Mini-projet d’analyse numérique du cours MAP 431
Simulation déterministe et stochastique
de l’équation d’advection-diffusion

Sujet proposé par Éric Cancès (cances@cermics.enpc.fr)

Ce projet vise d’une part à explorer l’origine probabiliste de l’équation d’advection-diffusion,
et d’autre part à analyser sur un exemple ce qu’il advient lorsque le coefficient de diffusion
prend une valeur nulle ou infinie dans une certaine zone de l’espace.

I - INTERPRÉTATION PROBABILISTE DE L’ÉQUATION D’ADVECTION-DIFFUSION

On se place sur l’intervalle $[0,1]$ qu’on découpe en N_x petits intervalles de longueur $\Delta x = 1/N_x$. Pour $j \in \{1, 2, \ldots, N_x + 1\}$, on pose $x_j = (j - 1/2) \Delta x$ et $B_j = [j \Delta x, (j + 1) \Delta x]$.

On pose également $B_{N_x+1} = [0, +\infty]$. Soit $\alpha \in \mathbb{R}_+$, $V \in \mathbb{R}_+$, $D \in \mathbb{R}_+$ et $\Delta t > 0$ tel que $1 - \alpha \Delta t - V \frac{\Delta t}{\Delta x} - 2D \frac{\Delta t}{\Delta x^2} \geq 0$. On considère le modèle probabiliste de particules indépendantes défini par la chaîne de Markov suivante : si une particule est à l’instant

$n \Delta t$ dans la boîte B_j, elle a

- pour $2 \leq j \leq N_x$
 - une probabilité $p_j^0 = \alpha \Delta t$ d’être détruite dans le laps de temps $[n \Delta t, (n + 1) \Delta t[$
 - une probabilité $p_j^+ = V \frac{\Delta t}{\Delta x} + D \frac{\Delta t}{\Delta x^2}$ de se trouver dans la boîte B_{j+1} à l’instant $(n+1) \Delta t$
 - une probabilité $p_j^- = D \frac{\Delta t}{\Delta x^2}$ de se trouver dans la boîte B_{j-1} à l’instant $(n+1) \Delta t$
 - une probabilité $(1 - p_j^0 - p_j^+ - p_j^-)$ d’être encore dans la boîte B_j à l’instant $(n+1) \Delta t$

- pour $j = 1$
 - une probabilité $p_1^0 = \alpha \Delta t$ d’être détruite dans le laps de temps $[n \Delta t, (n + 1) \Delta t[$
 - une probabilité $p_1^+ = V \frac{\Delta t}{\Delta x} + D \frac{\Delta t}{\Delta x^2}$ de se trouver dans la boîte B_2 à l’instant $(n + 1) \Delta t$
 - une probabilité $(1 - p_1^0 - p_1^+)$ d’être encore dans la boîte B_1 à l’instant $(n + 1) \Delta t$

- pour $j = N_x + 1$, une probabilité 1 d’être encore dans la boîte B_{N_x+1} à l’instant $(n + 1) \Delta t$.

On suppose qu’à l’instant $t = 0$, les particules sont distribuées uniformément sur l’intervalle $[0,0.1]$. On note Π_j^n la probabilité qu’une particule soit dans la boîte B_j à l’instant $n \Delta t$, et on pose $u_j^n = \Pi_j^n/\Delta x$.

Question 1. Pour $1 \leq j \leq N_x$, donner l’expression de u_j^0 et écrire l’équation du type

$$u_j^{n+1} = f_{\Delta x, \Delta t}(u_j^{n-1}, u_j^n, u_{j+1}^n)$$

qui régit l’évolution des u_j^k. Comment évole $\sum_{j=1}^{N_x} \Pi_j^n$? Commenter.
Question 2. On considère le problème d’advection-diffusion
\[
\begin{cases}
\frac{\partial u}{\partial t}(x,t) + V \frac{\partial u}{\partial x}(x,t) = D \Delta u(x,t) - \alpha u(x,t) \\
u(x,0) = 10 \chi_{[0,0.1]}(x),
\end{cases}
\]
\[\gamma_0,0 u(0,t) + \gamma_0,1 \frac{\partial u}{\partial x}(0,t) = 0 \]
\[\gamma_1,0 u(1,t) + \gamma_1,1 \frac{\partial u}{\partial x}(1,t) = 0.\]
(2)

Montrer que pour un certain choix des paramètres \(\gamma_{0,0}, \gamma_{0,1}, \gamma_{1,0}\) et \(\gamma_{1,1}\), que l’on précisera, (1) est en fait un schéma de discrétisation du problème (2). Quelle est dans ce cadre l’interprétation physique des paramètres \(\alpha, V\) et \(D\), et de la condition CFL associée au schéma (1) ?

Question 3. Ecrire un programme SciLab permettant de simuler le processus de Markov décrit ci-dessus. Ce programme prendra en entrée les paramètres \(V, D, \alpha, N_x, \Delta t, N_t\) (nombre de pas de temps) et \(N_p\) (nombre de particules total à l’instant initial), et fournira en sortie les nombres \((v^N_j)_{1 \leq j \leq N_x+1}\) \((v^N_j = nombre de particules présentes dans la boîte \(j\) à l’instant final \(N_t \Delta t\), divisé par \(N_p\)) On rappelle que la fonction rand permet sous SciLab de tirer un nombre (pseudo)-aléatoire selon la loi uniforme sur \([0,1]\).

Question 4. Ecrire un programme SciLab permettant simuler le schéma (1) pour les valeurs de \(\gamma_{0,0}, \gamma_{0,1}, \gamma_{1,0}\) et \(\gamma_{1,1}\) obtenus à la question 2. Ce programme devra prendre en entrée les paramètres \(V, D, \alpha, N_x, \Delta t, N_t\) (nombre de pas de temps), et fournir en sortie les valeurs des \(v^N_j\).

Question 5. Pour \(V = 1, D = 0.2, \alpha = 1, N_x = 30, \Delta t = 10^{-3}\) et \(N_t = 200\), étudier numériquement la vitesse de convergence des \(v^N_j\) vers les \(u^N_j\) lorsque \(N_p\) tend vers l’infini.

II - Équation de diffusion à coefficients singuliers

Soit \(\Omega = [-2, 2] \times [-2, 2]\), \(\Omega_{+} = [-1, 1] \times [-1, 1]\), \(\Omega_x = \Omega \setminus \overline{\Omega_1}\), \(\Gamma_1 = \partial \Omega\) et \(\Gamma_2 = \partial \Omega_x\). Par convention, on choisit d’orienter le vecteur normal à \(\Gamma_2\) de telle sorte qu’il pointe vers l’intérieur de \(\Omega_1\) (voir figure 1).

Soit \(T > 0, u_0 \in L^2(\Omega), \eta > 0\) et \(\kappa^\eta \in L^\infty(\Omega)\) définie par
\[
k^\eta(x) = \begin{cases} 1 & \text{si } x \in \Omega_x \\ \eta & \text{si } x \in \Omega_+ \end{cases}
\]
On considère le problème consistant à chercher une fonction \((x,t) \rightarrow u^\eta(x,t)\) telle que
\[
\begin{cases}
\frac{\partial u^\eta}{\partial t} = \text{div} (\kappa^\eta \nabla u^\eta) & \text{dans } \Omega \times [0,T] \\
u^\eta = 0 & \text{sur } \Gamma_1 \times [0,T] \\
u^\eta(x,0) = u_0(x) & \text{dans } \Omega.
\end{cases}
\]
(3)

Question 6. Montrer que pour tout \(\eta > 0\), le problème (3) admet une solution \(u^\eta\) et une seule dans \(L^2([0,T]; H^1_0(\Omega)) \cap C^0([0,T]; L^2(\Omega))\), et qu’on a pour tout \(t \in [0,T]\)
\[
\int_\Omega u^\eta(x,t)^2 dx + 2 \int_0^t \int_\Omega \kappa^\eta(x) |\nabla u^\eta(x,s)|^2 dx ds = \int_\Omega u_0(x)^2 dx.
\]
(4)
Dans toute la suite, on considère la donnée initiale définie par \(u_0(x) = \chi_{B_{x_0}(1/4)}(x) \) où \(B_{x_0}(1/4) \) désigne la boule ouverte de \(\mathbb{R}^2 \) de centre \(x_0 = (-3/2, -1) \) et de rayon \(1/4 \). On peut alors montrer que pour tout \(t > 0 \), la fonction \(x \mapsto \text{div} \ (k \nabla u(x,t)) \) est dans \(L^2(\Omega) \), et que la fonction \(t \mapsto \text{div} \ (k \nabla u(\cdot,t)) \) est continue sur \([0,T] \).

Question 7. Écrire un programme FreeFEM++ permettant de simuler le problème (3). Justifier le choix du schéma numérique mis en œuvre.

Question 8. On note \(u_{x}^q \) (resp. \(u_{i}^q \)) la restriction de \(u^q \) à \(\Omega_{x} \times [0,T] \) (resp. à \(\Omega_{i} \times [0,T] \)). En s'inspirant de la section 5.2.3 du cours [1], vérifier que le couple \((u_{x}^q,u_{i}^q) \) est solution du système suivant

\[
\begin{align*}
\frac{\partial u_{x}^q}{\partial t} &= \Delta u_{x}^q & \text{dans } & \Omega_{x} \times]0,T[\\
\frac{\partial u_{i}^q}{\partial t} &= \eta \Delta u_{i}^q & \text{dans } & \Omega_{i} \times]0,T[\\
u_{x}^q &= 0 & \text{sur } & \Gamma_{1} \times]0,T[\\
\frac{\partial u_{x}^q}{\partial n} &= \eta \frac{\partial u_{i}^q}{\partial n} & \text{sur } & \Gamma_{2} \times]0,T[\\
u_{x}^q(x,0) &= u_{0}(x) & \text{dans } & \Omega_{x} \\
u_{i}^q(x,0) &= u_{0}(x) & \text{dans } & \Omega_{i}.
\end{align*}
\]

Question 9. En faisant tendre \(\eta \) vers 0 dans le problème (5), on obtient, au moins formellement,

\[
\begin{align*}
\frac{\partial u_{x}^0}{\partial t} &= \Delta u_{x}^0 & \text{dans } & \Omega_{x} \times]0,T[\\
\frac{\partial u_{i}^0}{\partial t} &= 0 & \text{dans } & \Omega_{i} \times]0,T[\\
u_{x}^0 &= 0 & \text{sur } & \Gamma_{1} \times]0,T[\\
\frac{\partial u_{x}^0}{\partial n} &= 0 & \text{sur } & \Gamma_{2} \times]0,T[\\
u_{x}^0(x,0) &= u_{0}(x) & \text{dans } & \Omega_{x} \\
u_{i}^0(x,0) &= u_{0}(x) & \text{dans } & \Omega_{i}.
\end{align*}
\]

Écrire un programme FreeFEM++ permettant de simuler le problème (6). Justifier le choix du schéma numérique mis en œuvre. Vérifier que ce programme donne des résultats voisins de celui écrit à la question 7, lorsqu'on utilise ce dernier avec de très petites valeurs du paramètre \(\eta \).
Question 10. On peut montrer que lorsque η tend vers $+\infty$, la famille $(u^n)_{\eta>0}$ converge dans $L^2([0,T];H^1_0(\Omega)) \cap C^0([0,T];L^2(\Omega))$ vers une certaine fonction u^∞. En utilisant (4), montrer que pour tout $t \in [0,T]$, la restriction de $u^\infty(t)$ à Ω_t est une fonction constante, i.e. que pour tout $t \in [0,T]$, il existe $C(t) \in \mathbb{R}$ tel que $u^\infty(x,t) = C(t)$ pour tout $x \in \Omega_t$.

Indication. On utilisera l’inégalité de Poincaré-Wirtinger, stipulant qu’il existe une constante $C \in \mathbb{R}_+$ telle que pour tout $v \in H^1(\Omega_t)$, $\|v - \frac{1}{|\Omega_t|} \int_{\Omega_t} v\|_{L^2(\Omega_t)} \leq C \|\nabla v\|_{L^2(\Omega_t)}$.

Question 11. Soit u^∞ la restriction de u^∞ au domaine Ω_t. Montrer que u^∞ est solution du problème aux limites

$$
\begin{cases}
\frac{\partial u^\infty}{\partial t} = \Delta u^\infty & \text{dans } \Omega \times [0,T] \\
u^\infty = 0 & \text{sur } \Gamma_1 \times [0,T] \\
u^\infty(x,t) = C(t) & \text{sur } \Gamma_2 \times [0,T] \\
\frac{dC}{dt}(t) = -\frac{1}{4} \int_{\Gamma_2} \frac{\partial u^\infty}{\partial n}(x,t) \, dx & \text{sur } [0,T] \\
u^\infty(x,0) = u_0(x) & \text{dans } \Omega_e \\
C(0) = 0.
\end{cases}
$$

(7)

Question 12. Ecrire un programme FreeFEM++ permettant de simuler le problème (7). Justifier le choix du schéma numérique mis en œuvre. Vérifier que ce programme donne des résultats voisins de celui écrit à la question 7, lorsqu’on utilise ce dernier avec de très grandes valeurs du paramètre η.

Références