Violaine Llaurens

with M Arias, S Billiard, M Chouteau, F Prunier & M Joron

consequences of balancing selection

Aussois, May 14th 2018

Adaptive variations

Example of adaptive variat

Antirhinum majus striatum pseudomajus

Timema christinae

Dendrobates variabilis

Dendrobates fantasticus

Dendrobates ventrimaculatus

Comeault et al. 2015, Whibley et al. 2006, Symula et al. 2001

Adaptive variations

- Example of adaptive variations
- And create multidimensional adaptive landscapes

see Svensson & Calsbeek book for a review

- Mutations:
 - Generally neutral or deleterious
 - Often not sufficient to generate new adaptive phenotype

- Mutations:
 - Generally neutral or deleterious
 - Often not sufficient to generate new adaptive phenotype
- Migration often associated with locally maladapted variants

- Mutations:
 - Generally neutral or deleterious
 - Often not sufficient to generate new adaptive phenotype
- Migration often associated with locally maladapted variants

- Mutations:
 - Generally neutral or deleterious
 - Often not sufficient to generate new adaptive phenotype
- Migration often associated with locally maladapted variants
- New variants appear at heterozygous state

Balancing selection as a tool

- Balancing selection : maintained several alleles at balanced frequencies
 - Typically maintaining several adaptive peaks in sympatry
 - Either stable or transient
- Unique opportunity to compare several adaptive variants in a common genetic background
- Investigate the influence of dominance in adaptation

- Negative frequency-dependent selection
 - Advantages associated with rare allele
 - Self-incompatibility locus in Plants

- Negative frequency-dependent selection
 - Advantages associated with rare allele
 - Self-incompatibility locus

- Negative frequency-dependent selection
 - Advantages associated with rare alleles
 - Self-incompatibility locus
 - Manual preference in Humans

- Negative frequency-dependent selection
- Heterozygote advantage
 - MHC in guppies

- Negative frequency-dependent selection
- Heterozygote advantage
 - MHC in guppies

Heterozygotes resisting to a larger range of parasites

- Negative frequency-dependent selection
- Heterozygote advantage
- Selection/migration equilibrium

- Negative frequency-dependent selection
- Heterozygote advantage
- Selection/migration equilibrium

- Negative frequency-dependent selection
- Heterozygote advantage
- Selection/migration equilibrium

 Müllerian mimicry: evolutionary convergence among toxic species towards similar color patterns

Elias et al. 2008

- Müllerian mimicry: evolutionary convergence among toxic species towards similar color patterns
- Strong positive number dependent selection by predators at local scale

- Müllerian mimicry: evolutionary convergence among toxic species towards similar color patterns
- Strong positive number dependent selection by predators at local scale
- Geographic races of mimetic species

Most *Heliconius* species

- Müllerian mimicry: evolutionary convergence among toxic species towards similar color patterns
- Strong positive number dependent selection by predators at local scale

Geographic races of mimetic species

Few cases of polymorphic mimicry
 Heliconius numata

- Müllerian mimicry: evolutionary convergence among toxic species towards similar color patterns
- Strong positive number dependent selection by predators at local scale

Geographic races of mimetic species

Few cases of polymorphic mimicry
 Heliconius numata

Heliconius numata as a model

 H. numata : striking resemblance with several species from the distantly related genus Melinaea (~90 My divergence)

Origin of polymorphism in Heliconius numata

Polymorphism driven by selection-migration equilibrium

Distribution of Melinaea ssp (San Martin Department - PERU) - from Mélanie McClure

Genetic architecture of mimetic colour pattern in the *Heliconius* genus

Huber et al. 2015

Genetic architecture of polymorphic mimicry in *H. numata*

 Supergene encoding for color pattern variations

- Polymorphic gene order corresponding to different mimetic alleles
- Limited recombination

□ GENETIC ARCHITECTURE FAVOURING POLYMORPHISM

Genetic architecture of polymorphic mimicry

Polymorphic mimicry

High frequency of heterozygotes

- Selection on intermediate phenotype by predators
- Selection on dominance in natural populations ?
- Persistence of polymorphism ?

□ Role of mating system ?

Selection on intermediates within natural populations

Test in natural populations (Perù) using artificial butterf

Monica Arias Labex Phd

Selection on intermediates within natural populations – study sites

Venezuela Guyana mbia Suriname AM MA CE PA Brazil Tarapoto RO TH I MT GO Bolivia MG MS Paraguay SP PR **R**J Chile SC Uruguay Argentina

Selection on dominance within natural populations- experimental design

Arias et al. 2016

Local (bicoloratus)

Intermediate (bic/arc)

Local (arcuella)

Exotic but aposematic

Local but cryptic and palatab

Selection on intermediates within natural populations- experimental design

- Experimental sites
 - Light gap on a transect: 150 per trial
- Five colour patterns per gap
- Left 72 hours before checking

Selection on dominance within natural populations- attacks

Arias et al. 2016

Selection on intermediates within natural populations

- Significantly higher attacks:
 - On exotic morphs
 - On heterozygotes exhibiting an intermediate phenotype
- Overall, significant selection against codominance in heterozygotes carrying sympatric alleles.

Arias et al. 2016

Selection on dominance within natural populations

- Selection againt intermediate detected within natural population
 - Selection acting on slightly deviating heterozygotes
- Impact on polymorphism ?

Modeling the impact of dominance

Modeling impact of dominance

Modellingdominaece

$$h = \frac{T_{aur/ele} - T_{aur/aur}}{T_{ele/ele} - T_{aur/aur}}$$

- Modelling predator behavior
- Modelfinglippeidatombeihavior
 - Generalisation function

$$g(h) = e^{-(h-1)^2/2\gamma^2}$$

With h : dominance coefficient With h : dominance coefficient And width of predators generalisation And width of predators generalisation capacities.

Llaurens et al. 2013

Modeling the impact of dominance

Two mimilary ringg:s:

- Local rings (no migration)
- Same abundance in each Same abundance in each locality locality
 Predation rate d Predation rate d
 Spatial heterosgeneityty

Ome mimmeticsppeieses:

Two populations
Migration m

 Frequency dependent
 Frequency dependent selection selection
 Toxicity of the polymorphic species
 Number of individual sharing the tame
 Share prenotype

Modeling the impact of dominance

$$Naa_{1}(t+1) = \frac{-d(1-\sigma)}{1+\lambda(Naa_{1}(t)+g(h)Nab_{1}(t))} Naa_{1}(t)$$
Predation
+ $m(Naa_{2}(t)-Naa_{1}(t))$
+ $\frac{r}{2}(\frac{(Nab_{1}(t)+2Naa_{1}(t))^{2}}{4Ntot_{1}}(1-\frac{Ntot_{1}(t)}{K})$ Reproduction

Llaurens et al. 2013

Migration rate (*m*)

Joron & Iwasa 2005

Strict dominance (be ()) $\neq 2$). BAs $\neq = B$. So $d = 0..., \lambda = 0.025$

Llaurens et al. 2013

Llaurens et al. 2013

Llaurens et al. 2013

- Co-dominance (h=0.5): heterozygote AB with intermediate phenotype
- Loss of polymorphism for lower values of m
 Migration load higher when heterozygotes are intermediate

Allelic frequencies in the metapopulation

Fixation and frequencies depend on dominance

Llaurens et al. 2013

- Selection /migration balance
- Modulates by heterozygote behaviour
- Dominant alleles tend to be fixed when migration increases

→Nevertheless polymorphism is stable throughout *H. numata* range

Mate preferences for wing colour patterns

 Male & female preferences for wing colour patterns.

Chouteau Marie Curie postdoc

NO PREFERENCE DETECTED IN MALES

Chouteau et al. 2017

Mate preferences for wing colour patterns

Chouteau Marie Curie postdoc

М.

Mate preferences for wing colour patterns

- Realized mating:
 - Tetrad experiments with 2 males and 2 females with different morphs
 - Mating events recorded

STRONG COLOUR PATTERN-BASED DISASSORTATIVE MATING

Dominance and disassortative mating

- Consequences on polymorphism within populations ?
- From the previous model
 - Mate preference parameter, which depends on resemblance
 - Mate=0 [] Strict assortative mating
 - Mate=0,5 [Random Mating
 - Mate=1 [] Strict disassortative mating

 $Pref_{[i][j]} = mate_{(1 - Res_{[i][j]})} + (1 - mate)Res_{[i][j]}$

Three mimetic alleles with:

Effect of disassortative mating - within a single population

Disassortative mating within a single population, assuming:

Effect of disassortative mating - within a single population

Disassortative mating within a single population, assuming:

Effect of disassortative mating - within a single population

Disassortative mating within a single population, assuming:

(assortative (0) \rightarrow disassortative (1))

Origin of disassortative mating ?

Inversions: linked deleterious mutations (captured or accumulated)

- Disassortative mating:
 - Purge of deleterious mutations in recessive alleles (frequently occurring at homozygous state)
 - Accumulation of deleterious mutations associated with dominant allele
 - Increase of heterozygote advantage
 - Promote disassortative mating

Genetic architecture associated with polymorphism

Dominance influences

Mimetic communities
 Predators behaviours

fitnes

Polymorphism in sympatry

trait 1

- Gene flow among populations
- Origin of disassortative mating ?
 - Linked to genetic load associated with inversions ?

- Dominance

Disassortative mating:

- Linked preference locus ?
- Linked genetic load ?

Thank you for your attention

- Thanks to collaborators
- Fundings: ATM "Formes, Labex BcDiv, UMR7205, ANR Domevol, Projet 'Emergence' – ville de Paris

