Inbreeding depression due to stabilizing selection on a quantitative character

Emmanuelle Porcher & Russell Lande

Inbreeding depression

Reduction in fitness of inbred vs. outbred individuals

Major force in the evolution of mating systems

Genetics of inbreeding depression

- Main mechanism causing inbreeding depression:
 - Recessive deleterious mutations
 - (Overdominance)
- Frequent assumption:
 deleterious effects are unconditional

Examples of models of inbreeding depression assuming unconditional deleterious effects

One locus, Ohta & Cockerham 1974

Multilocus, Lande et al. 1994

Limitations of models based on unconditionally deleterious alleles

 Not all inbreeding depression is purged at high selfing rates Late-acting inbreeding depression is not purged

Winn et al. 2011

Husband & Schemske 1996

Inbreeding depression changes with the environment

E.g. stronger inbreeding depression in more stressful environments

Different types of characters under selection

Qualitative traits

- Discrete distribution
- Few (1-2) genes involved
- No effects of the environment

Quantitative traits

- Continuous distribution
- Numerous genes involved
- Effects of the environment

Size, an example of quantitative trait

http://staff.stir.ac.uk/steve.paterson/Home_page.htm

Genetic determinism of quantitative traits

Phenotype = Genotype + Environment

Genotype

Phenotype

Gene diversity

Trait diversity

$$V_P = V_G + V_E$$

$$(\mathbf{P} = \mathbf{G} + \mathbf{E})$$

Types of natural selection

Directional selection

Eohippus

Oligohippus

Merychippus

Pliohippus

Modern horse

Disruptive selection

Stabilizing selection

Stabilizing selection causing inbreeding depression?

Widespread in natural populations?

Fitness of an individual with phenotype z:

$$w(z) = \exp(-\frac{(z-z_{opt})^2}{2\omega^2})$$

Character value z

(Kingsolver & Pfennig 2007)

Stabilizing selection causing inbreeding depression?

Deviation from the optimum

Change in genetic variance

- In a constant environment
- Mean phenotype = z_{opt}
- Mean fitness of a population

$$\overline{w} = \sqrt{\frac{\omega^2}{\omega^2 + V_P}}$$

A quantitative genetics model

- Assume a character controlled by n loci, with infinitely many alleles of purely additive effects <u>n</u>
- Phenotypic value of an individual

$$z = \sum_{i=1}^{n} (x_i + x'_i) + e$$

Total phenotypic variance P = G + E

Genetic variance in a randomly mating population

$$G = V + C$$

A quantitative genetics model

- Assume a character controlled by n loci, with infinitely many alleles of purely additive effects <u>n</u>
- Phenotypic value of an individual

$$z = \sum_{i=1}^{n} (x_i + x'_i) + e$$

Total phenotypic variance P = G + E

Genetic variance in a randomly mating population

Effect of inbreeding on the genetic variance of a quantitative character

For a given C and V, selfed individuals have higher genetic (phenotypic) variance than outcrossed individuals ⇒ Inbreeding depression due to stabilizing selection

Question

- How do the effects of the mating system and stabilizing selection combine to drive the evolution of genetic variance and inbreeding depression?
- Lande (1977): total genetic variance is independent of the mating system
- Model
 - Infinite population size
 - One character, controlled by n loci with additive effects
 - Normal distribution of allelic effects at each locus
 - The character is under stabilizing selection (strength $1/\omega^2$), always at optimum (constant environment)
 - Mutational variance V_m
 - Accounts for the history of different selfing lineages
 (≠ Lande 1977)

Why consider the different selfing age classes?

□ In a mixed mating population (selfing rate *r*):

- Different lineages coexist, with contrasting inbreeding coefficients
 - Creates zygotic disequilibrium (non-random association of homozygosity across loci)
 - Consequences for the evolution of genetic variance

A few equations

D Three main variables across selfing age classes τ :

- Genic variance Vτ
- Gametic linkage disequilibrium (covariance among loci Cr)
- Inbreeding coefficient F_{τ} = correlation of additive effects

Recursions:

$$V'_{\tau+1} = V_{\tau} - \frac{G_{\tau}^{2}}{2n(P_{\tau} + \omega^{2})} + V_{m}$$

$$V'_{0} = \sum_{\tau=0}^{\infty} \frac{p_{\tau} \overline{w_{\tau}}}{\overline{w}} V'_{\tau+1}$$

$$C'_{\tau+1} = \frac{1 + F_{\tau}}{2} C_{\tau} - (1 - \frac{1}{n}) \frac{G_{\tau}^{2}}{2(P_{\tau} + \omega^{2})}$$

$$C'_{0} = \sum_{\tau=0}^{\infty} \frac{p_{\tau} \overline{w_{\tau}}}{\overline{w}} C'_{\tau+1}$$

$$F'_{\tau+1} = f(F_{\tau}, V_{\tau}, G_{\tau}, P_{\tau}, V_{m}, n, \omega^{2})$$

$$F'_{0} = 0$$

These are used to derive:

- $G_{\tau} = (1+F_{\tau})(C_{\tau}+V_{\tau})$ and $P_{\tau} = G_{\tau}+V_{E}$
- The mean fitnesses $(=f(G_{\tau}))$, hence the frequencies of each class

Results

 Analytical approximation : change in total genetic variance due to selfing

$$G_{(0)} \approx \sqrt{2nV_m\omega^2} > G_{(\infty)} = 2\sqrt{V_m\omega^2}$$

25 traits under selection, n = 10 loci, mutational variance $V_m = 0.001$, environmental variance $V_E = 1$, stabilizing selection $\omega^2 = 20$, selfing rate s = 0.78

Genetic variance across selfing rates

- Sharp purging of genetic variance measured after selection
 - Associated with a blowup of genetic variance before selection

Mechanisms for purging the genetic variance

Stabilizing selection on multiple characters facilitates purging

n = 10 loci, mutational variance $V_m = 0.001$, environmental variance $V_E = 1$, selection $\omega^2 = 20$

Inbreeding depression caused by selection on multiple characters

n = 10 loci, mutational variance $V_m = 0.001$, environmental variance $V_E = 1$, selection $\omega^2 = 20$

High selfing rates as "evolutionary traps"?

- With stabilizing selection on multiple characters
 - Purging and outbreeding depression favor evolution to higher selfing rates
 - Highly selfing lineages accumulate negative linkage disequilibrium
 - Their outcrossed offspring have large genetic variance and are strongly counterselected

Perspectives

Combination of the two models of inbreeding depression

- Highly deleterious mutations with unconditional effects
- Stabilizing selection on multiple characters
- ⇒ Evolution of selfing rates?

□ Finite populations?

Experimental test of outbreeding depression in highly selfing species?