An introduction to evolutionary epidemiology of infectious diseases Part 2

Sylvain GANDON

Centre d'Ecologie Fonctionnelle et Evolutive UMR 5175 1919 Route de Mende F34293 Montpellier cedex 5 Email : sylvain.gandon@cefe.cnrs.fr

Epidemiology and evolution

Can the mutant parasite population invade?

Dynamics of the mutant

$$\frac{dS}{dt} = \lambda - \delta S - \beta I S + \gamma I$$
$$\frac{dI}{dt} = \beta I S - (\delta + \alpha + \gamma) I$$

Dynamics of the mutant

$$\frac{dS}{dt} = \lambda - \delta S - \beta I S - \beta_m I_m S + \gamma I + \gamma_m I_m$$
$$\frac{dI}{dt} = \beta I S - (\delta + \alpha + \gamma) I$$
$$\frac{dI_m}{dt} = \beta_m I_m S - (\delta + \alpha_m + \gamma_m) I_m$$

Dynamics of the mutant

$$\frac{dS}{dt} = 0$$

$$\frac{dI}{dt} = 0$$

$$\frac{dI_m}{dt} = \beta_m I_m S_e - (\delta + \alpha_m + \gamma_m) I_m$$

Fitness of the mutant

$$R_{m} = \frac{\beta_{m}}{\delta + \alpha_{m} + \gamma_{m}} S_{e}$$
$$r_{m} = \left(\beta_{m} S_{e} - \left(\delta + \alpha_{m} + \gamma_{m}\right)\right)$$

Fitness of the resident ?:

$$R = \frac{\beta}{\delta + \alpha + \gamma} S_e = 1$$
$$r = (\beta S_e - (\delta + \alpha + \gamma)) = 0$$

The mutant invades if: $R_m > R = 1$ $r_m > r = 0$

Evolution maximises per-host transmission factor:

$$\frac{\beta_m}{\delta + \alpha_m + \gamma_m}$$

Maximisation of β_m

Minimisation of α_m

Minimisation of γ_m

Trade-offs

Between virulence and transmission :

- Within-host density affects transmission
- Within-host density affects virulence

Microsporidia

Ebert & Herre 1996

Trade-offs

Between virulence and transmission :

- Within-host density affects transmission
- Within-host density affects virulence

HIV

```
Fraser et al. 2007
```

With trade-offs

• Per-host transmission factor:

With trade-offs

Geometrical derivation of ESS:

$$\frac{dR_m}{d\alpha_m}\bigg|_{\alpha=ESS} = 0$$

Trade-off: Virulence versus Transmission

$$\frac{d\beta_m}{d\alpha_m} = \frac{\beta_m}{\delta + \gamma + \alpha_m}$$

With trade-offs $\frac{d\beta}{d\alpha} = \frac{\beta}{\delta + \gamma + \alpha}$

• Transmission *versus* virulence:

With trade-offs $\frac{d\beta}{d\alpha} = \frac{\beta}{\delta + \gamma + \alpha}$

• Transmission *versus* virulence:

Ebert & Mangin, 1997

High mortality

Ebert & Mangin, 1997

Ebert & Mangin, 1997

High mortality

Within-host competition multiple infection

Within-host competition superinfection

Virulence management

Imperfect vaccination and virulence evolution:

Virulence management

Imperfect vaccination and virulence evolution:

1. Semi-immunity

Host resistance may occur at different stages of the parasite life cycle

Malaria vaccines

Plasmodium falciparum life cycle

2. Modèle épidémiologique

$$\frac{dS}{dt} = (1 - \mathbf{p})\lambda - (\delta + h)S$$

$$\frac{dI}{dt} = hS - (\delta + \alpha)I$$

$$\frac{dS'}{dt} = \mathbf{p}\lambda - (\delta + h')S'$$

$$\frac{dI'}{dt} = h'S' - (\delta + \alpha')I'$$

Vaccinated hosts

$$h \equiv \beta I + \beta' I' \qquad \beta \equiv \beta [\alpha] \qquad \longleftarrow \text{ Trade off}$$
$$h' \equiv (1 - r_1)h \qquad \alpha' \equiv (1 - r_2)\alpha \qquad \beta' \equiv (1 - r_3)\beta [\alpha']$$

Vaccination et éradication

3. Evolutionary consequences

Antigenic evolution

• Life history evolution:

ESS virulence in a heterogeneous host populatiuon

Results

Different imperfect vaccines with p=0.5

Virulence evolution and parasite eradication

Vaccine driven evolution Marek's disease

Conclusion

Parasite evolution can erode the benefits of vaccination

- Increase of virulence (on naïve hosts)
- Eradication may become impossible

...but some vaccine properties (i.e., r_1) may limit these negative consequences.

A guidebook for adaptive dynamics

- 1- Draw pathogen life cycle as a set of compartments
- 2- Write down epidemiological dynamics as a system of ODEs
- **3-** What is the endemic equilibrium: S_e ?
- 4- What is the dynamics of a rare mutant pathogen?

5- Is it possible to reduce dynamics in one dimension with a separation of time scale?

- 6- Matrix formulation?
 - derivation of instantaneous growth rate r_m
 - derivation of per-generation growth rate R_m

The mutant invades when:

Lion & Gandon 2015

$$R_m - R + (1 - g_P) \frac{(q_{S|I_m} - q_{S|I})}{R_m R} > 0$$

Lion & Boots 2010

Conclusion

- Small mutation rates allow to decouple epidemiological and evolutionary dynamics.
- Adaptative dynamics allows to identify ESS and long term evolutionary outcomes.
- This is very helpful to identify the effects of various environmental factors (host demography, vaccination, spatial structure...) on pathogen evolution.
- But difficult to generate short-term predictions...