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Lajmanovich and Yorke SIS Model, 1976

- d groups

- In each group each individual can be infected

- 0 ≤ xi ≤ 1 = proportion of infected individuals in group i .

- Cij = rate of infection from group i to group j .

- Di cure rate in group i

dxi
dt

= (1− xi )(
∑
j

Cijxj)− Dixi
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Suppose C irreducible

A = C − diag(D)

λ(A) = largest real part of eigenvalues of A.

Theorem (Lajmanovich and Yorke 1976)

If λ(A) ≤ 0, the disease free equilibrium 0 is a global attractor

If λ(A) > 0 there exists another equilibrium x∗ >> 0 and every non

zero trajectory converges to x∗
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• What if the environment �uctuates ?

• Example: Two environments

C 1 =

(
1 4

0 1

)
, D1 =

(
2

2

)
,

and

C 2 =

(
2 0

4 2

)
, D2 =

(
3

3

)
.

λ(A1) = λ(A2) = −1 < 0

⇒

The disease free equilibrium is a global attractor in each

environment
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,

Figure: Phase portraits of F 1 and F 2
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Constant switching

Q(x) =

(
0 β
β 0

)
, β >> 1.
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,

Figure: Random Switching may reverses the trend
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• More surprising !

A0 =

−1 0 0

10 −1 0

0 0 −10

 , A1 =

−10 0 10

0 −10 0

0 10 −1

 .

D0 =

11

11

20

 , D1 =

20

20

11


C i = Ai + D i .

F 0,1 = the LY vector �eld on [0, 1]3 induced by (C 0,1,D0,1).
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F t = (1− t)F 0 + tF 1

= LY vector �eld induced by

C t = (1− t)C 0 + tC 1,Dt = (1− t)D0 + tD1

• For all 0 ≤ t ≤ 1, the disease free equilibrium is a global

attractor of F t

• Still, a random switching between the dynamics leads to the

persistence of the disease.
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Figure: Simulation of Xt for β = 10.
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Figure: Simulation of ‖Xt‖ for β = 10.
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Growth rates

Analysis

• First step :

Generalize !

•E = {1, . . . ,m},

•F 1, . . . ,Fm smooth vector �elds on Rd ,

F 1(0) = . . . = Fm(0) = 0.

• 0 ∈ M ⊂ Rd = compact positively invariant set under each Φi ,

Ẋ = F It (X ),

(It) jump process controled by X

P(It+s = j |It = i ,Xt = x ,Ft) = Qij(x)t + o(s).
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Growth rates

• Extinction set: M0 = {0} × E .

On M0 the dynamics is trivial and doesn't convey any information!

⇒ Has'minskii trick (1960, for linear SDEs)

Replace {0Rd} by {0}×S
n−1
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Growth rates

θt =
Xt

‖Xt‖
, ρt = ‖Xt‖

⇒
dθ

dt
= F̂ It (ρ, θ)− 〈θ, F̂ It (ρ, θ)〉θ.

dρ

dt
= ρ〈F̂ It (ρ, θ), θ〉

where

F̂ j(ρ, θ) =


F j(ρθ)

ρ
if ρ > 0

DF j(0)θ if ρ = 0
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Growth rates

• New state space:

M = Sd−1 × R+ × E

M0 = Sd−1 × {0} × E ≈ Sd−1 × E
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Growth rates

• On M0 the dynamics is a PDMP

dΘ

dt
= G Jt (θ).

dρ

dt
= 0,

J jump process with rate matrix Q(0).

where

G i (θ) = Aiθ − 〈Aiθ, θ〉θ.

Ai = DF i (0)

• It also induces a PDMP on Pd−1 × E , where

Pd−1 = Sd−1/x ∼ −x

is the projective space
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Growth rates

Growth rates

V (θ, ρ, i) = − log(ρ)

⇒ H(θ, ρ, θ, i) = −〈F̂ i (ρ, θ), θ〉

On M0 = Sd−1 × {0} × E

H(θ, 0, i) = −〈Aiθ, θ〉

Growth rate : For each µ ergodic for (Θ, J)

Λ(µ) = sup

∫
〈Aiθ, θ〉µ(dθdi)

= −µH

Maximal growth rates :

Λ− = min
µ

Λ(µ) ≤ Λ+ = sup
µ

Λ(µ).
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Growth rates

Link with Lyapunov expoents

Proposition (BS 16)

Λ+ coincides with the top-Lyapounov exponent given by the

Multiplicative Ergodic Theorem of the skew product system

dY

dt
= AJtY

and Λ− is another exponent.

Remark

If there exists for (Θ, J) an accessible point (on Pd−1) at which the

weak bracket condition holds. Then

Λ+ = Λ−.
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Growth rates

Example in dimension 2

Corollary (BS 16)

Suppose d = 2 and that either

(a) One matrix Ai has no real eigenvalues; or

(b) Two matrices Ai ,Aj have no common eigenvectors

Then Λ+ = Λ−.
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Growth rates

Metzler matrices

Proposition (BS, 16)

Assume the matrices are Metzler and at least one convex

combination is irreducible. Then Λ+ = Λ−
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Extinction
Persistence

Extinction : Λ+ < 0

Assume Λ+ < 0.

Theorem (BS, 16)

There exists a neighborhood U of 0 and η > 0 such that for all

x ∈ U and i ∈ E

Px ,i (lim sup
t→∞

1

t
log(‖Xt‖) ≤ Λ+) ≥ η.

If furthermore 0 is accessible then for all x ∈ M and i ∈ E

Px ,i (lim sup
t→∞

1

t
log(‖Xt‖) ≤ Λ+) = 1.
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Extinction
Persistence

Persistence : Λ− > 0.

Assume Λ− > 0.

Theorem (BS, 16)

∀x ∈ M∗ = M \ {0}, Px ,i almost surely, every limit point Π of (Πt)
belongs to Pinv and

Π({0} × E ) = 0.

More precisely, ∃θ,K > 0 (independent of Π) such that∫
1

‖x‖θ
dΠ ≤ K .
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Extinction
Persistence

Persistence : Λ− > 0.

Assume Λ− > 0.

τ = inf{t ≥ 0 : ‖Xt‖ ≥ ε}.

Theorem (BS, 16)

∃b > 1, c > 0 such that ∀x ∈ M∗

Ex(bτ ) ≤ c(1 + ‖x‖−θ).
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Extinction
Persistence

Persistence : Λ− > 0.

Assume Λ− > 0. In addition assume ∃p ∈ M∗ accessible from M∗

Theorem (BS, 16)

Weak Bracket condition at p ⇒

Pinv ∩ P(M∗ × E ) = {Π}

and ∀x ∈ M∗

lim
t→∞

Πt = Π

Px ,i almost surely.
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Extinction
Persistence

Persistence : Λ− > 0.

Assume Λ− > 0. In addition assume ∃p ∈ M∗ accessible from M∗

Theorem (BS, 16)

Strong Bracket condition at p ⇒

∀x ∈ M∗ ‖ Px ,i (Zt ∈ ·)− Π(·) ‖≤ const(1+ ‖ x ‖−θ)e−κt

for some κ, θ > 0.
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• Second step :

Generalize again !

Call a vector �eld F : [0, 1]d 7→ Rd epidemic provided

• F (0) = 0, xi = 1⇒ Fi (x) < 0

• DF (x) is Metzler (o� diagonal entries ≥ 0) irreducible

• F is (strongly) sub homogeneous on ]0, 1[d : F (tx) << tF (x) for

t ≥ 1.

Remark

LY vector �eld is epidemic
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Theorem (Hirsch, 1994)

If F is epidemic, conclusions of Lajmanovich and Yorke theorem

hold true

Theorem (BS, 16)

Suppose the F i , i = 1 . . .m are epidemic. Then

(a) Λ+ = Λ− = Λ

(b) Λ < 0⇒ almost sure Extinction

(c) Λ > 0⇒ Persistence
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Back to the "surprising" example

A0 =

−1 0 0

10 −1 0

0 0 −10

 , A1 =

−10 0 10

0 −10 0

0 10 −1

 .

D0 =

11

11

20

 , D1 =

20

20

11


C i = Ai + D i .

F 0,1 = the LY vector �eld on [0, 1]3 induced by (C 0,1,D0,1).
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• : Jump rate β

(i.e Switching from one environment to the other

between times t and t + s, s << 1, occurs with probability ≈ βs.)

Figure: β 7→ Λ(β).
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Figure: Simulation of ‖Xt‖ for β = 10.
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