events of interest
- All one needs is a sampler under the original distribution
- Knowledge of the original distribution not really necessary

Structural vs Intensity Model of Credit Risk

D. Vestal, R. Carmona, and J.-P. Fouque (Forthcoming in F&S)
Interacting Particle Systems for the Computation of CDO Tranche Spreads with Rare Defaults
Variance Reduction Methods in Markovian Credit Models

Importance Sampling (IS) [G]
- **Explicit Girsanov** change of measure favoring the ‘important’ (‘rare’) events of interest
- Sometimes not clear which change of measure will reduce the variance
- Original measure sometimes not available (‘black box’ sampler)

Interacting Particle Systems (IPS) [DMG05-DM04]
- **Implicit Feynman–Kac** change of measure forcing the process into the events of interest
- All one needs is a sampler under the original distribution
- Knowledge of the original distribution not really necessary

Structural vs Intensity Model of Credit Risk

- D. Vestal, R. Carmona, and J.-P. Fouque (Forthcoming in F&S)
 Interacting Particle Systems for the Computation of CDO Tranche Spreads with Rare Defaults
Importance Sampling (IS) [G]
- **Explicit Girsanov** change of measure favoring the ‘important’ (‘rare’) events of interest
- Sometimes not clear which change of measure will reduce the variance
- Original measure sometimes not available (‘black box’ sampler)

Interacting Particle Systems (IPS) [DMG05-DM04]
- **Implicit Feynman–Kac** change of measure forcing the process into the events of interest
- All one needs is a sampler under the original distribution
- Knowledge of the original distribution not really necessary

Structural vs Intensity Model of Credit Risk

D. Vestal, R. Carmona, and J.-P.Fouque (Forthcoming in *F&S*)

Interacting Particle Systems for the Computation of CDO Tranche Spreads with Rare Defaults
Outline

1. Markovian Credit Models Numerics
2. Importance Sampling vs Particles
3. Numerical Benchmark
Markov Chain Set-Up

- Discrete time filtered probability space \((\Omega, \mathcal{F}, \mathbb{Q})\)
- (possibly time-inhomogeneous) Markov chain \((X_i)_{0 \leq i \leq n}\) with transition kernel \(K(X_{i-1}, \cdot)\) at time step \(i = 1, \ldots, n\)
- Computation of small probabilities of events and related expectations of the form \(I = \mathbb{E}f(X_0, \ldots, X_n)\)
Compute $I = \mathbb{E}\{f(X_0, \ldots, X_n)\}$: Importance Sampling

Weight functions $w_i = w_i(x_0, \ldots, x_i)$ st $\mathbb{E}(w_i(X_0, \ldots, X_i) | \mathcal{F}_{i-1}) = 1$

Twisted probability measure \tilde{Q} such that $\frac{d\tilde{Q}}{dQ} |_{\mathcal{F}_i} = \prod_{1 \leq l \leq i} w_l(X_0, \ldots, X_l)$

IS Dynamics ($\tilde{\xi}_0 = x_0$)

For every time step $i = 1, \ldots, n$ and trajectory $j = 1, \ldots, m$, draw

$$\tilde{\xi}_i \sim \tilde{K}(\tilde{\xi}_{i-1}, \cdot)$$

\tilde{K} \tilde{Q}-transition kernel of X

$$I = \mathbb{E}f(X_0, \ldots, X_n) = \tilde{\mathbb{E}}\left(\frac{f(X_0, \ldots, X_n)}{\prod_{1 \leq i \leq n} w_i(X_0, \ldots, X_i)}\right) \approx \frac{1}{m} \sum_{j=1}^{m} \frac{f(\tilde{\xi}_0^j, \ldots, \tilde{\xi}_n^j)}{\prod_{1 \leq i \leq n} w_i(\tilde{\xi}_0^j, \ldots, \tilde{\xi}_i^j)} = I^#$$
Compute $I = \mathbb{E}\{f(X_0, \ldots, X_n)\}$: Importance Sampling

Weight functions $w_i = w_i(x_0, \ldots, x_i)$ s.t. $\mathbb{E}(w_i(X_0, \ldots, X_i) \mid F_{i-1}) = 1$

Twisted probability measure \tilde{Q} such that $\frac{d\tilde{Q}}{dQ} \mid F_i = \prod_{1 \leq l \leq i} w_l(X_0, \ldots, X_l)$

IS Dynamics ($\tilde{\xi}_0 = x_0$)

For every time step $i = 1, \ldots, n$ and trajectory $j = 1, \ldots, m$, draw

$$\tilde{\xi}_i \sim \tilde{K}(\tilde{\xi}_{i-1}, \cdot)$$

\tilde{K} \tilde{Q}-transition kernel of X

$$I = \mathbb{E}f(X_0, \ldots, X_n) = \frac{f(X_0, \ldots, X_n)}{\prod_{1 \leq i \leq n} w_i(X_0, \ldots, X_i)} \approx \frac{1}{m} \sum_{j=1}^{m} \frac{f(\tilde{\xi}_0, \ldots, \tilde{\xi}_n)}{\prod_{1 \leq i \leq n} w_i(\tilde{\xi}_0, \ldots, \tilde{\xi}_i)} = I^\#$$
Compute \(I = \mathbb{E}\{f(X_0, \ldots, X_n)\} \): Importance Sampling

Weight functions \(w_i = w_i(x_0, \ldots, x_i) \) st \(\mathbb{E}(w_i(X_0, \ldots, X_i) \mid F_{i-1}) = 1 \)

Twisted probability measure \(\tilde{Q} \) such that \(\frac{d \tilde{Q}}{d Q} \mid_{F_i} = \prod_{1 \leq l \leq i} w_l(X_0, \ldots, X_i) \)

IS Dynamics \((\tilde{\xi}_0 = x_0)\)

For every time step \(i = 1, \ldots, n \) and trajectory \(j = 1, \ldots, m \), draw

\[\tilde{\xi}_i^j \sim \tilde{K}(\tilde{\xi}_{i-1}^j, \cdot) \]

\(\tilde{K} \) \(\tilde{Q} \)-transition kernel of \(X \)

\[I = \mathbb{E}f(X_0, \ldots, X_n) = \mathbb{E} \left(\frac{f(X_0, \ldots, X_n)}{\prod_{1 \leq i \leq n} w_i(X_0, \ldots, X_i)} \right) \approx \frac{1}{m} \sum_{j=1}^{m} \frac{f(\tilde{\xi}_0^j, \ldots, \tilde{\xi}_n^j)}{\prod_{1 \leq i \leq n} w_i(\tilde{\xi}_0^j, \ldots, \tilde{\xi}_i^j)} = I^\# \]
Compute $I = \mathbb{E}\{f(X_0, \ldots, X_n)\}$: Particles

(Path-)Particle j at time i $\xi^j_i = (\xi^j_{0,i}, \xi^j_{1,i}, \ldots, \xi^j_{i,i})$

Weight functions $w_i = w_i(x_0, \ldots, x_i)$

Selection/Mutation IPS Dynamics ($\xi_0 = x_0$)

For every $i = 1, \ldots, n$ and $j = 1, \ldots, m$, draw

$$(\xi^j_{0,i}, \xi^j_{1,i}, \ldots, \xi^j_{i-1,i}) \sim \sum_{l=1}^{m} w_{i-1}(\xi^l_{i-1}) \delta_{\xi^l_{i-1}}, \quad \xi^j_{i,i} \sim K(\xi^j_{i-1,i}, \cdot)$$

$I = \mathbb{E}f(X_0, \ldots, X_n) \approx$

$$\left(\frac{1}{m} \sum_{j=1}^{m} \frac{f(\xi^j_n)}{\prod_{1 \leq i < n} w_i(\xi^j_{0,n}, \ldots, \xi^j_{i,n})} \right) \left(\prod_{1 \leq i < n} \frac{1}{m} \sum_{j=1}^{m} w_i(\xi^j_i) \right) = I^b$
Compute \(I = \mathbb{E}\{f(X_0, \ldots, X_n)\} \): Particles

(Path-)Particle \(j \) at time \(i \), \(\xi^j_i = (\xi^j_{0,i}, \xi^j_{1,i}, \ldots, \xi^j_{i,i}) \)

Weight functions \(w_i = w_i(x_0, \ldots, x_i) \)

Selection/Mutation IPS Dynamics (\(\xi_0 = x_0 \))

For every \(i = 1, \ldots, n \) and \(j = 1, \ldots, m \), draw

\[
(\xi^j_{0,0}, \xi^j_{0,1}, \ldots, \xi^j_{i-1,1}) \sim \sum_{\ell=1}^m w_{i-1}(\xi^\ell_{i-1}) \delta_{\xi^\ell_{i-1}}, \xi^j_{i,i} \sim K(\xi^j_{i-1,1}, \cdot)
\]

\[
\begin{array}{ccccccc}
\xi^1_{0,0} & \xi^1_{0,1} & \xi^1_{1,1} & \ldots & \xi^1_{0,n-1} & \ldots & \xi^1_{n-1,1} \\
\xi^m_{0,0} & \xi^m_{0,1} & \ldots & \xi^m_{0,n-1} & \ldots & \xi^m_{n-1,1} \\
\end{array}
\]

\[
l = \mathbb{E}f(X_0, \ldots, X_n) \approx \left(\frac{1}{m} \sum_{j=1}^m \frac{f(\xi^j_{n})}{\prod_{1 \leq i < n} w_i(\xi^j_{0,n}, \ldots, \xi^j_{i,n})} \right) \left(\prod_{1 \leq i < n} \frac{1}{m} \sum_{j=1}^m w_i(\xi^j_{i}) \right) = I^b
\]
Compute $I = \mathbb{E}\{f(X_0, \ldots, X_n)\}$: Particles

(Path-)Particle j at time i: $\xi^j_i = (\xi^j_{0,i}, \xi^j_{1,i}, \ldots, \xi^j_{i,i})$

Weight functions $w_i = w_i(x_0, \ldots, x_i)$

Selection/Mutation IPS Dynamics ($\xi_0 = x_0$)

For every $i = 1, \ldots, n$ and $j = 1, \ldots, m$, draw

$$(\xi^j_{0,i}, \xi^j_{1,i}, \ldots, \xi^j_{i-1,i}) \sim \sum_{l=1}^m w_{i-1}(\xi^l_{i-1}) \delta_{\xi^l_{i-1}}, \xi^j_{i,i} \sim K(\xi^j_{i-1,i}, \cdot)$$

$I = \mathbb{E}f(X_0, \ldots, X_n) \approx$

$$\left(\frac{1}{m} \sum_{j=1}^m \frac{f(\xi^j_n)}{\prod_{1 \leq i < n} w_i(\xi^j_{0,n}, \ldots, \xi^j_{i,n})}\right) \left(\prod_{1 \leq i < n} \frac{1}{m} \sum_{j=1}^m w_i(\xi^j_i)\right) = I^b$
Properties of the Estimator

Unbiased at fixed m
Asymptotically convergent as $m \to \infty$

To minimize the variance of the estimators, use weight functions w_i's.

In the case of IS
- $\text{st } \prod_{1 \leq i \leq n} w_i(X_1, \ldots, X_i) \propto |f(X_0, \ldots, X_n)|$
- ‘not too extreme’
- easy to implement

In the case of IPS
- favoring the occurrence of the event of interest
- without involving too large normalizing constants
- easy to implement
Properties of the Estimator

Unbiased at fixed m

Asymptotically convergent as $m \to \infty$

To minimize the variance of the estimators, use weight functions w_i’s.

In the case of IS

- $st \prod_{1 \leq i \leq n} w_i(X_1, \ldots, X_i) \propto |f(X_0, \ldots, X_n)|$
- ‘not too extreme’
- easy to implement

In the case of IPS

- favoring the occurrence of the event of interest
- without involving too large normalizing constants
- easy to implement
Properties of the Estimator

Unbiased at fixed m

Asymptotically convergent as $m \to \infty$

To minimize the variance of the estimators, use weight functions w_i's.

In the case of IS
- $\prod_{1 \leq i \leq n} w_i(X_1, \ldots, X_i) \propto |f(X_0, \ldots, X_n)|$
- ‘not too extreme’
- easy to implement

In the case of IPS
- favoring the occurrence of the event of interest
- without involving too large normalizing constants
- easy to implement
Outline

1. Markovian Credit Models Numerics
2. Importance Sampling vs Particles
3. Numerical Benchmark

S Crépey, Evry University
IS and IPS for Portfolio Credit Risk
A Fully-Homogeneous model of Credit Risk

Markovian Portfolio Loss Model

- \(n = 125 \) credit names
- individual pre-default intensity processes \(\tilde{\lambda}_t = a \exp(bN_t/n) \)
 - \(b = 0 \) independent obligors
 - \(b > 0 \) defaults contagion
- Portfolio loss process (number of defaults) \((L_t)_{t \in [0,T]} \)
- Exact loss distribution at the time horizon \(T \) by exponentiation of the model generator \((126 \otimes 126 \text{ matrix } A)\)

\[
p(T) = \exp(TA^*) \delta_0
\]
IS/IPS Algorithms

Mapping with the IS/IPS Markov Chain Set-Up

\[X_i = (t_i, L_{t_i}), \quad 0 \leq i \leq n \]

- \(t_i \) \(i^{th} \) jump time of \(L \), capped at \(T \) (\(t_0 = 0 \))
- \(L_{t_i} = i \iff t_i < T \)

Parameterized families of IS/IPS variance reduction schemes

For IS, use Markovian changes of measures for MPP
- intensity functions bumped by a constant factor \(\alpha \), or
- intensity functions turned into a constant \(\alpha \)

For IPS, use weight functions \(w_i(x_0, \ldots, x_i) = \)
- \(\exp(\alpha(l_i - l_{i-1})) \) (‘favoring losses’), or
- \(\exp(-1_{t_i < T} \arctan(l_i - \alpha)) \) (‘favoring the loss level \(L_T = \alpha \)’).
IS/IPS Algorithms

Mapping with the IS/IPS Markov Chain Set-Up

\[X_i = (t_i, L_{t_i}), \quad 0 \leq i \leq n \]

- \(t_i \) is the \(i \)th jump time of \(L \), capped at \(T \) \((t_0 = 0) \)
- \(L_{t_i} = i \Leftrightarrow t_i < T \)

Parameterized families of IS/IPS variance reduction schemes

For IS, use Markovian changes of measures for MPP

- intensity functions bumped by a constant factor \(\alpha \), or
- intensity functions turned into a constant \(\alpha \)

For IPS, use weight functions

\[w_i(x_0, \ldots, x_i) = \]

- \(\exp(\alpha(l_i - l_{i-1})) \) (‘favoring losses’), or
- \(\exp(-1_{t_i<T} \arctan(l_i - \alpha)) \) (‘favoring the loss level \(L_T = \alpha \)’).
IS/IPS Algorithms

Mapping with the IS/IPS Markov Chain Set-Up

\[X_i = (t_i, L_{t_i}), \quad 0 \leq i \leq n \]

\[t_i \] \(i^{th}\) jump time of \(L\), capped at \(T\) \((t_0 = 0)\)

\[L_{t_i} = i \iff t_i < T \]

Parameterized families of IS/IPS variance reduction schemes

For IS, use Markovian changes of measures for MPP

- intensity functions bumped by a constant factor \(\alpha\), or
- intensity functions turned into a constant \(\alpha\)

For IPS, use weight functions

\[w_i(x_0, \ldots, x_i) = \]

- \(\exp(\alpha(l_i - l_{i-1}))\) (‘favoring losses’), or
- \(\exp(-1_{t_i < T} \arctan(l_i - \alpha))\) ('favoring the loss level \(L_T = \alpha\)').
$\bar{\lambda}_t = a \exp(bN_t/n)$. Left pane: Independent obligors ($a = 0.01, b = 0$);
Right pane: Extreme contagion ($a = 0.01, b = 13$)
IS Good for Independent Obligors

Portfolio loss log-probabilities in a case of independent obligors: exact vs IS (left) and IPS (right) ($m = 10^4$ draws)
IS Good for Independent Obligors (Cont’d)

IS and IPS maps of losses in the case of independent obligors
Contagion: IPS Saves the Day!

Same as previously in the contagion case: IS (left) vs IPS (right) ($m = 10^4$)
Contagion: IPS Saves the Day! (Cont’d)

IS and IPS maps of losses in the contagion case
IS Hardly Affected by Dimension

Left: IS ‘as usual’; Right: IS with $d = 5-HGM$ encoding of the local intensity model (independent obligors, $m = 5000$)
IPS Hardly Affected by Dimension too

Same as previously but for IPS \((m = 10^5)\)
Conclusion: A Case-by-Case Approach

IS ‘can do wonders’ when
- a pertinent Girsanov like transformation can be identified
- the corresponding densities are easily computable and ‘not too extreme’ along the samples

IPS useful substitute when
- no obvious Girsanov change of measure is available
- no obvious measure favoring the event of interest
- distribution of the chain not known (sampler given as a black box)

Model-dependent performances (and detailed spec.) of either method
- No good for model calibration
- Good for complex pricing, Credit VaR..
Conclusion: A Case-by-Case Approach

IS ‘can do wonders’ when
- a pertinent Girsanov like transformation can be identified
- the corresponding densities are easily computable and ‘not too extreme’ along the samples

IPS useful substitute when
- no obvious Girsanov change of measure is available
 - no obvious measure favoring the event of interest
 - distribution of the chain not known (sampler given as a black box)

Model-dependent performances (and detailed spec.) of either method
- No good for model calibration
- Good for complex pricing, Credit VaR
Conclusion: A Case-by-Case Approach

IS ‘can do wonders’ when
- a pertinent Girsanov like transformation can be identified
- the corresponding densities are easily computable and ‘not too extreme’ along the samples

IPS useful substitute when
- no obvious Girsanov change of measure is available
- no obvious measure favoring the event of interest
- distribution of the chain not known (sampler given as a black box)

Model-dependent performances (and detailed spec.) of either method
- No good for model calibration
- Good for complex pricing, Credit VaR..
Appendix

IS vs IPS for Diffusions: Compute $I = \mathbb{E}\{f(W_{[0,T]})\}$

Importance Sampling

- Use Girsanov to twist the distribution in path space

$$I = \tilde{\mathbb{E}} \left\{ f(W_{[0,T]}) \exp \left[- \int_0^T \nabla h(W_t) d\tilde{W}_t - \frac{1}{2} \int_0^T |\nabla h(W_t)|^2 dt \right] \right\}$$

where $\frac{d\tilde{P}}{dP} = \mathcal{E} \left(\int_0^T \nabla h(W_t) dW_t \right)$ and $\tilde{W}_t = W_t - \int_0^t \nabla h(W_s) ds$

- $I^\sharp \leftarrow$ Monte Carlo samples from the twisted distribution \tilde{P}

Interacting Particles System

- Use Feynman-Kac twisted distributions

$$I = \tilde{\mathbb{E}}\{f(W_{[0,T]}))e^{-\int_0^T V(W_s)ds}\} \mathbb{E}\{e^{\int_0^T V(W_s)ds}\} \text{ where } \frac{d\tilde{P}}{dP} = \frac{\mathbb{E}\{e^{\int_0^T V(X_s)ds}\}}{\mathbb{E}\{e^{\int_0^T V(W_s)ds}\}}$$

- $I^\flat \leftarrow$ Monte Carlo samples from the original distribution P
IS vs IPS for Diffusions: Compute $I = \mathbb{E}\{f(W_{[0,T]})\}$

Importance Sampling

- Use Girsanov to twist the distribution in path space

$$I = \widetilde{\mathbb{E}}\left\{f(W_{[0,T]})\exp\left[-\int_0^T \nabla h(W_t) d\widetilde{W}_t - \frac{1}{2} \int_0^T |\nabla h(W_t)|^2 dt\right]\right\}$$

where $\frac{d\widetilde{P}}{dP} = \mathcal{E}\left(\int_0^T \nabla h(W_t) dW_t\right)$ and $\widetilde{W}_t = W_t - \int_0^t \nabla h(W_s)ds$

- $I^\# \leftarrow$ Monte Carlo samples from the twisted distribution \widetilde{P}

Interacting Particles System

- Use Feynman-Kac twisted distributions

$$I = \widetilde{\mathbb{E}}\{f(W_{[0,T]})e^{-\int_0^T V(W_s)ds}\}\mathbb{E}\{e^{\int_0^T V(W_s)ds}\}$$

where $\frac{d\widetilde{P}}{dP} = \frac{e^{\int_0^T V(X_s)ds}}{\mathbb{E}\{e^{\int_0^T V(X_s)ds}\}}$

- $I^b \leftarrow$ Monte Carlo samples from the original distribution P
Armageddon event: everyone defaulted in the portfolio by the time of maturity T

Independent obligors
- Exponential right-tail decay
 - Armageddon Probability $= 1.044507e^{-164}$
- Variance reduction methods of complete necessity for computing by simulation high-losses related quantities
 - Probability of high loss levels or price of a super-senior CDO tranche

Extreme contagion
- No extremely rare levels of the loss any more
 - Armageddon Probability $= 7.106e^{-03} \approx 1\%$
 - The less likely loss level is the level $i = 115$, with a probability of $1.108e^{-06}$
- Variance reduction methods not strictly needed
Homogeneous Groups Model

d classes of $\nu - 1 = \frac{n}{d}$ homogeneous obligors [FB07,BCJR]

- Groups loss processes (number of defaults) L_t^l, $l = 1, \ldots, d$, jointly modeled as a d-variate Markov point process $\Lambda = (L_1, \ldots, L_d)$
- \mathbb{F}^Λ-intensity of L^l given as $\lambda_t^l = (\nu - 1 - L_t^l)\tilde{\lambda}^l(\Lambda_t)$
- *Pre-default individual intensity functions* $\tilde{\lambda}^l = \tilde{\lambda}^l(\nu)$ for $l = 1, \ldots, d$, where $\nu = (i_1, \ldots, i_d) \in \{0, 1, \ldots, \nu - 1\}^d$
- Generator of $\Lambda = (\text{very sparse}) \nu^d \otimes \nu^d$ matrix A
- $L = \sum_{l=1}^d L^l$
- From pure top models for $d = 1$ to pure bottom-up models for $d = n$
- Reducibility to $d = 1$ whenever $\tilde{\lambda}^l(\nu) = \hat{\lambda}(\sum_{1 \leq \ell \leq d} i_\ell)$ (fully homogenous case)
- t_i's ordered jump times of Λ, capped at a time horizon T ($t_0 = 0$)
- Markov Chain $X_i = (t_i, \Lambda_{t_i})$, $0 \leq i \leq n$