#### Violaine Llaurens & Claire Spottiswoode





#### **Evolution of egg mimicry in brood** parasitism: on the role of genetic architecture.

Aussois: May 16th 2018







### Brood parasitism

- Eggs laid in other species nest
  - Parental care provided by the host parents



### Egg mimicry in cuckoos

# Evolution of mimicry in parasite species Mimicry in egg colour and/or pattern

Hungary great reed warbler Acrocephalus arundinaceus



Branislav et al. 2011

Finland common redstart Phoenicurus phoenicurus



Czech Republic reed warbler Acrocephalus scirpaceus



### Polymorphic mimicry in cuckoos

- In cuckoo finch parasiting host ne
  - Polymorphic mimicry in egg colour p





#### Spottiswoode & Stevens 2012

### Polymorphic mimicry in cuckoos

- In cuckoo finch parasiting host nests
  - Most parasite species specialize on a single egg colour pattern
  - Few cases of polymorphic mimicry



### A red queen dynamic ?

Red queen dynamics on cuckoos and host egg colour pattern ?





### A red queen dynamic ?



#### Failed red-queen dynamics in cuckoos ?



In host, coexistence of white, blue, pink and green eggs

#### Spottiswoode & Stevens 2012

### A red queen dynamic ?



#### Failed red-queen dynamics in cuckoos ?



In host, coexistence of white, blue, pink and green eggs

In parasite, coexistence of white, blue, pink green eggs

BUT: no green eggs ?

Spottiswoode & Stevens 2012

Genetic basis of egg colour in host and parasite

#### Distinct genetic architecture of egg coloration:

- In host: autosomal
- In cuckoo: maternally inherited (W-linked or mitochondrial)

*i.e. W-linked: limited recombination & immediate expression* 

### Origins of egg colours:

- WHITE: absence of pigments
- PINK/RED: Protoporphyrin
- TURQUOISE BLUE: Biliverdin
- GREEN: mixture of pink and turquoise pigments ?

Genetic basis of egg colour in host and parasite

- What is the influence of genetic architecture of egg coloration
  - On host and parasite egg polymorphism ?
  - On host/parasite dynamics ?

Explore consequences of different hypothetical genetic architecture through theoretical approach

### Infinite population 'matching allele' model

#### HOST

P. sublava

- Cost suffered by a host and its nest is parasitized
  - ► *C*<sub>p</sub> ∈ [0;1]
- Depends on the frequency of parasite egg with the egg mimetic colour



- Cost suffered by a parasite when laying in a nest where its eggs are not mimetic
   C<sub>h</sub>∈ [0;1]
- Depends on the frequency of host egg with the matching colour

## Hypothetical genetic architecture (1)

Same autosomal architecture in host & parasite

|            |       | Host                          |  |      | Pa     | rasite    | · |
|------------|-------|-------------------------------|--|------|--------|-----------|---|
| Phenotypes |       | Genotypes<br>strict dominance |  | Phen | otypes | Genotypes |   |
|            | pink  | between b and p<br>pp or wp   |  |      | pink   | pp or wp  |   |
|            | white | WW                            |  |      | white  | WW        |   |
|            | blue  | bb or bp                      |  |      | blue   | bb or bp  |   |
|            | green | -                             |  |      |        |           |   |

### Model equations under hyp (1)

#### HOST



$$\frac{df_{xy}^{P}}{dt} = \sum_{i=1}^{i=6} \sum_{j=1}^{j=6} \{ [(1 - (1 - C_{h} \sum_{k=1}^{k=6} R_{ki} f_{k}^{H})] + (1 - (1 - C_{h} \sum_{k=1}^{k=6} R_{kj} f_{k}^{P})] [O_{ix}^{P} f_{i}^{P} O_{jy}^{P} f_{j}^{P}] \}$$
Cost of egg colour discordance when discordance when mother is *i*

$$Cost of egg colour discordance when discord$$

## Hypothetical genetic architecture (1)

Same autosomal architecture in host &





## Hypothetical genetic architecture (2)

W-linked in parasite

|            |       | Host                        |  | Parasite |        |          |        |  |
|------------|-------|-----------------------------|--|----------|--------|----------|--------|--|
| Phenotypes |       | Genotypes                   |  | Phen     | otypes | Gen      | otypes |  |
|            | pink  | between b and p<br>pp or wp |  |          | pink   | pp or wp |        |  |
|            | white | ww                          |  |          | white  | WW       |        |  |
|            | blue  | bb or bp                    |  |          | blue   | bb or bp |        |  |
|            | green | -                           |  |          |        |          |        |  |

## Hypothetical genetic architecture (2)

#### W-linked in parasite

|      |        | Host                                                   |  |      | Pa     | rasite    | *              |
|------|--------|--------------------------------------------------------|--|------|--------|-----------|----------------|
| Pher | otypes | Genotypes                                              |  | Phen | otypes | Geno      | otypes         |
|      | pink   | strict dominance<br>between b and p<br><b>pp or wp</b> |  |      | pink   | Autosomal | W-linked<br>Wp |
|      | white  | ww                                                     |  |      | white  |           | Ww             |
|      | blue   | bb or bp                                               |  |      | blue   |           | Wp             |
|      | green  | -                                                      |  |      |        |           |                |

### Model equations under hyp (2)

#### HOST

1



Cost of discordanceMother Wk in egg colour when genotype mother is *i* frequencies

## Hypothetical genetic architecture (2)

W-linked in parasite



## Hypothetical genetic architecture (2)

W-linked in parasite : parasites are running



Location of locus controlling egg colour variations





## Hypothetical genetic architecture (3)

Co-dominance in host allowing 'green' egg colour.

|      |        | Host                        |        |      | Pa     | rasite | *****              |
|------|--------|-----------------------------|--------|------|--------|--------|--------------------|
| Pher | otypes | Gen                         | otypes | Pher | otypes | Genc   | otypes<br>W-linked |
|      | pink   | between b and p<br>pp or wp |        |      | pink   | ,      | Wp                 |
|      | white  | WW                          |        |      | white  |        | Ww                 |
|      | blue   | bb or bp                    |        |      | blue   |        | Wp                 |
|      | green  | -                           |        |      |        |        |                    |

## Hypothetical genetic architecture (3)

Co-dominance in host allowing 'green' egg colour.

|            |       | Host                                |                                                    |            |  | Pa        | rasite    |                |
|------------|-------|-------------------------------------|----------------------------------------------------|------------|--|-----------|-----------|----------------|
| Phenotypes |       | Genotypes                           |                                                    | Phenotypes |  | Genotypes |           |                |
|            | pink  | strict dominance<br>between b and p | co-dominance<br>between b and p<br><b>pp or Wp</b> |            |  | pink      | Autosomal | W-linked<br>Wp |
|            | white |                                     | ww                                                 |            |  | white     |           | Ww             |
|            | blue  |                                     | bb or wb                                           |            |  | blue      |           | Wp             |
|            | green |                                     | bp                                                 |            |  |           |           |                |

## Hypothetical genetic architecture (3)

Co-dominance in host allowing 'green' egg colour.

Loss of red queen dynamics due to heterozygote advantage associated with green eggs.

Loss of 'white' allele in both host & parasite



 Dominance of alleles controlling egg colour variations



## Hypothetical genetic architecture (4)

Co-dominance in host allowing 'green' egg colour.

|            |       | Host                                |                                                    |            |  | Pa        | rasite    |                |
|------------|-------|-------------------------------------|----------------------------------------------------|------------|--|-----------|-----------|----------------|
| Phenotypes |       | Genotypes                           |                                                    | Phenotypes |  | Genotypes |           |                |
|            | pink  | strict dominance<br>between b and p | co-dominance<br>between b and p<br><b>pp or Wp</b> |            |  | pink      | Autosomal | W-linked<br>Wp |
|            | white |                                     | ww                                                 |            |  | white     |           | Ww             |
|            | blue  |                                     | bb or wb                                           |            |  | blue      |           | Wp             |
|            | green |                                     | bp                                                 |            |  |           |           |                |

## Hypothetical genetic architecture (4)

Co-dominance in host allowing 'green' egg colour.

|            |       | Host                                |                                                    |            |  | Pa        | rasite                |          |
|------------|-------|-------------------------------------|----------------------------------------------------|------------|--|-----------|-----------------------|----------|
| Phenotypes |       | Genotypes                           |                                                    | Phenotypes |  | Genotypes |                       |          |
|            | pink  | strict dominance<br>between b and p | co-dominance<br>between b and p<br><b>pp or wp</b> |            |  | pink      | Autosomal<br>pp or wp | W-linked |
|            | white |                                     | ww                                                 |            |  | white     | WW                    |          |
|            | blue  |                                     | bb or wb                                           |            |  | blue      | bb or bp              |          |
|            | green |                                     | bp                                                 |            |  |           |                       |          |

## Hypothetical genetic architecture (4)

Co-dominance in host allowing 'green' egg colour when both autosomal.



#### Perspectives

- Explore host and parasite costs parameters space
- Add pigmentation cost ?

- Quantitative variations at locus N (reflecting colour diversity found in natural population)
- Finite populations model



#### Take home message

- Balancing selection & persistence of polymorphism
- Importance of dominance
  - Significant differences between diploid and haploid model
  - (Smadi, Leman & Llaurens JTB 2018)
- Interactions between genetic architecture and selection regime

#### Thank you for your attention !



Many thanks to Claire Spottiswoode !!