Stochastic Persistence

Michel Benaim Neuchâtel University

Aussois, May 29-30, 2017

Michel Benaim Neuchâtel University Stochastic Persistence

Introduction

• An important issue in ecology is to find out

under which conditions a group of interacting species plants, animals, viral particles - can coexist.

Introduction

• An important issue in ecology is to find out

under which conditions a group of interacting species - plants, animals, viral particles - can coexist.

• Classical approach to these questions has been the development of **Deterministic Models of Interaction**

Introduction

• An important issue in ecology is to find out

under which conditions a group of interacting species - plants, animals, viral particles - can coexist.

• Classical approach to these questions has been the development of **Deterministic Models of Interaction** ODEs,

Introduction

• An important issue in ecology is to find out

under which conditions a group of interacting species plants, animals, viral particles - can coexist.

• Classical approach to these questions has been the development of **Deterministic Models of Interaction** ODEs, PDEs,

Introduction

• An important issue in ecology is to find out

under which conditions a group of interacting species - plants, animals, viral particles - can coexist.

• Classical approach to these questions has been the development of **Deterministic Models of Interaction** ODEs, PDEs, Difference equations, etc.

Introduction

• An important issue in ecology is to find out

under which conditions a group of interacting species plants, animals, viral particles - can coexist.

• Classical approach to these questions has been the development of **Deterministic Models of Interaction** ODEs, PDEs, Difference equations, etc.

 \Rightarrow Mathematical theory of **Deterministic** Persistence

Introduction

• An important issue in ecology is to find out

under which conditions a group of interacting species plants, animals, viral particles - can coexist.

• Classical approach to these questions has been the development of **Deterministic Models of Interaction** ODEs, PDEs, Difference equations, etc.

⇒ Mathematical theory of **Deterministic** Persistence

• The theory began in the late 1970s and developed rapidly with the help of the available tools from dynamical system theory (see e.g the book by Smith and Thieme (2011)).

Introduction

• To take into account **environmental fluctuations** one need to consider **Stochastic Models of Interaction**

Introduction

• To take into account **environmental fluctuations** one need to consider **Stochastic Models of Interaction**

⇒ Mathematical theory of **stochastic** Persistence

The theory began to emerge with the work of Chesson, Ellner, and others in the $80\,\mathrm{s}$

Introduction

• To take into account **environmental fluctuations** one need to consider **Stochastic Models of Interaction**

⇒ Mathematical theory of **stochastic** Persistence

The theory began to emerge with the work of Chesson, Ellner, and others in the 80s but, from a "math perspective", is still in its infancy

Introduction

• To take into account **environmental fluctuations** one need to consider **Stochastic Models of Interaction**

⇒ Mathematical theory of **stochastic** Persistence

The theory began to emerge with the work of Chesson, Ellner, and others in the 80s but, from a "math perspective", is still in its infancy

• Purpose of this mini-course : present some recent results on the subject :(B, 2014), (B & Lobry, 2016), (B & Strickler, 2017) (Hening & Nguyen, 2017)

Introduction

• To take into account **environmental fluctuations** one need to consider **Stochastic Models of Interaction**

⇒ Mathematical theory of **stochastic** Persistence

The theory began to emerge with the work of Chesson, Ellner, and others in the 80s but, from a "math perspective", is still in its infancy

Purpose of this mini-course : present some recent results on the subject :(B, 2014), (B & Lobry, 2016), (B & Strickler, 2017) (Hening & Nguyen, 2017)
 → based on previous works in collaboration with Hofbauer (Wien), Sandholm (Madison), Schreiber (UC Davis)

Outline

2 Maths

Michel Benaim Neuchâtel University Stochastic Persistence

э

_ogistic Rosenzweig Mac-Arthur _otka-Volterra

æ

< D > < P > < P > < P >

I : Some motivating examples

Michel Benaim Neuchâtel University Stochastic Persistence

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

A B > A B > A

I : Some motivating examples

• A simple historical model : The Verhulst (or logistic) dynamics

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

.

< <p>Image: A matrix

Verhulst Model (1840)

Malthus T.R. 1798. An Essay on the Principle of Population.

"Yet in all societies, even those that are most vicious, the tendency to a virtuous attachment is so strong that there is a constant effort towards an increase of population

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

Verhulst Model (1840)

Malthus T.R. 1798. An Essay on the Principle of Population.

"Yet in all societies, even those that are most vicious, the tendency to a virtuous attachment is so strong that there is a constant effort towards an increase of population.

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

Verhulst Model (1840)

Verhulst. P.-F. 1838. Notice sur la loi que la population suit dans son accroissement

On sait que le célèbre Malthus a établi comme principe que la population humaine tend à croître en progression géométrique, (...) Cette proposition est incontestable, si l'on fait abstraction de la difficulté toujours croissante de se procurer des subsistances lorsque la population a acquis un certain degré d'agglomération. (...)

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

Verhulst Model (1840)

Verhulst. P.-F. 1838. Notice sur la loi que la population suit dans son accroissement

On sait que le célèbre Malthus a établi comme principe que la population humaine tend à croître en progression géométrique, (...) Cette proposition est incontestable, si l'on fait abstraction de la difficulté toujours croissante de se procurer des subsistances lorsque la population a acquis un certain degré d'agglomération. (...)

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

Verhulst (or logistic) dynamics

$$\frac{dx}{dt} = x(a - bx)$$

- $x \ge 0$, abundance of the population,
- a = intrinsic growth rate,

 $b \ge 0$

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

э

Verhulst dynamics

$$\frac{dx}{dt} = x(a - bx)$$

 $ullet a < 0 \Rightarrow x(t)
ightarrow 0$: Extinction

•
$$a > 0 \Rightarrow x(t) \rightarrow \gamma := \frac{a}{b}$$
 Persistence

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

(日) (同) (三) (

Verhulst dynamics

$$\frac{dx}{dt} = x(a - bx)$$

 $\bullet a < 0 \Rightarrow x(t) \rightarrow 0$: Extinction

•
$$a > 0 \Rightarrow x(t) \rightarrow \gamma := \frac{a}{b}$$
 Persistence

Ok but what does it mean if there is (stochastic) variability ?

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

Stochastic Variability

Variability of ecological processes may have different natures:

• Demographic Stochasticity

• Environmental Stochasticity

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

Stochastic Variability

Variability of ecological processes may have different natures:

• Demographic Stochasticity

Even if all individuals in a population are identical, the birth/death of each individual is a random event

• Environmental Stochasticity

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

Stochastic Variability

Variability of ecological processes may have different natures:

• Demographic Stochasticity

Even if all individuals in a population are identical, the birth/death of each individual is a random event

• Environmental Stochasticity

Light, precipitation, temperature, nutrient availability,

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

Stochastic Variability

Variability of ecological processes may have different natures:

• Demographic Stochasticity

Even if all individuals in a population are identical, the birth/death of each individual is a random event

 \rightarrow Fascinating questions (mean-field approximations, branching, time to extinction, quasi-invariant measures,) but not the subject of this course

• Environmental Stochasticity

Light, precipitation, temperature, nutrient availability,

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

Stochastic Variability

Variability of ecological processes may have different natures:

• Demographic Stochasticity

Even if all individuals in a population are identical, the birth/death of each individual is a random event

 \rightarrow Fascinating questions (mean-field approximations, branching, time to extinction, quasi-invariant measures,) but not the subject of this course see the works of N. Champagnat, S. Méléard, D. Villemonais, ...

• Environmental Stochasticity

Light, precipitation, temperature, nutrient availability, Subject of the course

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

æ

э

Environmental variability

$$\frac{dx}{dt} = x(a - bx)$$

Michel Benaim Neuchâtel University Stochastic Persistence

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

A B > A B > A

Environmental variability

• Assume Gaussian fluctuations of the intrinsic growth rate

$$\frac{dx}{dt} = x(a - bx)$$

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

< ロ > < 同 > < 回 > <

Environmental variability

• Assume Gaussian fluctuations of the intrinsic growth rate

$$dx = x(a - bx)dt + x\sigma dB_t$$

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

< ロ > < 同 > < 回 > <

Environmental variability

• Assume Gaussian fluctuations of the intrinsic growth rate

$$dx = x(a - bx)dt + x\sigma dB_t (\text{not } \sqrt{x\sigma} dB_t)$$

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

< ロ > < 同 > < 回 > <

Environmental variability

• Assume Gaussian fluctuations of the intrinsic growth rate

$$dx = x(a - bx)dt + x\sigma dB_t$$

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

 \bullet Elementary one dimensional SDEs theory \leadsto

1

$$a-rac{\sigma^2}{2} < 0 \Rightarrow x(t)
ightarrow 0$$

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

 \bullet Elementary one dimensional SDEs theory \leadsto

1

2

$$a-rac{\sigma^2}{2} < 0 \Rightarrow x(t)
ightarrow 0$$

$$a-rac{\sigma^2}{2}>0 \Rightarrow ext{ Law }(x(t))
ightarrow \Gamma(1-\sigma^2/2a,\sigma^2/2b)$$

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

 \bullet Elementary one dimensional SDEs theory \rightsquigarrow

1

2

$$a-rac{\sigma^2}{2} < 0 \Rightarrow x(t)
ightarrow 0$$

$$a-rac{\sigma^2}{2}>0 \Rightarrow ext{ Law }(x(t))
ightarrow \Gamma(\sigma^2/2a-1,\sigma^2/2b)$$

Looks like a sensible definition of Stochastic Extinction/Persistence
Logistic Rosenzweig Mac-Arthur Lotka-Volterra

Image: A matrix

3 N

 \bullet Elementary one dimensional SDEs theory \rightsquigarrow

1

2

$$a-rac{\sigma^2}{2} < 0 \Rightarrow x(t)
ightarrow 0$$

$$a-rac{\sigma^2}{2}>0 \Rightarrow ext{ Law }(x(t))
ightarrow \Gamma(\sigma^2/2a-1,\sigma^2/2b)$$

Looks like a sensible definition of Stochastic Extinction/Persistence

 $\mathbf{Ok},\,\mathsf{BUT}$ what if the model is more complicated or the noise non gaussian ?

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

I : Some motivating examples

Q A simple historical model : The Verhulst (or logistic) dynamics

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

I : Some motivating examples

- **1** A simple historical model : The Verhulst (or logistic) dynamics
- Prey-Predator model (Rosenzweig Mac-Arthur)

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

・ロト ・ 一下・ ・ 日 ト

注▶ 注

Prey-Predator

$$\frac{dx}{dt} = x(1 - \frac{x}{\gamma})$$
$$\frac{dy}{dt} = -\alpha y$$

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

(日) (同) (三) (

Prey-Predator

x = preys (or resources) abundancey = predators abundance

$$\frac{dx}{dt} = x(1-\frac{x}{\gamma}) - xyh(x,y)$$

$$\frac{dy}{dt} = -\alpha y + xyh(x, y)$$

xh(x, y) = Per predator kill rate = predator reproduction rate

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

・ロト ・ 同ト ・ ヨト ・

Prey-Predator

x = preys (or resources) abundancey = predators abundance

$$\frac{dx}{dt} = x(1-\frac{x}{\gamma}) - xyh(x,y)$$

$$\frac{dy}{dt} = -\alpha y + xyh(x, y)$$

xh(x,y) = Per predator kill rate = predator reproduction rate

- h(x, y) = c Lotka-Volterra
- h(x,y) = 1/(1+x) Rosenzweig Mac-Arthur
- h(x,y) = h(y/x) Arditi Ginzburg, ...

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

Rosenzweig Mac-Arthur (1963)

$$\frac{dx}{dt} = x\left(1 - \frac{x}{\gamma} - \frac{y}{1 + x}\right)$$
$$\frac{dy}{dt} = y\left(-\alpha + \frac{x}{1 + x}\right)$$

"http://experiences.math.cnrs.fr/simulations/matheco-RosenzweigMcArthur"

"http://www.espace-turing.fr/Sur-les-modeles-proie-predateuren.html?artpage=5-6"

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

(日) (同) (三) (

Rosenzweig Mac-Arthur (1963)

•
$$\alpha > \frac{\gamma}{1+\gamma} \Rightarrow$$
 Extinction

• $\alpha < \frac{\gamma}{1+\gamma} \Rightarrow$ Persistence

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

イロト イポト イヨト イヨト

Rosenzweig Mac-Arthur (1963)

- $\alpha > \frac{\gamma}{1+\gamma} \Rightarrow$ Extinction
- $\alpha < \frac{\gamma}{1+\gamma} \Rightarrow$ Persistence

Ok, but what if α or/and γ fluctuate (randomly)?

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

-

Rosenzweig Mac-Arthur in fluctuating environment

$$\frac{dx}{dt} = x\left(1 - \frac{x}{\gamma} - \frac{y}{1 + x}\right)$$
$$\frac{dy}{dt} = y\left(-\alpha + \frac{x}{1 + x}\right)$$

Michel Benaim Neuchâtel University Stochastic Persistence

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

(日) (同) (三) (

3.5

Rosenzweig Mac-Arthur in fluctuating environment

One day is fine, the next is Black

$$\frac{dx}{dt} = x(1 - \frac{x}{\gamma} - \frac{y}{1 + x})$$
$$\frac{dy}{dt} = y(-\alpha_t + \frac{x}{1 + x})$$

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

イロト イポト イヨト イヨト

Rosenzweig Mac-Arthur in fluctuating environment

One day is fine, the next is Black

$$\frac{dx}{dt} = x\left(1 - \frac{x}{\gamma} - \frac{y}{1 + x}\right)$$
$$\frac{dy}{dt} = y\left(-\frac{\alpha_t}{1 + x} + \frac{x}{1 + x}\right)$$

 α_t Markov process $\in \{\alpha_1, \ldots, \alpha_m\}$

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

э

э

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

< / □ > <

I : Some motivating examples

1 A simple historical model : The Verhulst (or logistic) dynamics

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

I : Some motivating examples

- A simple historical model : The Verhulst (or logistic) dynamics
- Prey-Predator model (Rosenzweig Mac-Arthur)

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

I : Some motivating examples

- A simple historical model : The Verhulst (or logistic) dynamics
- Prey-Predator model (Rosenzweig Mac-Arthur)
- Olterra

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

(日) (同) (三) (三)

Lotka-Volterra (based on B & Lobry 2016)

• 2 species x and y characterized by their abundances $x, y \ge 0$.

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

(日) (同) (三) (

3.5

Lotka-Volterra (based on B & Lobry 2016)

- 2 species **x** and **y** characterized by their **abundances** $x, y \ge 0$.
- Lotka Volterra ODE

$$(\dot{x},\dot{y})=F_{\mathcal{E}}(x,y)$$

$$F_{\mathcal{E}}(x,y) = \begin{cases} \alpha x (1 - ax - by) \\ \beta y (1 - cx - dy) \end{cases}$$

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

(日) (同) (三) (

Lotka-Volterra (based on B & Lobry 2016)

- 2 species **x** and **y** characterized by their **abundances** $x, y \ge 0$.
- Lotka Volterra ODE

.

$$(\dot{x}, \dot{y}) = F_{\mathcal{E}}(x, y)$$

$$F_{\mathcal{E}}(x,y) = \begin{cases} \alpha x (1 - ax - by) \\ \beta y (1 - cx - dy) \end{cases}$$

• $\mathcal{E} = (\alpha, a, b, \beta, c, d)$ is the *environment*.

$$\alpha, \mathbf{a}, \mathbf{b}, \beta, \mathbf{c}, \mathbf{d} > \mathbf{0}$$

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

< 口 > < 同

• Environment & is said *favorable to species* x if

a < c and b < d.

• $Env_x = set of environments favorable to x.$

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

• Environment & is said *favorable to species* x if

a < c and b < d.

• $Env_x = set of environments favorable to x.$

Theorem ("competitive exclusion")

If $\mathcal{E} \in \operatorname{Env}_{\mathbf{x}}$ every solution to $(\dot{x}, \dot{y}) = F_{\mathcal{E}}(x, y)$ with initial condition $(x, y) \in \mathbb{R}^*_+ \times \mathbb{R}_+$ converges to $(\frac{1}{a}, 0)$ as $t \to \infty$.

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

• Environment & is said *favorable to species* x if

a < c and b < d.

• $Env_x = set of environments favorable to x.$

Theorem ("competitive exclusion")

If $\mathcal{E} \in \operatorname{Env}_{\mathbf{x}}$ every solution to $(\dot{x}, \dot{y}) = F_{\mathcal{E}}(x, y)$ with initial condition $(x, y) \in \mathbb{R}^*_+ \times \mathbb{R}_+$ converges to $(\frac{1}{a}, 0)$ as $t \to \infty$.

i.e $\mathcal{E} \in Env_{\mathbf{x}} \Rightarrow Extinction$ of y and Persistence of x.

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

• Environment & is said *favorable to species* x if

a < c and b < d.

• $Env_x = set of environments favorable to x.$

Theorem ("competitive exclusion")

If $\mathcal{E} \in \operatorname{Env}_{\mathbf{x}}$ every solution to $(\dot{x}, \dot{y}) = F_{\mathcal{E}}(x, y)$ with initial condition $(x, y) \in \mathbb{R}^*_+ \times \mathbb{R}_+$ converges to $(\frac{1}{a}, 0)$ as $t \to \infty$.

i.e $\mathcal{E} \in Env_{\mathbf{x}} \Rightarrow Extinction$ of y and Persistence of x.

Proof is classical (see e.g J. Hofbauer and K. Sigmund's book (1998))

Introduction Examples Maths Back to examples Lotka-Volterra

Figure: Phase portrait of $F_{\mathcal{E}}$ with $\mathcal{E} \in Env_x$.

< □ > < 同 >

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

< 口 > < 同

Lotka Volterra in fluctuating environment

Ok but what if the environment fluctuates ?

Michel Benaim Neuchâtel University Stochastic Persistence

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

Lotka Volterra in fluctuating environment

Ok but what if the environment fluctuates ?

i.e

$$(\dot{X}, \dot{Y}) = F_{\mathcal{E}_{u(t)}}(X, Y)$$

where $\{\mathcal{E}_{u(t)}\}$ is a time-dependent environment

- Old works by Koch (74), Cushing (80, 86) de Mottoni and Schiaffino (81) + recent work by T. Sari, show that
- when $t \mapsto \mathcal{E}_{u(t)}$ is periodic around $\mathcal{E} \in \text{Env}_x$ the system may have periodic persistent orbits x(t) > 0, y(t) > 0.

• Old works by Koch (74), Cushing (80, 86) de Mottoni and Schiaffino (81) + recent work by T. Sari, show that

when $t \mapsto \mathcal{E}_{u(t)}$ is periodic around $\mathcal{E} \in \text{Env}_x$ the system may have periodic persistent orbits x(t) > 0, y(t) > 0.

• This provides "some math interpretation" of a well known fact in ecology :

• Old works by Koch (74), Cushing (80, 86) de Mottoni and Schiaffino (81) + recent work by T. Sari, show that

when $t \mapsto \mathcal{E}_{u(t)}$ is periodic around $\mathcal{E} \in \text{Env}_x$ the system may have periodic persistent orbits x(t) > 0, y(t) > 0.

• This provides "some math interpretation" of a well known fact in ecology :

temporal fluctuations of the environment can reverse the trend of competitive exclusion

Hutchinson's paradox (61), Work of Chesson and co-authors in the 80s, \ldots

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

< D > < P > < P > < P >

э

Random switching

Our Goal here will be to investigate the behavior of

$$(\dot{X}, \dot{Y}) = F_{\mathcal{E}_{u(t)}}(X, Y)$$

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

< 口 > < 同

Random switching

Our Goal here will be to investigate the behavior of

$$(\dot{X}, \dot{Y}) = F_{\mathcal{E}_{u(t)}}(X, Y)$$

 $\bullet \mathcal{E}_0, \mathcal{E}_1$ are two favorable environments

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

Random switching

Our Goal here will be to investigate the behavior of

$$(\dot{X}, \dot{Y}) = F_{\mathcal{E}_{u(t)}}(X, Y)$$

• $\mathcal{E}_0, \mathcal{E}_1$ are two favorable environments • $u(t) \in \{0, 1\}$ is a jump process

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

Random switching

Our Goal here will be to investigate the behavior of

$$(\dot{X}, \dot{Y}) = F_{\mathcal{E}_{u(t)}}(X, Y)$$

• ${\mathcal E}_0, {\mathcal E}_1$ are two favorable environments • $u(t) \in \{0,1\}$ is a jump process

$$\begin{split} \mathsf{P}(u(t+s) &= 1 | u(t) = 0, (u(r), r \leq t)) = \lambda_0 s + o(s), \\ \mathsf{P}(u(t+s) &= 0 | u(t) = 1, ((u(r), r \leq t)) = \lambda_1 s + o(s), \end{split}$$

Introduction Examples Maths Back to examples Lotka-Volterra

Figure: Phase portraits of $F_{\mathcal{E}_0}$ and $F_{\mathcal{E}_1}$

Image: Image:

Introduction Examples Maths Back to examples Lotka-Volterra

Figure: Phase portraits of $F_{\mathcal{E}_0}$ and $F_{\mathcal{E}_1}$

Different values of λ_0, λ_1 can lead to various behaviors...

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

Simulations

Figure: extinction of 2

Michel Benaim Neuchâtel University Stochastic Persistence
Introduction Examples Maths Back to examples Lotka-Volterra

Figure: Persistence

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

Figure: Persistence

Michel Benaim Neuchâtel University Stochastic Persistence

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

< • • • **•**

Figure: Extinction of 1 or 2

Logistic Rosenzweig Mac-Arthur Lotka-Volterra

æ

II : Some Math

Michel Benaim Neuchâtel University Stochastic Persistence

Framework Canonical models Stochastic Persistence H-persistence

<ロト < 同ト < 三ト

Abstract Framework

• (X_t) a "good" (Feller, cad-lag, good behavior at ∞ , etc.) Markov process on some "good" (Polish, locally compact) space

 $M = M_+ \cup M_0$

Framework Canonical models Stochastic Persistence H-persistence

Abstract Framework

• (X_t) a "good" (Feller, cad-lag, good behavior at ∞ , etc.) Markov process on some "good" (Polish, locally compact) space

 $M = M_+ \cup M_0$

• M_0 is a closed set = extinction set

Framework Canonical models Stochastic Persistence H-persistence

Abstract Framework

• (X_t) a "good" (Feller, cad-lag, good behavior at ∞ , etc.) Markov process on some "good" (Polish, locally compact) space

 $M = M_+ \cup M_0$

- M_0 is a closed set = extinction set
- $M_+ = M \setminus M_0$ = coexistence set

Framework Canonical models Stochastic Persistence H-persistence

Abstract Framework

• (X_t) a "good" (*Feller, cad-lag, good behavior at* ∞ , *etc.*) Markov process on some "good" (*Polish, locally compact*) space

 $M = M_+ \cup M_0$

- M_0 is a closed set = extinction set
- $M_+ = M \setminus M_0$ = coexistence set
- Both M_0 and $M_+ = M \setminus M_0$ are invariant:

$$x \in M_0 \Rightarrow X_t^x \in M_0,$$
$$x \in M_1 \Rightarrow X_t^x \in M_1$$

Framework Canonical models Stochastic Persistence H-persistence

æ

Two (canonical) Models

Michel Benaim Neuchâtel University Stochastic Persistence

Framework Canonical models Stochastic Persistence H-persistence

æ

Model I. Ecological SDEs

$$dx_i = x_i [F_i(x)dt + \sum_{j=1}^m \sigma_i^j(x)dB_t^j], \ i = 1 \dots n$$

Michel Benaim Neuchâtel University Stochastic Persistence

Framework Canonical models Stochastic Persistence H-persistence

æ

Model I. Ecological SDEs

$$dx_i = x_i [F_i(x)dt + \sum_{j=1}^m \sigma_i^j(x)dB_t^j], \ i = 1 \dots n$$

•
$$x_i \ge 0$$
 = abundance of species *i*.

Framework Canonical models Stochastic Persistence H-persistence

æ

Model I. Ecological SDEs

$$dx_i = x_i [F_i(x)dt + \sum_{j=1}^m \sigma_i^j(x)dB_t^j], \ i = 1 \dots n$$

•
$$x_i \ge 0$$
 = abundance of species *i*.

•
$$I \subset \{1, \ldots, n\}$$
 a given subset of species,
e.g. $I = \{1\}, I = \{1, \ldots, n\}$

Framework Canonical models Stochastic Persistence H-persistence

Model I. Ecological SDEs

$$dx_i = x_i [F_i(x)dt + \sum_{j=1}^m \sigma_i^j(x)dB_t^j], \ i = 1 \dots n$$

- $x_i \ge 0$ = abundance of species *i*.
- $I \subset \{1, \dots, n\}$ a given subset of species, e.g. $I = \{1\}, I = \{1, \dots, n\}$
- State space $M = \mathbb{R}^n_+$
- Extinction set $M_0 = \{x \in M : \prod_{i \in I} x_i = 0\}$

Framework Canonical models Stochastic Persistence H-persistence

Model I. Ecological SDEs

$$dx_i = x_i [F_i(x)dt + \sum_{j=1}^m \sigma_i^j(x)dB_t^j], \ i = 1 \dots n$$

- $x_i \ge 0$ = abundance of species *i*.
- $I \subset \{1, \dots, n\}$ a given subset of species, e.g. $I = \{1\}, I = \{1, \dots, n\}$
- State space $M = \mathbb{R}^n_+$
- Extinction set $M_0 = \{x \in M : \prod_{i \in I} x_i = 0\}$

The dynamics on M_0 is an ecological SDE

Framework Canonical models Stochastic Persistence H-persistence

イロト イポト イヨト イヨト

Model II. Ecological random ODEs

$$rac{dx_i}{dt} = x_i(t)F_i(x(t), u(t)), \ i = 1 \dots n$$

 $u(t) \in \{1, \dots, m\}$ is a Markov process controlled by x

Michel Benaim Neuchâtel University Stochastic Persistence

Framework Canonical models Stochastic Persistence H-persistence

イロト イポト イヨト イヨト

э

Model II. Ecological random ODEs

.

$$\frac{dx_i}{dt} = x_i(t)F_i(x(t), u(t)), \ i = 1 \dots n$$
$$u(t) \in \{1, \dots, m\} \text{ is a Markov process controlled by } x$$
$$\mathsf{P}(u(t+s) = v|u(s), \ s \leq t, u(t) = u) = \lambda, \ (x(t))s \neq 0$$

 $\mathbf{P}(u(t+s) = v | u(s), s \le t, u(t) = u) = \lambda_{uv}(x(t))s + o(s)$ for all $u \ne v$

Framework Canonical models Stochastic Persistence H-persistence

(日) (同) (三) (

Model II. Ecological random ODEs

$$rac{dx_i}{dt} = x_i(t)F_i(x(t), u(t)), \ i = 1 \dots n$$

 $u(t) \in \{1, \dots, m\}$ is a Markov process controlled by x
 $\mathsf{P}(u(t+s) = v|u(s), \ s \le t, u(t) = u) = \lambda_{uv}(x(t))s + o(s)$

for all $u \neq v$

- State space $M = \mathbb{R}^n_+ \times \{1, \dots m\}$
- Extinction set $M_0 = \{(x, u) \in M : \prod_{i \in I} x_i = 0\}$

Framework Canonical models Stochastic Persistence H-persistence

A D b 4 A

Model II. Ecological random ODEs

$$rac{dx_i}{dt} = x_i(t) F_i(x(t),u(t)), \ i=1\dots n$$

 $u(t) \in \{1,\dots,m\}$ is a Markov process controlled by x

$$\mathsf{P}(u(t+s)=v|u(s), s \leq t, u(t)=u) = \lambda_{uv}(x(t))s + o(s)$$

for all $u \neq v$

- State space $M = \mathbb{R}^n_+ \times \{1, \dots m\}$
- Extinction set $M_0 = \{(x, u) \in M : \prod_{i \in I} x_i = 0\}$

The dynamics on M_0 is an ecological random ODE

Framework Canonical models Stochastic Persistence H-persistence

(日) (同) (三) (1)

Stochastic Persistence

• $\Pi_t(.) = \frac{1}{t} \int_0^t \delta_{X_s} ds$ = empirical occupation measure

 $\Pi_t(A) =$ proportion of time spent in A up to t

Framework Canonical models Stochastic Persistence H-persistence

< ロ > < 同 > < 三 >

Stochastic Persistence

•
$$\Pi_t(.) = \frac{1}{t} \int_0^t \delta_{X_s} ds$$
 = empirical occupation measure

 $\Pi_t(A) =$ proportion of time spent in A up to t

Definition

We call the process stochastically persistent if for all $\epsilon > 0$ there exists a compact $K \subset M_+$ such that

 $\liminf_{t\to\infty}\Pi_t(K)\geq 1-\epsilon$

whenever $x = x(0) \in M_+$

Framework Canonical models Stochastic Persistence H-persistence

Stochastic Persistence

Definition

We call the process *persistent in probability* if for all $\epsilon > 0$ there exists a compact $K \subset M_+$ such that

$$\liminf_{t\to\infty} \mathsf{P}_{\mathsf{X}}(\mathsf{X}_t\in\mathsf{K})\geq 1-\epsilon$$

whenever $x = x(0) \in M_+$

Framework Canonical models Stochastic Persistence H-persistence

Stochastic Persistence

Definition

We call the process *persistent in probability* if for all $\epsilon > 0$ there exists a compact $K \subset M_+$ such that

$$\liminf_{t\to\infty} \mathsf{P}_{\mathsf{X}}(\mathsf{X}_t\in\mathsf{K})\geq 1-\epsilon$$

whenever $x = x(0) \in M_+$

• This definition goes back to Chesson (1978) "stochastic boundedness criterion"

Framework Canonical models Stochastic Persistence H-persistence

How can we prove / disprove stochastic persistence ?

Framework Canonical models Stochastic Persistence H-persistence

How can we prove / disprove stochastic persistence ?

• For simplicity I will now assume that M is compact !

Framework Canonical models Stochastic Persistence H-persistence

How can we prove / disprove stochastic persistence ?

- For simplicity I will now assume that M is compact !
- \bullet If not, one need to assume that there is a "good" Lyapunov function which control the behavior at ∞

Framework Canonical models Stochastic Persistence H-persistence

H-persistence

- $\mathcal{P}_{inv}(M)$ = the set of invariant probabilities for (X_t)
- $\mathcal{P}_{erg}(M) =$ the subset of ergodic probabilities

Framework Canonical models Stochastic Persistence H-persistence

H-persistence

- $\mathcal{P}_{inv}(M)$ = the set of invariant probabilities for (X_t)
- $\mathcal{P}_{erg}(M) =$ the subset of ergodic probabilities
- $\bullet \mathcal{P}_{inv}(M_0), \mathcal{P}_{erg}(M_0)$ idem but on M_0

Framework Canonical models Stochastic Persistence H-persistence

H-persistence

- $\mathcal{P}_{inv}(M)$ = the set of invariant probabilities for (X_t)
- $\mathcal{P}_{erg}(M) =$ the subset of ergodic probabilities
- $\bullet \mathcal{P}_{inv}(M_0), \mathcal{P}_{erg}(M_0)$ idem but on M_0
- \mathcal{L} generator of (P_t) with domain $\mathcal{D} \subset \mathcal{C}(M)$
- $\mathcal{D}^2 = \{f \in \mathcal{D}, f^2 \in \mathcal{D}\}.$
- $\Gamma : \mathcal{D}^2 \mapsto \mathbb{R}_+, \ \Gamma(f) = \mathcal{L}(f^2) 2f\mathcal{L}(f)$

Introduction	Framework
Examples	Canonical models
Maths	Stochastic Persistence
Back to examples	H-persisten ce

Suppose there exist $V: M_+ \mapsto \mathbb{R}_+, H: M \mapsto \mathbb{R}$ with the following properties:

- $V(x) \to \infty \Leftrightarrow x \to M_0$
- For all compact set $K \subset M_+, \exists V_K \in \mathcal{D}^2$ such that (a) $V = V_K$ and $\mathcal{L}V_K = H$ on K(b) $\sup\{P_t(\Gamma(V_K))(x) : K \text{ compact}, t \ge 0\} < \infty$.

Introduction Framework Examples Canonical models Maths Stochastic Persistence Back to examples H-persistence

Suppose there exist $V: M_+ \mapsto \mathbb{R}_+, H: M \mapsto \mathbb{R}$ with the following properties:

• $V(x) \to \infty \Leftrightarrow x \to M_0$

• For all compact set $K \subset M_+, \exists V_K \in \mathcal{D}^2$ such that (a) $V = V_K$ and $\mathcal{L}V_K = H$ on K(b) $\sup\{P_t(\Gamma(V_K))(x) : K \text{ compact}, t \ge 0\} < \infty$.

Definition (*H*- Exponents)

$$\Lambda^{-}(H) = -\sup\{\mu H: \ \mu \in \mathcal{P}_{erg}(M_0)\},\$$

$$\Lambda^{+}(H) = -\inf\{\mu H: \ \mu \in \mathcal{P}_{erg}(M_0)\}.$$

Suppose there exist $V: M_+ \mapsto \mathbb{R}_+, H: M \mapsto \mathbb{R}$ with the following properties:

•
$$V(x) \to \infty \Leftrightarrow x \to M_0$$

• For all compact set $K \subset M_+, \exists V_K \in \mathcal{D}^2$ such that (a) $V = V_K$ and $\mathcal{L}V_K = H$ on K(b) $\sup\{P_t(\Gamma(V_K))(x) : K \text{ compact}, t \ge 0\} < \infty$.

Definition (*H*- Exponents)

$$\Lambda^{-}(H) = -\sup\{\mu H : \mu \in \mathcal{P}_{erg}(M_0)\},\$$

$$\Lambda^{+}(H) = -\inf\{\mu H : \mu \in \mathcal{P}_{erg}(M_0)\}.$$

Definition (H - persistence)

The process is said H-persistent if there exist (V, H) as above such that

$$\Lambda^{-}(H) > 0$$

Framework Canonical models Stochastic Persistence H-persistence

< ロ > < 同 > < 回 > <

Examples

Example (Ecological SDE)

$$dx_i = x_i [F_i(x)dt + \sum_{j=1}^m \sigma_i^j(x)dB_t^j], \ i = 1 \dots n$$

Invasion rate of species i

$$\lambda_i(x) = F_i(x) - \frac{1}{2} \sum_k (\sigma_i^k(x))^2$$

Michel Benaim Neuchâtel University Stochastic Persistence

Introduction Framework Examples Canonical models Maths Stochastic Persistence Back to examples H-persistence

$$\bullet M_0 = \{ x \prod_{i \in I} x_i = 0 \}.$$

Proposition

The following are equivalent and imply H-persistence

(i) There exist weights p₁,..., p_n ≥ 0 such that for every μ ∈ P_{erg}(M₀) μ(∑_{i∈I} p_iλ_i) > 0.
(ii) For every μ ∈ P_{inv}(M₀) ∃i ∈ I such that μλ_i > 0.

A B > A B > A

Introduction Framework Examples Canonical models Maths Stochastic Persistence Back to examples H-persistence

$$\bullet M_0 = \{ x \prod_{i \in I} x_i = 0 \}.$$

Proposition

The following are equivalent and imply H-persistence

(i) There exist weights p₁,..., p_n ≥ 0 such that for every μ ∈ P_{erg}(M₀) μ(∑_{i∈I} p_iλ_i) > 0.
(ii) For every μ ∈ P_{inv}(M₀) ∃i ∈ I such that μλ_i > 0.

Image: Image:

Hence (ii) means that in environment μ at least one species can "invade"

Framework Canonical models Stochastic Persistence H-persistence

< ロ > < 同 > < 回 > <

Example (Random Ecological ODE)

$$\frac{dx_i}{dt} = x_i(t)F_i(x(t), u(t)), \ i = 1 \dots n$$

$$\mathsf{P}(u(t+s)=v|u(s), s \leq t, u(t)=u) = \lambda_{uv}(x(t))s + o(s)$$

Invasion rate of species i

$$\lambda_i(x,u) = F_i(x,u)$$
Introduction Fra Examples Car Maths Sto Back to examples H-p

Framework Canonical models Stochastic Persistence H-persistence

•
$$M_0 = \{(x, u) \prod_{i \in I} x_i = 0\}.$$

Proposition

The following are equivalent and imply H-persistence

(i) There exist weights $p_1, \ldots, p_n \ge 0$ such that for every $\mu \in \mathcal{P}_{erg}(M_0)$

$$\mu(\sum_{i\in I}p_i\lambda_i))>0.$$

< 口 > < 同

(ii) For every $\mu \in \mathcal{P}_{inv}(M_0) \exists i \in I \text{ such that } \mu\lambda_i > 0.$

Introduction Fra Examples Ca Maths Sto Back to examples H-

Framework Canonical models Stochastic Persistence H-persistence

•
$$M_0 = \{(x, u) \prod_{i \in I} x_i = 0\}.$$

Proposition

The following are equivalent and imply H-persistence

(i) There exist weights $p_1, \ldots, p_n \ge 0$ such that for every $\mu \in \mathcal{P}_{erg}(M_0)$

$$\mu(\sum_{i\in I}p_i\lambda_i))>0.$$

Image: Image:

(ii) For every $\mu \in \mathcal{P}_{inv}(M_0) \exists i \in I \text{ such that } \mu\lambda_i > 0$.

Hence (ii) means that in environment μ at least one species can "invade"

Framework Canonical models Stochastic Persistence H-persistence

< 口 > < 同

э

Persistence Theorem

Theorem

H-*Persistence* ⇒ *Stochastic Persistence*

Michel Benaim Neuchâtel University Stochastic Persistence

Framework Canonical models Stochastic Persistence H-persistence

Persistence Theorem

Theorem

H-*Persistence* \Rightarrow *Stochastic Persistence*

Generalizes previous results obtained in collaboration with Hofbauer & Sandholm 2008, Schreiber 2009, Atchade & Schreiber 2011

Framework Canonical models Stochastic Persistence H-persistence

Persistence Theorem

Corollary

If furthermore, the process is irreducible, there exists a unique invariant probability $\Pi(dx) = \pi(x)dx$ on M_+ such that for all $x \in M_+$

 $\Pi_t \to \Pi$

Framework Canonical models Stochastic Persistence H-persistence

Persistence Theorem

Corollary

If furthermore, the process is irreducible, there exists a unique invariant probability $\Pi(dx) = \pi(x)dx$ on M_+ such that for all $x \in M_+$

 $\Pi_t \to \Pi$

Theorem

If furthermore, the process is strongly irreducible then $\exists \lambda, \theta > 0$

$$\|\mathbf{P}(X_t \in .|X_0 = x) - \Pi(.)\| \leq Cste rac{e^{-\lambda t}}{1 + e^{ heta V(x)}}$$

for all $x \in M_+$.

Framework Canonical models Stochastic Persistence H-persistence

Persistence Theorem

Corollary

If furthermore, the process is irreducible, there exists a unique invariant probability $\Pi(dx) = \pi(x)dx$ on M_+ such that for all $x \in M_+$

 $\Pi_t \to \Pi$

Theorem

If furthermore, the process is strongly irreducible then $\exists \lambda, \theta > 0$

$$\|\mathbf{P}(X_t \in .|X_0 = x) - \Pi(.)\| \leq \mathit{Cste} rac{e^{-\lambda t}}{1 + e^{ heta V(x)}}$$

for all $x \in M_+$.

"Irreducible" and "strongly irreducible" need to be defined ! $_{\Xi}$,

Framework Canonical models Stochastic Persistence H-persistence

Persistence Theorem

• For the Ecological SDE model, a sufficient condition for strong irreducibility is given by the non degeneracy of the diffusion matrix

 $\sigma(x)\sigma(x)^*$

Framework Canonical models Stochastic Persistence H-persistence

Persistence Theorem

• For the Ecological SDE model, a sufficient condition for strong irreducibility is given by the non degeneracy of the diffusion matrix

 $\sigma(x)\sigma(x)^*$

Weaker conditions = (Hormander type conditions + controllability)

Framework Canonical models Stochastic Persistence H-persistence

Persistence Theorem

For the Ecological Random ODE model, a sufficient condition for irreducibility is given by :

• Accessibility There exists an accessible point $x_0 \in M_+$:

Framework Canonical models Stochastic Persistence H-persistence

Persistence Theorem

For the Ecological Random ODE model, a sufficient condition for irreducibility is given by :

• Accessibility There exists an accessible point $x_0 \in M_+$:

One can go from every $x \in M^+$ to every neighborhood of x_0 by integrating the fields $F(\cdot, u), u = 1, ..., m$

Framework Canonical models Stochastic Persistence H-persistence

Persistence Theorem

For the Ecological Random ODE model, a sufficient condition for irreducibility is given by :

• Accessibility There exists an accessible point $x_0 \in M_+$:

One can go from every $x \in M^+$ to every neighborhood of x_0 by integrating the fields $F(\cdot, u), u = 1, ..., m$

• Weak Bracket The Lie algebra generated by $\{F(\cdot, u), u = 1, ..., m\}$ has full rank at x_0

Framework Canonical models Stochastic Persistence H-persistence

A B > A B > A

Persistence Theorem

For the Ecological Random ODE model, a sufficient condition for irreducibility is given by :

4 Accessibility There exists an accessible point $x_0 \in M_+$:

One can go from every $x \in M^+$ to every neighborhood of x_0 by integrating the fields $F(\cdot, u), u = 1, ..., m$

• Weak Bracket The Lie algebra generated by $\{F(\cdot, u), u = 1, ..., m\}$ has full rank at x_0

Follows from recent results by (Bakthin, Hurth, 2012); (Benaim, Leborgne, Malrieu, Zitt, 2012, 2015)

Framework Canonical models Stochastic Persistence H-persistence

Persistence Theorem

For the Ecological Random ODE model, a sufficient condition for strong irreducibility is given by :

• Accessibility There exists an accessible point $x_0 \in M_+$:

One can go from every $x \in M^+$ to every neighborhood of x_0 by integrating the fields $F(\cdot, u), u = 1, ..., m$

Strong Bracket $G_0 = \{F(\cdot, u) - F(\cdot, v) : u, v = 1, ..., n\}$ $G_{k+1} = G_k \cup \{[F(\cdot, u), V] : V \in G_k\}$ has full rank at x_0 for some k.

Follows from recent results by (Bakthin, Hurth, 2012); (Benaim, Leborgne, Malrieu, Zitt, 2012, 2015)

Framework Canonical models Stochastic Persistence H-persistence

Persistence Theorem

For the Ecological Random ODE model, a sufficient condition for strong irreducibility is given by :

• Accessibility There exists an accessible point $x_0 \in M_+$:

One can go from every $x \in M^+$ to every neighborhood of x_0 by integrating the fields $F(\cdot, u), u = 1, ..., m$

Strong Bracket $G_0 = \{F(\cdot, u) - F(\cdot, v) : u, v = 1, ..., n\}$ $G_{k+1} = G_k \cup \{[F(\cdot, u), V] : V \in G_k\}$ has full rank at x_0 for some k.

Follows from recent results by (Bakthin, Hurth, 2012); (Benaim, Leborgne, Malrieu, Zitt, 2012, 2015) for other results on "PDMP" see also (Cloez, Hairer 2013); (Lawley, Mattingly Reed 2013), (Bakthin, Hurth, Mattingly, 2014); (BLMZ=2014) Michel Benaim Neuchatel University Stochastic Persistence

Framework Canonical models Stochastic Persistence H-persistence

Persistence Theorem

For the general model, a sufficient condition for irreducibility is given by :

Accessibility There exists a point x₀ ∈ M₊ accessible from M₊: For every neighborhood U of x₀ and x ∈ M₊ ∃t > 0 such that P_t(x, U) > 0.

Framework Canonical models Stochastic Persistence H-persistence

Persistence Theorem

For the general model, a sufficient condition for irreducibility is given by :

- Accessibility There exists a point x₀ ∈ M₊ accessible from M₊: For every neighborhood U of x₀ and x ∈ M₊ ∃t > 0 such that P_t(x, U) > 0.
- **2** Weak Doeblin There exists a neighborhood U_0 of x_0 and a nonzero measure ν such that for all $x \in U_0$

$$Q(x,dy) \geq \nu_0(dy)$$

where

$$Q(x, dy) = \int_0^\infty e^{-t} P_t(x, dy) dt.$$

Framework Canonical models Stochastic Persistence H-persistence

Persistence Theorem

For the general model, a sufficient condition for strong irreducibility is given by :

Accessibility There exists a point x₀ ∈ M₊ accessible from M₊: For every neighborhood U of x₀ and x ∈ M₊ ∃t > 0 such that P_t(x, U) > 0.

Framework Canonical models Stochastic Persistence H-persistence

Persistence Theorem

For the general model, a sufficient condition for strong irreducibility is given by :

- Accessibility There exists a point x₀ ∈ M₊ accessible from M₊: For every neighborhood U of x₀ and x ∈ M₊ ∃t > 0 such that P_t(x, U) > 0.
- Strong Doeblin There exists a neighborhood U_0 of x_0 , a nonzero measure ν_0 , and a interval $0 \le t_0 < t_1$ such that for all $x \in U$ and $t_0 \le t \le t_1$

$$P_t(x, dy) \geq \nu_0(dy)$$

Framework Canonical models Stochastic Persistence H-persistence

・ロト ・ 日 ・ ・ 目 ・

э

Extinction Theorem

Theorem

 $\Lambda^{-}(H) > 0 \Rightarrow$ Stochastic Persistence

Michel Benaim Neuchâtel University Stochastic Persistence

Framework Canonical models Stochastic Persistence H-persistence

< ロ > < 同 > < 回 > <

Extinction Theorem

Theorem (Extinction)

Suppose that

 $\Lambda^+(H) < 0$

and that M_0 is accessible. Then $X_t \rightarrow M_0$ almost surely

Framework Canonical models Stochastic Persistence H-persistence

< D > < P > < P > < P >

Extinction Theorem

For the ecological SDE or random ODE model

Theorem (Extinction)

Suppose that there exists weights $p_i \ge 0$ such that for each $\mu \in \mathcal{P}_{erg}(M_0)$

$\mu(\sum_{i\in I}p_i\lambda_i) < 0$

and that M_0 is accessible. Then $X_t \rightarrow M_0$ almost surely

III : Back to examples

Michel Benaim Neuchâtel University Stochastic Persistence

æ

< 一型

Example: Rosenzweig Mac-Arthur with environmental stochasticity

$$\frac{dx}{dt} = x\left(1 - \frac{x}{\gamma} - \frac{y}{1 + x}\right)$$
$$\frac{dy}{dt} = y\left(-\alpha + \frac{x}{1 + x}\right)$$

Michel Benaim Neuchâtel University Stochastic Persistence

Example: Rosenzweig Mac-Arthur with environmental stochasticity

One day is fine, the next is Black

$$\frac{dx}{dt} = x(1 - \frac{x}{\gamma} - \frac{y}{1 + x})$$
$$\frac{dy}{dt} = y(-\alpha_t + \frac{x}{1 + x})$$

Michel Benaim Neuchâtel University Stochastic Persistence

Example: Rosenzweig Mac-Arthur with environmental stochasticity

One day is fine, the next is Black

$$\frac{dx}{dt} = x\left(1 - \frac{x}{\gamma} - \frac{y}{1 + x}\right)$$
$$\frac{dy}{dt} = y\left(-\alpha_t + \frac{x}{1 + x}\right)$$

 α_t Markov process $\in \{\alpha_1, \ldots, \alpha_m\}$

Example: Rosenzweig Mac-Arthur with environmental stochasticity

• Ergodic measures supported by $M_0 =$

$$\mu^1 = \delta_{0,0} \otimes \nu \ \mu^2 = \delta_{\gamma,0} \otimes \nu$$

 $\nu = \text{invariant probability of } \{\alpha_t\}.$

Example: Rosenzweig Mac-Arthur with environmental stochasticity

• Ergodic measures supported by $M_0 =$

$$\mu^1 = \delta_{0,0} \otimes \nu \ \mu^2 = \delta_{\gamma,0} \otimes \nu$$

 $\nu = \text{invariant probability of } \{\alpha_t\}.$

Persistence condition

$$\exists p_1, p_2 > 0 \ (p_1, p_2) \left(\begin{array}{cc} \lambda_1(\mu_1) & \lambda_1(\mu_2) \\ \lambda_2(\mu_1) & \lambda_2(\mu_2) \end{array} \right) > 0$$

Example: Rosenzweig Mac-Arthur with environmental stochasticity

• Ergodic measures supported by $M_0 =$

$$\mu^1 = \delta_{0,0} \otimes \nu \ \mu^2 = \delta_{\gamma,0} \otimes \nu$$

 $\nu = \text{invariant probability of } \{\alpha_t\}.$

Persistence condition

$$\exists p_1, p_2 > 0 \ (p_1, p_2) \left(\begin{array}{cc} \lambda_1(\mu_1) & \lambda_1(\mu_2) \\ \lambda_2(\mu_1) & \lambda_2(\mu_2) \end{array} \right) > 0$$

$$\Leftrightarrow$$

$$\sum_{i} \alpha_{i} \nu_{\alpha_{i}} = \langle \alpha, \nu \rangle < \frac{\gamma}{1+\gamma}$$

Example: Rosenzweig Mac-Arthur with environmental stochasticity

• Furthermore, for some α_i the corresponding RMA model has an attracting periodic or equilibrium Γ_i . Γ_i is accessible and the strong Bracket condition holds at Γ_i

 \downarrow

Example: Rosenzweig Mac-Arthur with environmental stochasticity

• Furthermore, for some α_i the corresponding RMA model has an attracting periodic or equilibrium Γ_i . Γ_i is accessible and the strong Bracket condition holds at Γ_i

11

Corollary (Persistence)

If $\langle \alpha, \nu \rangle < \frac{\gamma}{1+\gamma}$ both the empirical occupation measure and the law of X_t converge, as $t \to \infty$ to $\Pi(x)dx$ supported by M_+ .

Example: Rosenzweig Mac-Arthur with environmental stochasticity

• Furthermore, for some α_i the corresponding RMA model has an attracting periodic or equilibrium Γ_i . Γ_i is accessible and the strong Bracket condition holds at Γ_i

11

Corollary (Persistence)

If $\langle \alpha, \nu \rangle < \frac{\gamma}{1+\gamma}$ both the empirical occupation measure and the law of X_t converge, as $t \to \infty$ to $\Pi(x)dx$ supported by M_+ .

Corollary (Extinction)

If
$$\langle \alpha, \nu \rangle > \frac{\gamma}{1+\gamma} X_t \to M_0$$

Michel Benaim Neuchâtel University Stochastic Persistence

・ロト ・ 日 ・ ・ 目 ・

э

э

Example: Predator-Prey with Brownian perturbations

$$\frac{dx}{dt} = x\left(1 - \frac{x}{\gamma} - \frac{y}{1 + x}\right)$$

$$\frac{dy}{dt} = y(-\alpha + \frac{x}{1+x})$$

Michel Benaim Neuchâtel University Stochastic Persistence

< A > <

-

Example: Predator-Prey with Brownian perturbations

General prey growth rate

$$\frac{dx}{dt} = x(f(x) - \frac{y}{1+x})$$

$$\frac{dy}{dt} = y(-\alpha + \frac{x}{1+x})$$

Example: Predator-Prey with Brownian perturbations

General prey growth rate + Brownian perturbations

$$dx = x(f(x) - \frac{y}{1+x})dt + x\sigma dB_t$$

$$dy = y(-\alpha + \frac{x}{1+x})dt + y\sigma dB_t$$

 $\sigma << 1$
Example: Predator-Prey with Brownian perturbations

• $f(0) < 0 \Rightarrow$ Ergodic measures on $M_0 = \{\delta_{0,0}\}$

< /i>

Example: Predator-Prey with Brownian perturbations

 $\bullet f(0) < 0 \Rightarrow$ Ergodic measures on $M_0 = \{\delta_{0,0}\} \Rightarrow$ Extinction

Example: Predator-Prey with Brownian perturbations

• $f(0) < 0 \Rightarrow$ Ergodic measures on $M_0 = \{\delta_{0,0}\} \Rightarrow$ Extinction

Allee effect promotes extinction

Example: Predator-Prey with Brownian perturbations

• $f(0) < 0 \Rightarrow$ Ergodic measures on $M_0 = \{\delta_{0,0}\} \Rightarrow$ Extinction

Allee effect promotes extinction

•
$$f(0) > 0 \Rightarrow$$
 Ergodic measures on $M_0 = \{\delta_{0,0}, \mu_\sigma\},\$

$$\mu_{\sigma}(dxdy) \simeq \delta_{x^*}(dx)\delta_0(dy)$$

with (Laplace principle)

$$x^* = \operatorname{argmax} \int_1^x rac{2f(u)}{u} du$$

æ

э

< 一型

$$ullet f(0) > 0 \Rightarrow \ {
m Ergodic} \ {
m measures} \ {
m on} \ M_0 = \{\delta_{0,0}, \mu_\sigma\},$$

$$\mu_{\sigma}(dxdy) \simeq \delta_{x^*}(dx)\delta_0(dy)$$

with (Laplace principle)

$$x^* = \operatorname{argmax} \int_1^x rac{2f(u)}{u} du$$

persistence condition
$$\Leftrightarrow \left| \frac{x^*}{1+x^*} > \alpha \right|$$

æ

э

< 一型

Another example : May Leonard (1975)

$$\begin{cases} \dot{x} = x(1 - x - \alpha y - \beta z) \\ \dot{y} = y(1 - \beta x - y - \alpha z) \\ \dot{z} = z(1 - \alpha x - \beta y - z) \end{cases}$$

 $\mathbf{0}<\beta<\mathbf{1}<\alpha.$

▲ 同 ▶ ▲ 国 ▶

May Leonard (1975)

æ

Michel Benaim Neuchâtel University Stochastic Persistence

May Leonard (1975)

C beats B

May Leonard (1975)

A beats B

▲ 同 ▶ ▲ 国 ▶

May Leonard (1975)

B beats A

< 一型

Side-blotched lizards

Figure: picture from Lisa C. Hazard (UC Santa Cruz) homepage

イロト イポト イヨト イヨト

Michel Benaim Neuchâtel University Stochastic Persistence

May Leonard (1975)

$$\alpha + \beta < 2 \Rightarrow$$
 Persistence

▲□▶ ▲□▶ ▲目≯

May Leonard (1975)

 $\alpha+\beta>2\Rightarrow$ The boundary is an attractor (weak form of extinction)

May Leonard (1975)

What if α and β fluctuate randomly ?

wit

Example: May Leonard with environmental stochasticity

$$\begin{cases} \dot{x} = x(1 - x - \alpha_t y - \beta_t z) \\ \dot{y} = y(1 - \beta_t x - y - \alpha_t z) \\ \dot{z} = z(1 - \alpha_t x - \beta_t y - z) \\ (\alpha_t, \beta_t) \text{ Markov process} \in \{(\alpha_1, \beta_1) \dots, (\alpha_m, \beta_m)\} \\ \text{h invariant measure } \nu. \end{cases}$$

Example: May Leonard with environmental stochasticity

Ergodic measures on M_0 :

$$\mu^{\mathsf{0}} = \delta_{(\mathsf{0},\mathsf{0},\mathsf{0})} \otimes \nu, ; \mu^{i} = \delta_{e_{i}} \otimes \nu, i = 1, \dots 3$$

Example: May Leonard with environmental stochasticity

${\sf Persistence\ condition\ }\Leftrightarrow$

$$\exists p_1, p_2, p_3 > 0 : (p_1, p_2, p_3) \begin{pmatrix} 0 & 1 - \langle \alpha, \nu \rangle & 1 - \langle \beta, \nu \rangle \\ 1 - \langle \beta, \nu \rangle & 0 & 1 - \langle \alpha, \nu \rangle \\ 1 - \langle \alpha, \nu \rangle & 1 - \langle \beta, \nu \rangle & 0 \end{pmatrix} > 0 \\ \Leftrightarrow \\ \hline \left[\langle \alpha, \nu \rangle + \langle \beta, \nu \rangle < 2 \right]$$

Michel Benaim Neuchâtel University Stochastic Persistence

・ロト ・回 ト ・ ヨト ・ ヨト

æ