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Introduction

• An important issue in ecology is to �nd out

under which conditions a group of interacting species -

plants, animals, viral particles - can coexist.

• Classical approach to these questions has been the development
of Deterministic Models of Interaction ODEs, PDEs,
Di�erence equations, etc.

⇒ Mathematical theory of Deterministic Persistence

• The theory began in the late 1970s and developed rapidly with
the help of the available tools from dynamical system theory (see
e.g the book by Smith and Thieme (2011)).
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Introduction

• To take into account environmental �uctuations one need to
consider Stochastic Models of Interaction

⇒ Mathematical theory of stochastic Persistence

The theory began to emerge with the work of Chesson, Ellner, and
others in the 80s

• Purpose of this mini-course : present some recent results on the

subject :(B, 2014), (B & Lobry, 2016) , (B & Strickler, 2017)
(Hening & Nguyen, 2017)

 based on previous works in collaboration with Hofbauer (Wien),
Sandholm (Madison), Schreiber (UC Davis)
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Logistic
Rosenzweig Mac-Arthur
Lotka-Volterra

I : Some motivating examples

1 A simple historical model : The Verhulst (or logistic) dynamics
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Verhulst Model (1840)

Malthus T.R. 1798. An Essay on the Principle of Population.

"Yet in all societies, even those that are most vicious, the

tendency to a virtuous attachment is so strong that there

is a constant e�ort towards an increase of population

there

is a constant e�ort towards an increase of population

.
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Verhulst Model (1840)

Verhulst. P.-F. 1838. Notice sur la loi que la population suit dans
son accroissement

On sait que le célèbre Malthus a établi comme principe

que la population humaine tend à croître en progression

géométrique, (...) Cette proposition est incontestable, si

l'on fait abstraction de la di�culté toujours croissante de

se procurer des subsistances lorsque la population a

acquis un certain degré d'agglomération. (...)
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Verhulst (or logistic) dynamics

dx

dt
= x(a − bx)

x ≥ 0, abundance of the population,

a = intrinsic growth rate,

b ≥ 0
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Verhulst dynamics

dx

dt
= x(a − bx)

•a < 0⇒ x(t)→ 0 : Extinction

•a > 0⇒ x(t)→ γ := a
b
Persistence

Ok but what does it mean if there is (stochastic) variability ?
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Stochastic Variability

Variability of ecological processes may have di�erent natures:

• Demographic Stochasticity

Even if all individuals in a population are identical, the birth/death
of each individual is a random event
→ Fascinating questions (mean-�eld approximations, branching,

time to extinction, quasi-invariant measures, ) but not the subject
of this course see the works of N. Champagnat, S. Méléard, D.
Villemonais, ...

• Environmental Stochasticity

Light, precipitation, temperature, nutrient availability,
Subject of the course
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Environmental variability

• Assume Gaussian �uctuations of the intrinsic growth rate

a← a + noise

dx

dt
= x(a − bx)

dt + xσdBt ( not
√
xσdBt)
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• Elementary one dimensional SDEs theory  
1

a − σ2

2
< 0⇒ x(t)→ 0

2

a − σ2

2
> 0⇒ Law (x(t))→ Γ(1− σ2/2a, σ2/2b)
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• Elementary one dimensional SDEs theory  
1

a − σ2

2
< 0⇒ x(t)→ 0

2

a − σ2

2
> 0⇒ Law (x(t))→ Γ(σ2/2a − 1, σ2/2b)

Looks like a sensible de�nition of Stochastic Extinction/Persistence

Ok, BUT what if the model is more complicated or the noise non
gaussian ?
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I : Some motivating examples

1 A simple historical model : The Verhulst (or logistic) dynamics

2 Prey-Predator model (Rosenzweig Mac-Arthur)
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Prey-Predator

x = preys (or resources) abundance
y = predators abundance

dx

dt
= x(1− x

γ
)

− xyh(x , y)

dy

dt
= −αy

+ xyh(x , y)

xh(x , y) = Per predator kill rate = predator reproduction rate

h(x , y) = c Lotka-Volterra

h(x , y) = 1/(1 + x) Rosenzweig Mac-Arthur

h(x , y) = h(y/x) Arditi Ginzburg, ...
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Rosenzweig Mac-Arthur (1963)

dx

dt
= x(1− x

γ
− y

1 + x
)

dy

dt
= y(−α +

x

1 + x
)

"http://experiences.math.cnrs.fr/simulations/matheco-
RosenzweigMcArthur"
"http://www.espace-turing.fr/Sur-les-modeles-proie-predateur-
en.html?artpage=5-6"
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Rosenzweig Mac-Arthur (1963)

• α > γ
1+γ ⇒ Extinction

• α < γ
1+γ ⇒ Persistence

Ok, but what if α or/and γ �uctuate (randomly) ?
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Rosenzweig Mac-Arthur in �uctuating environment

One day is �ne, the next is Black

dx

dt
= x(1− x

γ
− y

1 + x
)

dy

dt
= y(−α +

x

1 + x
)

αt Markov process ∈ {α1, . . . , αm}
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I : Some motivating examples

1 A simple historical model : The Verhulst (or logistic) dynamics

2 Prey-Predator model (Rosenzweig Mac-Arthur)

3 Lotka-Volterra
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Lotka-Volterra (based on B & Lobry 2016)

• 2 species x and y characterized by their abundances x , y ≥ 0.

• Lotka Volterra ODE

(ẋ , ẏ) = FE(x , y)

FE(x , y) =

{
αx(1− ax − by)
βy(1− cx − dy)

• E = (α, a, b, β, c , d) is the environment:

α, a, b, β, c , d > 0

.
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• Environment E is said favorable to species x if

a < c and b < d .

• Envx = set of environments favorable to x.

Theorem ("competitive exclusion")

If E ∈ Envx every solution to (ẋ , ẏ) = FE(x , y) with initial condition

(x , y) ∈ R∗+ × R+ converges to (
1

a
, 0) as t →∞.

i.e E ∈ Envx ⇒ Extinction of y and Persistence of x.

Proof is classical (see e.g J. Hofbauer and K. Sigmund's book
(1998))
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Figure: Phase portrait of FE with E ∈ Envx.
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Lotka Volterra in �uctuating environment

Ok but what if the environment �uctuates ?

i.e
(Ẋ , Ẏ ) = FEu(t)

(X ,Y )

where {Eu(t)} is a time-dependent environment
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• Old works by Koch (74), Cushing (80, 86) de Mottoni and
Schia�no (81) + recent work by T. Sari, show that

when t 7→ Eu(t) is periodic around E ∈ Envx the system may have
periodic persistent orbits x(t) > 0, y(t) > 0.

• This provides "some math interpretation" of a well known fact in
ecology :

temporal �uctuations of the environment can reverse the trend of

competitive exclusion

Hutchinson's paradox (61), Work of Chesson and co-authors in the
80s, ...
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Random switching

Our Goal here will be to investigate the behavior of

(Ẋ , Ẏ ) = FEu(t)
(X ,Y )

•E0,E1 are two favorable environments

•u(t) ∈ {0, 1} is a jump process

P(u(t + s) = 1|u(t) = 0, (u(r), r ≤ t)) = λ0s + o(s),

P(u(t + s) = 0|u(t) = 1, ((u(r), r ≤ t)) = λ1s + o(s),

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

Maths
Back to examples

Logistic
Rosenzweig Mac-Arthur
Lotka-Volterra

Random switching

Our Goal here will be to investigate the behavior of
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,

Figure: Phase portraits of FE0
and FE1

Di�erent values of λ0, λ1 can lead to various behaviors...
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Simulations

Figure: extinction of 2
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Figure: Persistence
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Figure: Persistence
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Figure: Extinction of 1
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Figure: Extinction of 1 or 2

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

Maths
Back to examples

Logistic
Rosenzweig Mac-Arthur
Lotka-Volterra

II : Some Math
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Abstract Framework

• (Xt) a "good" (Feller, cad-lag, good behavior at ∞, etc. )
Markov process on some "good" (Polish, locally compact) space

M = M+ ∪M0

• M0 is a closed set = extinction set

• M+ = M \M0 = coexistence set

• Both M0 and M+ = M \M0 are invariant:

x ∈ M0 ⇒ X x
t ∈ M0,

x ∈ M+ ⇒ X x
t ∈ M+
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Two (canonical) Models
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Model I. Ecological SDEs

dxi = xi [Fi (x)dt +
m∑
j=1

σji (x)dB j
t ], i = 1 . . . n

• xi ≥ 0 = abundance of species i .

• I ⊂ {1, . . . , n} a given subset of species,
e.g I = {1}, I = {1, . . . , n}

• State space M = Rn
+

• Extinction set M0 = {x ∈ M :
∏

i∈I xi = 0}

The dynamics on M0 is an ecological SDE
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Model II. Ecological random ODEs

dxi
dt

= xi (t)Fi (x(t), u(t)), i = 1 . . . n

u(t) ∈ {1, . . . ,m} is a Markov process controlled by x

P(u(t + s) = v |u(s), s ≤ t, u(t) = u) = λuv (x(t))s + o(s)

for all u 6= v

• State space M = Rn
+ × {1, . . .m}

• Extinction set M0 = {(x , u) ∈ M :
∏

i∈I xi = 0}

The dynamics on M0 is an ecological random ODE
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Stochastic Persistence

• Πt(.) = 1

t

∫ t

0
δXs

ds = empirical occupation measure

Πt(A) = proportion of time spent in A up to t

De�nition

We call the process stochastically persistent if for all ε > 0 there
exists a compact K ⊂ M+ such that

lim inf
t→∞

Πt(K ) ≥ 1− ε

whenever x = x(0) ∈ M+
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Stochastic Persistence

De�nition

We call the process persistent in probability if for all ε > 0 there
exists a compact K ⊂ M+ such that

lim inf
t→∞

Px(Xt ∈ K ) ≥ 1− ε

whenever x = x(0) ∈ M+

• This de�nition goes back to Chesson (1978) "stochastic
boundedness criterion"
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How can we prove / disprove
stochastic persistence ?

• For simplicity I will now assume that M is compact !

• If not, one need to assume that there is a "good" Lyapunov
function which control the behavior at ∞
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H-persistence

• Pinv (M) = the set of invariant probabilities for (Xt)

• Perg (M) = the subset of ergodic probabilities

•Pinv (M0),Perg (M0) idem but on M0

• L generator of (Pt) with domain D ⊂ C (M)

• D2 = {f ∈ D, f 2 ∈ D}.

• Γ : D2 7→ R+, Γ(f ) = L(f 2)− 2f L(f )
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Suppose there exist V : M+ 7→ R+,H : M 7→ R with the following
properties:
• V (x)→∞⇔ x → M0

• For all compact set K ⊂ M+,∃VK ∈ D2 such that

(a) V = VK and LVK = H on K

(b) sup{Pt(Γ(VK ))(x) : K compact,t ≥ 0} <∞.

De�nition (H− Exponents)

Λ−(H) = − sup{µH : µ ∈ Perg (M0)},

Λ+(H) = − inf{µH : µ ∈ Perg (M0)}.

De�nition (H− persistence)

The process is said H-persistent if there exist (V ,H) as above such
that

Λ−(H) > 0
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Examples

Example (Ecological SDE)

dxi = xi [Fi (x)dt +
m∑
j=1

σji (x)dB j
t ], i = 1 . . . n

Invasion rate of species i

λi (x) = Fi (x)− 1

2

∑
k

(σki (x))2
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•M0 = {x
∏

i∈I xi = 0}.

Proposition

The following are equivalent and imply H-persistence

(i) There exist weights p1, . . . , pn ≥ 0 such that for every

µ ∈ Perg (M0)

µ(
∑
i∈I

piλi ) > 0.

(ii) For every µ ∈ Pinv (M0) ∃i ∈ I such that µλi > 0.

Hence (ii) means that in environment µ at least one species can
"invade"
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Example (Random Ecological ODE)

dxi
dt

= xi (t)Fi (x(t), u(t)), i = 1 . . . n

P(u(t + s) = v |u(s), s ≤ t, u(t) = u) = λuv (x(t))s + o(s)

Invasion rate of species i

λi (x , u) = Fi (x , u)
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Persistence Theorem

Theorem

H-Persistence ⇒ Stochastic Persistence

Generalizes previous results obtained in collaboration with Hofbauer
& Sandholm 2008, Schreiber 2009, Atchade & Schreiber 2011
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Persistence Theorem

Corollary

If furthermore, the process is irreducible, there exists a unique

invariant probability Π(dx) = π(x)dx on M+ such that for all

x ∈ M+

Πt → Π

Theorem

If furthermore, the process is strongly irreducible then ∃λ, θ > 0

‖P(Xt ∈ .|X0 = x)− Π(.)‖ ≤ Cste
e−λt

1 + eθV (x)

for all x ∈ M+.

"Irreducible" and "strongly irreducible" need to be de�ned !
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Persistence Theorem

Corollary

If furthermore, the process is irreducible, there exists a unique

invariant probability Π(dx) = π(x)dx on M+ such that for all

x ∈ M+

Πt → Π

Theorem

If furthermore, the process is strongly irreducible then ∃λ, θ > 0

‖P(Xt ∈ .|X0 = x)− Π(.)‖ ≤ Cste
e−λt

1 + eθV (x)

for all x ∈ M+.

"Irreducible" and "strongly irreducible" need to be de�ned !
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Persistence Theorem

• For the Ecological SDE model, a su�cient condition for strong
irreducibility is given by the non degeneracy of the di�usion matrix

σ(x)σ(x)∗

Weaker conditions = (Hormander type conditions + controllability)
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• For the Ecological SDE model, a su�cient condition for strong
irreducibility is given by the non degeneracy of the di�usion matrix

σ(x)σ(x)∗

Weaker conditions = (Hormander type conditions + controllability)
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Persistence Theorem

For the Ecological Random ODE model, a su�cient condition for
irreducibility is given by :

1 Accessibility There exists an accessible point x0 ∈ M+ :

One can go from every x ∈ M+ to every

neighborhood of x0 by integrating the �elds

F (·, u), u = 1, . . . ,m

2 Weak Bracket The Lie algebra generated by
{F (·, u), u = 1, . . . ,m} has full rank at x0

Follows from recent results by (Bakthin, Hurth, 2012); (Benaim,
Leborgne, Malrieu, Zitt, 2012, 2015)
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Persistence Theorem

For the Ecological Random ODE model, a su�cient condition for
strong irreducibility is given by :

1 Accessibility There exists an accessible point x0 ∈ M+ :

One can go from every x ∈ M+ to every

neighborhood of x0 by integrating the �elds

F (·, u), u = 1, . . . ,m

2 Strong Bracket G0 = {F (·, u)− F (·, v) : u, v = 1, . . . n}
Gk+1 = Gk ∪ {[F (·, u),V ] : V ∈ Gk} has full rank at x0 for
some k .

Follows from recent results by (Bakthin, Hurth, 2012); (Benaim,
Leborgne, Malrieu, Zitt, 2012, 2015)

for other results on "PDMP" see also (Cloez, Hairer 2013); (Lawley,
Mattingly Reed 2013), (Bakthin, Hurth, Mattingly, 2014); (BLMZ 2014)
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Persistence Theorem

For the Ecological Random ODE model, a su�cient condition for
strong irreducibility is given by :

1 Accessibility There exists an accessible point x0 ∈ M+ :

One can go from every x ∈ M+ to every

neighborhood of x0 by integrating the �elds

F (·, u), u = 1, . . . ,m

2 Strong Bracket G0 = {F (·, u)− F (·, v) : u, v = 1, . . . n}
Gk+1 = Gk ∪ {[F (·, u),V ] : V ∈ Gk} has full rank at x0 for
some k .

Follows from recent results by (Bakthin, Hurth, 2012); (Benaim,
Leborgne, Malrieu, Zitt, 2012, 2015)
for other results on "PDMP" see also (Cloez, Hairer 2013); (Lawley,
Mattingly Reed 2013), (Bakthin, Hurth, Mattingly, 2014); (BLMZ 2014)
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Persistence Theorem

For the general model, a su�cient condition for irreducibility is
given by :

1 Accessibility There exists a point x0 ∈ M+ accessible from
M+ : For every neighborhood U of x0 and x ∈ M+ ∃t > 0
such that Pt(x ,U) > 0.

2 Weak Doeblin There exists a neighborhood U0 of x0 and a
nonzero measure ν such that for all x ∈ U0

Q(x , dy) ≥ ν0(dy)

where

Q(x , dy) =

∫ ∞
0

e−tPt(x , dy)dt.
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Persistence Theorem

For the general model, a su�cient condition for strong
irreducibility is given by :

1 Accessibility There exists a point x0 ∈ M+ accessible from
M+ : For every neighborhood U of x0 and x ∈ M+ ∃t > 0
such that Pt(x ,U) > 0.

2 Strong Doeblin There exists a neighborhood U0 of x0, a
nonzero measure ν0, and a interval 0 ≤ t0 < t1 such that for
all x ∈ U and t0 ≤ t ≤ t1

Pt(x , dy) ≥ ν0(dy)
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Persistence Theorem

For the general model, a su�cient condition for strong
irreducibility is given by :

1 Accessibility There exists a point x0 ∈ M+ accessible from
M+ : For every neighborhood U of x0 and x ∈ M+ ∃t > 0
such that Pt(x ,U) > 0.

2 Strong Doeblin There exists a neighborhood U0 of x0, a
nonzero measure ν0, and a interval 0 ≤ t0 < t1 such that for
all x ∈ U and t0 ≤ t ≤ t1

Pt(x , dy) ≥ ν0(dy)
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Extinction Theorem

Theorem

Λ−(H) > 0 ⇒ Stochastic Persistence
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Extinction Theorem

Theorem (Extinction)

Suppose that

Λ+(H)<0

and that M0 is accessible. Then Xt → M0 almost surely
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Extinction Theorem

For the ecological SDE or random ODE model

Theorem (Extinction)

Suppose that there exists weights pi ≥ 0 such that for each

µ ∈ Perg (M0)

µ(
∑
i∈I

piλi )<0

and that M0 is accessible. Then Xt → M0 almost surely
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Example: Rosenzweig Mac-Arthur with environmental
stochasticity

One day is �ne, the next is Black

dx

dt
= x(1− x

γ
− y

1 + x
)

dy

dt
= y(−α +

x

1 + x
)

αt Markov process ∈ {α1, . . . , αm}
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Example: Rosenzweig Mac-Arthur with environmental
stochasticity

• Ergodic measures supported by M0 =

µ1 = δ0,0 ⊗ ν µ2 = δγ,0 ⊗ ν

ν = invariant probability of {αt}.

Persistence condition

∃p1, p2 > 0 (p1, p2)

(
λ1(µ1) λ1(µ2)
λ2(µ1) λ2(µ2)

)
> 0

⇔∑
i αiναi

= 〈α, ν〉 < γ
1+γ
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Example: Rosenzweig Mac-Arthur with environmental
stochasticity

• Furthermore, for some αi the corresponding RMA model has an
attracting periodic or equilibrium Γi . Γi is accessible and the

strong Bracket condition holds at Γi

⇓

Corollary (Persistence)

If 〈α, ν〉 < γ
1+γ both the empirical occupation measure and the law

of Xt converge, as t →∞ to Π(x)dx supported by M+.

Corollary (Extinction)

If 〈α, ν〉 > γ
1+γ Xt → M0
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Example: Predator-Prey with Brownian perturbations

General prey growth rate + Brownian perturbations

dx

dt
= x(1− x

γ
− y

1 + x
)

dt + xσdBt

dy

dt
= y(−α +

x

1 + x
)

dt + yσdBt

σ << 1
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Example: Predator-Prey with Brownian perturbations

General prey growth rate

+ Brownian perturbations

dx

dt
= x(f (x)− y

1 + x
)

dt + xσdBt

dy

dt
= y(−α +

x

1 + x
)

dt + yσdBt

σ << 1
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Example: Predator-Prey with Brownian perturbations

•f (0) < 0⇒ Ergodic measures on M0 = {δ0,0}

⇒ Extinction

Allee e�ect promotes extinction
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•f (0) > 0⇒ Ergodic measures on M0 = {δ0,0, µσ},

µσ(dxdy) ' δx∗(dx)δ0(dy)

with (Laplace principle)

x∗ = argmax

∫ x

1

2f (u)

u
du

persistence condition ⇔ x∗

1 + x∗
> α
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Another example : May Leonard (1975)

• 3 species A,B,C
ẋ = x(1− x − αy − βz)
ẏ = y(1− βx − y − αz)
ż = z(1− αx − βy − z)

0 < β < 1 < α.
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May Leonard (1975)
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May Leonard (1975)

C beats B
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May Leonard (1975)

A beats B

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

Maths
Back to examples

May Leonard (1975)

B beats A
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Side-blotched lizards

Figure: picture from Lisa C. Hazard (UC Santa Cruz) homepage
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May Leonard (1975)

α + β < 2⇒ Persistence
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May Leonard (1975)

α + β > 2⇒ The boundary is an attractor (weak form of
extinction)
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May Leonard (1975)

What if α and β �uctuate randomly ?
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Example: May Leonard with environmental stochasticity


ẋ = x(1− x − αty − βtz)
ẏ = y(1− βtx − y − αtz)
ż = z(1− αtx − βty − z)

(αt , βt) Markov process ∈ {(α1, β1) . . . , (αm, βm)}
with invariant measure ν.
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Example: May Leonard with environmental stochasticity

Ergodic measures on M0 :

µ0 = δ(0,0,0) ⊗ ν, ;µi = δei ⊗ ν, i = 1, . . . 3
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Example: May Leonard with environmental stochasticity

Persistence condition ⇔

∃p1, p2, p3 > 0 : (p1, p2, p3)

 0 1− 〈α, ν〉 1− 〈β, ν〉
1− 〈β, ν〉 0 1− 〈α, ν〉
1− 〈α, ν〉 1− 〈β, ν〉 0

 > 0

⇔

〈α, ν〉+ 〈β, ν〉 < 2

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

Maths
Back to examples

Michel Benaim Neuchâtel University Stochastic Persistence


	Examples
	Maths
	Back to examples

