Modélisation stochastique de la dynamique de l'actine

Anne VAN GORP

avec Amandine VEBER et François ROBIN

Aussois, 12 - 16 Mai 2018

Anne VAN GORP

Modélisation stochastique de la dynamique de l'actine

Description de l'actine

Protéine du cytosquelette

Description de l'actine

- Protéine du cytosquelette
- Filaments polarisés

Anne VAN GORP

Description de l'actine

- Protéine du cytosquelette
- Filaments polarisés
- Polymérisation en 3 phases

Rôles de l'actine

- Propriétés mécaniques et structurelles
- Mobilité de la cellule

Rôles de l'actine

- Propriétés mécaniques et structurelles
- Mobilité de la cellule
- Contraction et division cellulaire

Protéines accessoires

Modèle 0

$$\xrightarrow{\lambda^{+}} \xrightarrow{\lambda^{-}} \xrightarrow{\lambda^{-}} \xrightarrow{\lambda^{-}} \xrightarrow{\lambda^{+}} \xrightarrow{\lambda^{+}}$$

 $\begin{array}{lll} \lambda^+ & {\rm Taux} \ {\rm d'élongation} \\ \lambda^- & {\rm Taux} \ {\rm de} \ {\rm dépolymérisation} \\ L(t) & {\rm Longueur} \ {\rm du} \ {\rm filament} \ {\rm d'actine} \\ \tau(t) & {\rm Temps} \ {\rm de} \ {\rm turnover} \end{array}$

Taux d'arrivée Taux de service Longueur de la file d'attente Temps d'attente

$$L(t) = L(0) + N^{+}(t) - \int_{]0,t]} \mathrm{I}_{\{L(t^{-})>0\}} N^{-}(ds)$$

 $N^+(t)$ Processus ponctuel de Poisson d'intensité λ^+ $N^-(t)$ Processus ponctuel de Poisson d'intensité λ^-

Comportement du processus

 $\mathbb{E}[\tau(t)] = \mathbb{E}\Big[\sum_{k=1}^{L(t)+1} \mathcal{E}_k(\lambda^-)\Big] = \mathbb{E}[\Gamma(L(t)+1,\lambda^-)] = \frac{\mathbb{E}[L(t)]+1}{\lambda^-}$

Anne VAN GORP

Modélisation stochastique de la dynamique de l'actin

Limites du modèle

- Première approche
- ▶ Cas $\lambda^+ > \lambda^-$ acceptable pour modélisation d'une protusion

Limites du modèle

- Première approche
- ► Cas $\lambda^+ > \lambda^-$ acceptable pour modélisation d'une protusion
- Les monomères sont limitants
- L'état 0 est absorbant
- Le taux d'élongation est non constant
- Pas de protéine

Modèle à deux vitesses

- N Nombre total de monomères
- $L_0(t)$ Nombre de monomères libres
- $L_1(t)$ Longueur du filament
- $L_2(t)$ Nombre de complexes monomère/profiline
- M(t) Mode, 0 = normal, 1 = rapide

Anne VAN GORP

Modèle à deux vitesses

$\mathcal{L}(t) = (L_0(t), L_1(t), L_2(t), M(t))$

processus markovien de sauts à valeurs dans

$$\{(l_0, l_1, l_2) \in [[0, N]]^3 | l_0 + l_1 + l_2 = N\} \times \{0, 1\}$$

Élongation spontanée

$$(l_0, l_1, l_2, \mathbf{0}) \rightarrow (l_0 - 1, l_1 + 1, l_2, \mathbf{0})$$

si $l_1 > 0$ à taux $\lambda^+ \frac{l_0}{N}$

Élongation spontanée

$$(l_0, l_1, l_2, 0) \rightarrow (l_0 - 1, l_1 + 1, l_2, 0)$$

si $l_1 > 0$ à taux $\lambda^+ \frac{l_0}{N}$

Élongation avec une formine

$$(\mathit{l}_{0},\mathit{l}_{1},\mathit{l}_{2},1)
ightarrow (\mathit{l}_{0},\mathit{l}_{1}{+}1,\mathit{l}_{2}{-}1,1)$$
si $\mathit{l}_{1}>0$ à taux λ^{+}_{FN}

Élongation spontanée

$$(l_0, l_1, l_2, 0) \rightarrow (l_0 - 1, l_1 + 1, l_2, 0)$$

si $l_1 > 0$ à taux $\lambda^+ \frac{l_0}{N}$

Élongation avec une formine

$$(I_0, I_1, I_2, \mathbf{1}) \rightarrow (I_0, I_1+1, I_2-1, \mathbf{1})$$

- si $l_1 > 0$ à taux $\lambda_F^+ \frac{l_2}{N}$
- Dépolymérisation

$$(l_0, l_1, l_2, m) \rightarrow (l_0+1, l_1-1, l_2, m)$$

si $\mathit{I}_1 >$ 0 à taux λ^-

Élongation spontanée

Création d'un complexe

à taux $\Phi_P \frac{h}{M}$

 $(l_0, l_1, l_2, 0) \rightarrow (l_0 - 1, l_1 + 1, l_2, 0) \quad (l_0, l_1, l_2, m) \rightarrow (l_0 - 1, l_1, l_2 + 1, m)$

si $l_1 > 0$ à taux $\lambda^+ \frac{l_0}{N}$

Élongation avec une formine

$$(l_0, l_1, l_2, \mathbf{1}) \rightarrow (l_0, l_1+1, l_2-1, \mathbf{1})$$

si $l_1 > 0$ à taux $\lambda_F^+ \frac{l_2}{N}$

Dépolymérisation

$$(l_0, l_1, l_2, m) \rightarrow (l_0+1, l_1-1, l_2, m)$$

si $\mathit{l}_1 > \mathsf{0}$ à taux λ^-

- Élongation spontanée
 Création d'un complexe
 - $(l_0, l_1, l_2, 0) \rightarrow (l_0 1, l_1 + 1, l_2, 0) \quad (l_0, l_1, l_2, m) \rightarrow (l_0 1, l_1, l_2 + 1, m)$

à taux $\Phi_P \frac{h}{M}$

à taux Φ_{F}^{+}

Fixation d'une formine

 $(l_0, l_1, l_2, 0) \rightarrow (l_0, l_1, l_2, 1)$

- si $\mathit{I}_1 > 0$ à taux $\lambda^+ rac{\mathit{I}_0}{\mathit{N}}$
- Élongation avec une formine

$$(l_0, l_1, l_2, \mathbf{1}) \rightarrow (l_0, l_1 + 1, l_2 - 1, \mathbf{1})$$

- si $l_1 > 0$ à taux $\lambda_F^+ \frac{l_2}{N}$
- Dépolymérisation

$$(l_0, l_1, l_2, m) \rightarrow (l_0+1, l_1-1, l_2, m)$$

si $\mathit{l}_1 > \mathsf{0}$ à taux λ^-

- Élongation spontanée
 Création d'un complexe
 - $(l_0, l_1, l_2, 0) \rightarrow (l_0 1, l_1 + 1, l_2, 0) \quad (l_0, l_1, l_2, m) \rightarrow (l_0 1, l_1, l_2 + 1, m)$
 - si $l_1 > 0$ à taux $\lambda + \frac{l_0}{N}$ à taux $\Phi_P \frac{l_0}{N}$
- Élongation avec une formine
 Fixation d'une formine

$$(I_0, I_1, I_2, \mathbf{1}) \rightarrow (I_0, I_1 + 1, I_2 - 1, \mathbf{1})$$

- si $l_1 > 0$ à taux $\lambda_F^+ rac{l_2}{N}$ à taux
- Dépolymérisation

- à taux Φ_F^+
- Libération d'une formine

 $(l_0, l_1, l_2, 0) \rightarrow (l_0, l_1, l_2, 1)$

 $(l_0, l_1, l_2, m) \rightarrow (l_0+1, l_1-1, l_2, m)$ $(l_0, l_1, l_2, 1) \rightarrow (l_0, l_1, l_2, 0)$ si $l_1 > 0$ à taux λ^- à taux Φ_F^-

Équations stochastiques

 $(M(t))_{t\in\mathbb{R}_+}$ admet une unique mesure invariante

$$\left(\pi_M(0),\pi_M(1)\right) = \left(rac{\Phi_F^-}{\Phi_F^+ + \Phi_F^-},rac{\Phi_F^+}{\Phi_F^+ + \Phi_F^-}
ight)$$

Équations stochastiques

 $(M(t))_{t\in\mathbb{R}_+}$ admet une unique mesure invariante

$$(\pi_{M}(0), \pi_{M}(1)) = \left(\frac{\Phi_{F}^{-}}{\Phi_{F}^{+} + \Phi_{F}^{-}}, \frac{\Phi_{F}^{+}}{\Phi_{F}^{+} + \Phi_{F}^{-}}\right)$$

$$(L(t))_{t \in \mathbb{R}_{+}} \stackrel{def}{=} (L_{0}(t), L_{1}(t), L_{2}(t))_{t \in \mathbb{R}_{+}} \text{ satisfait}$$

$$t_{0}(t) = L_{0}(0) + \int_{0}^{t} \mathrm{I}_{\{L_{1}(s)>0\}}\lambda^{-}ds - \int_{0}^{t} \mathrm{I}_{\{M(s)=0,L_{1}(s)>0\}}\lambda^{+}\frac{L_{0}(s)}{N}ds$$

$$- \int_{0}^{t} \Phi_{P}\frac{L_{0}(s)}{N}ds + X_{0}(t)$$

$$t_{1}(t) = L_{1}(0) + \int_{0}^{t} \mathrm{I}_{\{M(s)=0,L_{1}(s)>0\}}\lambda^{+}\frac{L_{0}(s)}{N}ds$$

$$+ \int_{0}^{t} \mathrm{I}_{\{M(s)=1,L_{1}(s)>0\}}\lambda^{+}_{F}\frac{L_{2}(s)}{N}ds - \int_{0}^{t} \mathrm{I}_{\{L_{1}(s)>0\}}\lambda^{-}ds + X_{1}(t)$$

$$t_{2}(t) = L_{2}(0) + \int_{0}^{t} \Phi_{P}\frac{L_{0}(s)}{N}ds - \int_{0}^{t} \mathrm{I}_{\{M(s)=1,L_{1}(s)>0\}}\lambda^{+}_{F}\frac{L_{2}(s)}{N}ds + X_{2}(t)$$

Limite dans le mode normal/rapide

En notant $\overline{L^N}(t) = \frac{L(Nt)}{N}$, le processus renormalisé converge vers $(l_0(t), l_1(t), l_2(t))$ caractérisé par :

$$egin{array}{lll} orall t \leq t_0 & \left\{ egin{array}{lll} rac{dl_0}{dt}(t) &=& \lambda^- - \lambda^+ l_0(t) - \Phi_P l_0(t) \ rac{dl_1}{dt}(t) &=& \lambda^+ l_0(t) - \lambda^- \ rac{dl_2}{dt}(t) &=& \Phi_P l_0(t) \ \end{array}
ight. \ orall t \geq t_0 & \left\{ egin{array}{lll} rac{dl_0}{dt}(t) &=& -\Phi_P l_0(t) \ rac{dl_1}{dt}(t) &=& 0 \ rac{dl_2}{dt}(t) &=& \Phi_P l_0(t) \end{array}
ight.
ight. \end{array}
ight.$$

où $t_0 = \min\{t \in \mathbb{R}_+ | l_1(t) = 0\}$

Limite dans le mode normal/rapide

En notant $\overline{L^N}(t) = \frac{L(Nt)}{N}$, le processus renormalisé converge vers $(l_0(t), l_1(t), l_2(t))$ caractérisé par :

$$egin{aligned} orall t & \leq t_0 \ orall t & \leq t_0 \ rac{dl_0}{dt}(t) & = & \lambda^- - \Phi_P l_0(t) \ rac{dl_1}{dt}(t) & = & \lambda_F^+ l_2(t) - \lambda^- \ rac{dl_2}{dt}(t) & = & \Phi_P l_0(t) - \lambda_F^+ l_2(t) \ orall t & \geq t_0 \ \ rac{dl_0}{dt}(t) & = & -\Phi_P l_0(t) \ rac{dl_1}{dt}(t) & = & 0 \ rac{dl_2}{dt}(t) & = & \Phi_P l_0(t) \end{aligned}$$

où $t_0 = \min\{t \in \mathbb{R}_+ | l_1(t) = 0\}$

Évolution du système sans protéine

Évolution du système sans protéine

Evolution du système SANS PROTEINE avec : N = 1000, λ^+ = 10, λ^- = 8, λ^+_F = 0, ϕ_P = 0, ϕ^+_F = 0, ϕ^-_F = 0

Anne VAN GORP

Modélisation stochastique de la dynamique de l'actine

Évolution du système dans le mode rapide

Modélisation stochastique de la dynamique de l'actine

Évolution du système dans le mode rapide

Anne VAN GORP

Modélisation stochastique de la dynamique de l'actine

Limite avec changements de modes

Le processus renormalisé $(\overline{L^N}(t))_{t\in\mathbb{R}_+}$ converge vers $(l_0(t), l_1(t), l_2(t))$ caractérisé par

$$egin{array}{lll} orall t \leq t_0 & \left\{ egin{array}{lll} rac{d l_0}{d t}(t) &=& \lambda^- - \pi_M(0)\lambda^+ l_0(t) - \Phi_P l_0(t) \ rac{d l_1}{d t}(t) &=& \pi_M(0)\lambda^+ l_0(t) + \pi_M(1)\lambda_F^+ l_2(t) - \lambda^- \ rac{d l_2}{d t}(t) &=& \Phi_P l_0(t) - \pi_M(1)\lambda_F^+ l_2(t) \ \end{array}
ight. \ orall t \geq t_0 & \left\{ egin{array}{lll} rac{d l_0}{d t}(t) &=& -\Phi_P l_0(t) \ rac{d l_1}{d t}(t) &=& 0 \ rac{d l_2}{d t}(t) &=& \Phi_P l_0(t) \ \end{array}
ight.
ight.
ight.
ight. \ \end{array}
ight.$$

où $t_0 = \min\{t \in \mathbb{R}_+ | I_1(t) = 0\}$

 $\begin{array}{l} Evolution \ du \ système \ avec \ : \\ N=1000, \ \lambda^{+}=10, \ \lambda^{-}_{F}=10, \ \varphi_{F}=100, \ \varphi_{F}^{+}=1, \ \varphi_{F}^{-}=1 \end{array}$

Modélisation stochastique de la dynamique de l'actine

 $\begin{array}{l} Evolution \ du \ système \ avec \ : \\ N=1000, \ \lambda^{+}=10, \ \lambda^{-}_{F}=100, \ \varphi_{F}=10, \ \varphi_{F}^{-}=1, \ \varphi_{F}^{-}=1 \end{array}$

Modélisation stochastique de la dynamique de l'actin

Evolution du nombre de monomères libres

Modélisation stochastique de la dynamique de l'actine

Perspectives

- Preuve pour la limite avec changements de modes
- TCL fonctionnel
- Temps de turnover
- Temps de vie

Merci pour votre attention !

Références

B. Alberts.

Molecular biology of the cell. 2014.

L. Blanchoin et al.

Actin dynamics, architecture, and mechanics in cell motility. *Physiological reviews*, 2014.

V. Bœuf and P. Robert.

A stochastic analysis of a network with two levels of service. Preprint, 2017.

M. Murrell et al.

Forcing cells into shape : the mechanics of actomyosin contractility. *Nature Reviews Molecular Cell Biology*, 2015.

P. Robert.

Stochastic networks and queues.

2003.

Anne VAN GORP

Modélisation multi-échelle

Filament simple :

- Taille moyenne d'un filament
- Temps de turnover
- Temps de vie d'un filament

Modélisation multi-échelle

Filament simple :

- Taille moyenne d'un filament
- Temps de turnover
- Temps de vie d'un filament

Population de filaments :

- Distribution en taille
- Répartition des monomères

Modélisation multi-échelle

Filament simple :

- Taille moyenne d'un filament
- Temps de turnover
- Temps de vie d'un filament

Population de filaments :

- Distribution en taille
- Répartition des monomères

Propriétés structurelles :

Taux de branchement

Modèle avec les protéines

- *N* Nombre total de monomères
- $L_0(t)$ Nombre de monomères libres
- $L_1(t)$ Longueur du filament
- $L_2(t)$ Nombre de complexes monomère/profiline
- M(t) Mode, -1 =lent, 0 =normal, 1 =rapide

Anne VAN GORP

Modélisation stochastique de la dynamique de l'actine

Évolution du système sans protéine

Anne VAN GORP

Modélisation stochastique de la dynamique de l'actine

Anne VAN GORP

Modélisation stochastique de la dynamique de l'actine

Anne VAN GORP

Modélisation stochastique de la dynamique de l'actine

Évolution du système dans le mode rapide

Modélisation stochastique de la dynamique de l'actine

 $\begin{array}{l} \mbox{Evolution du système avec}:\\ \mbox{N}=1000, \ \lambda^{+}=10, \ \lambda^{-}=2, \ \lambda^{+}_{F}=10, \ \phi_{P}=100, \ \phi^{+}_{F}=0.02, \ \phi^{-}_{F}=0.02 \end{array}$

Modélisation stochastique de la dynamique de l'actine

Evolution du système avec : N = 1000, λ^+ = 10, λ^- = 2, λ^+_F = 100, ϕ_P = 10, ϕ^+_F = 0.01, ϕ^-_F = 0.01

Anne VAN GORP

Modélisation stochastique de la dynamique de l'actine

Evolution du système avec : N = 1000, λ^+ = 10, λ^- = 2, λ_F^+ = 100, ϕ_P = 1, ϕ_F^+ = 1, ϕ_F^- = 1

Modélisation stochastique de la dynamique de l'actine

Anne VAN GORP

Modélisation stochastique de la dynamique de l'actir

Modélisation stochastique de la dynamique de l'actin