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A mathematical model is a mathematical structure  
with an interpretation

Purpose of a model: predict & understand
What to understand: the population behaviour in terms of individual behaviour 

Change of size, structure etc. 
of a population in time or 

space

Dying, giving birth, growing, 
getting ill, moving etc.

REALITY

MATH

Individual behaviour 

Individual model 

Population behaviour 

Population model

causation

derivation
model formulation model interpretation 



Modelling the individual behaviour 
• State of an individual (i-state)  
   (structured population) 
• Behaviour of an individual (as change of the 

i-state) 
• interacting particles, chemical reactions

spontaneous / mono-
molecular reaction ALIVE DEAD

bi-molecular 
reaction ALIVE ALIVE ALIVE DEAD+ +

: probability per unit time that the reaction occurs (1/time)
: probability of a reaction within h units time

: waiting time till a reaction occurs 

dP (t)
dt = �µP (t)

µ

µ

µh+O(h2)

T � 0

P (t) = P(T > t)

) P (t) = e�µt

P (t+ h) = P (t)� (µh+O(h2))P (t)

Modelling the population behaviour 

✤  mono-molecular reaction A B
µ

Large population of A and B particles independently 
undergoing:

Strong law of large numbers: in an infinitely large population, P(t) 
can be interpreted as the proportion of the initial A particles that 
have not reacted yet.
A(t)

P (t) = A(t)
A(0)

dA(t)
dt = A(0)dP (t)

dt = �A(0)µP (t) = �µA(t)

: population density of A

✤ bi-molecular reaction A + B products↵

Empirical law of mass action: the probability per unit of time of one 
reactant undergoing a reaction is proportional to the concentration of 
the other reactant.

PA(t) : probability that A has not undergone a reaction yet
⇢

dPA(t)
dt = �↵B(t)PA(t)

PA(0) = 1

⇢
PA(t+ h) = PA(t)� ↵B(t)hPA(t)
PA(0) = 1

PA(t) =
A(t)

A(0)

A products
↵B(t)

(Strong law of large numbers & repeat 
the same passages for B)

)
(

dA(t)
dt = �↵A(t)B(t)

dB(t)
dt = �↵A(t)B(t)

↵



A typical predator-prey model consists of a description of 
how the predator and prey populations develop in the 
absence of  the other species and, most importantly, of a 
description of the interaction between the two species. 
(S.A.H.Geritz, M. Gyllenberg, 2012)

A basic predator-prey model is (Gause, 1934) 
(

dX(t)
dt = g(X)X � f(X)Y

dY (t)
dt = �f(X)Y � �Y

f(X) : functional response, i.e. average number of prey caught per predator per unit of time 
� : conversion constant of prey caught into predators

g(X) : prey numerical response, i.e. per capita growth rate of the prey if the predator is absent

: predator numerical response
� : predator death rate

�f(X)� �



✤Mechanistic derivation of Holling type II functional response (Metz, Diekmann, 1986) 
i-states: X

S

H

individual prey
searching predator

handling predator

i- (fast) 
processes:

S H

H S

cX

d

⇢
dS
dt = �cXS + dH
dH
dt = +cXS � dS

p-equations (fast dynamics):

✤ Birth, death are slow processes. 
✤ The total prey density (X) and total predator density (Y) are constant in the fast 

time scale and change in the slow time.

functional response (slow dynamics):

✤Mechanistic derivation of DeAngelis-Beddington functional response (Geritz, Gyllenberg, 2012) 
i-states: X

X

1

2

available prey

hiding prey

S

H

searching predator
handling predator

X1 X2i- (fast) 
processes:

S H

bY

a
cX1

d

f(X) =
cXŜ

Y
=

cX

1 + c 1dX

functional response (slow dynamics):

f(X,Y ) =
cX̂1Ŝ

Y
=

cX

1 + c 1d + b 1
aY



By considering a certain number of predator and prey interacting states, we 
are able to give a more general formulation of the functional response, 
including the types which have already been studied, and to derive the 
corresponding numerical response.

x = (xi)mi=1 y = (yi)ni=1
Denote with 

the different states of the prey and the predator, such that        and       denote 
the density of the prey and the predator in the i-state. 

xi yi

The fast time behaviour is modelled  by
8
<

:

dxk
dt

(t) =
P

n

i=1 Ak,i

x

i

(t) +
P

n

i=1

⇣P
n

j=1 B
k

i,j

y

j

(t)
⌘
x

i

(t), k = 1, ...,m

dyk

dt

(t) =
P

n

i=1

⇣P
n

j=1 C
k

i,j

x

j

(t)
⌘
y

i

(t) +
P

n

i=1 Dk,i

y

i

(t), k = 1, ..., n

Akj : rate at which the prey move from state j to state k, k, j = 1, ...,m

Bk
ij : rate at which the prey move from state i to state k, by interacting with

the predator state j, i, k = 1, ...,m, j = 1, ..., n

Dki: rate at which the predators move from state i to state k, i, k = 1, ..., n

Ck
ij : rate at which the predators move from state i to state k, by interacting

with the prey state j, i, k = 1, ..., n, j = 1, ...,m



8
<

:

dxk
dt

(t) =
P

n

i=1 Ak,i

x

i

(t) +
P

n

i=1

⇣P
n

j=1 B
k

i,j

y

j

(t)
⌘
x

i

(t), k = 1, ...,m

dyk

dt

(t) =
P

n

i=1

⇣P
n

j=1 C
k

i,j

x

j

(t)
⌘
y

i

(t) +
P

n

i=1 Dk,i

y

i

(t), k = 1, ..., n

�Akk =

Pm
i=1,i 6=k Aik, for all k 2 [1,m]

�Dkk =

Pn
i=1,i 6=k Dik, for all k 2 [1, n]

�B(i)
ij =

Pm
k=1,i 6=k B

(k)
ij , for all i 2 [1, n], j 2 [1,m]

�C(i)
ij =

Pn
k=1 C

(k)
ij , for all i 2 [1, n], j 2 [1,m]

Consistency conditions:

Conservation law:

Matrix form:
⇢

ẋ = (A+B(y))x
ẏ = (C(x) +D)y

Functional response:

f(X,Y ) =

Pn
i=1

Pm
j=1 bij x̂j ŷi

Y

Prey numerical response:

Predator numerical response:

⇢
dX
dt = g(X,Y )X � f(X,Y )Y
dY
dt = �(X,Y )f(X,Y )Y � �(X,Y )Y

nX

i=1

yi = Y (constant)

mX

i=1

xi = X (constant)

Slow time dynamics:

Fast time dynamics:

�(X,Y )f(X,Y )� �(X,Y ) =P
i

P
j �ijbij x̂iŷj

Y

�
P

i �iŷi

Y

g(X,Y ) =

P
i �ix̂i

X

�
P

i µix̂i

X



Application: f.r. type III and corresponding predator numerical responses

S1
c1X��! H1 the satiated predator enters the handling state

S2
c2X��! H2 the starving predator enters the handling state

H1
d1�! S1 from the handling to the satiated state

H2
d1�! S1 from the handling to the satiated state

S1
d2�! S2 from the satiated state to the starving state

8
>><

>>:

dS1
dt = �c1XS1 + d2S2
dS2
dt = �c2XS2 + d1 (H1 +H2)� d2H2
dH1
dt = c1XS1 � d1H1

dH2
dt = c2XS2 � d1H2

f(X) =
c1XŜ1 + c2XŜ2

Y
=

c1X (d2 + c2X)

d2
⇣
1 + c1

1
d1

⌘
+ c1X

⇣
1 + c2

1
d1
X
⌘

Individual level reactions and population equations

Functional response

f(X) =
aX + bX2

1 + cX + dX2
, a = c1, b = b = c1c2

1

d2
, c = c1

✓
1

d1
+

1

d2

◆
, d =

c1c2
d1d2

Predator numerical response
Different reproduction rates: 

 
�1 > �2

Different death rates: 

 �2 > �1

�1XĤ1 + �2XĤ2

Y
=

c1
1
d1
X2

⇣
�1d2 + �2

⇣
c2X + d2 � d2

1
d1

⌘⌘

d2

⇣
1 + c1

1
d1

⌘
+ c1X

⇣
1 + c2

1
d1
X
⌘ = �(X)f(X)

�(X) =
�1Ŝ1 + �2Ŝ2

Y
=

�1d2 + �2c1X

d2
⇣
1 + c1

1
d1

⌘
+ c1X

⇣
1 + c2

1
d1
X
⌘



Application: sort of anti-DeAngelis-Beddington f.r. and corresponding numerical response

Individual level reactions and population equations
8
>><

>>:

dE
dt (t) = bSP � aE
dP
dt (t) = �bSP + aE
dS
dt (t) = �cES + dH
dH
dt (t) = +cES � dH

Functional response

p ! 0, f(X,Y ) = cX
1+ c

dX
q ! 1, f(X,Y ) = cXY

p+Y

Predator numerical response

f(X,Y ) =
cÊŜ

Y
=

cq

2 (q +X)Y

⇣
pq + qY + 2XY �

p
�
⌘
, p =

a

b
, q =

d

c
, � = q

�
p2q + 2p (q + 2X)Y + qY 2

�

Ĥ(X,Y )

Y
=

f(X,Y )

d
Predator per capita birth rate

�1
Ŝ(X,Y )

Y
+ �2

Ĥ(X,Y )

Y
= �1

✓
1� f(X,Y )

d

◆
+ �2

f(X,Y )

d

Different death rates: 

 �2 > �1
Prey numerical response
P̂ (X,Y )

X
= 1� df(X,Y )

cX(d� f(X,Y ))
. Prey per capita birth rate

µ1
Ê(X,Y )

X
+ µ2

P̂ (X,Y )

X
= µ1

df(X,Y )

cX(d� f(X,Y ))
+ µ2

✓
1� df(X,Y )

cX(d� f(X,Y )

◆
.

Different death rates: 

 µ1 6= µ2

E
a�! P the exposed prey finds a refuge

P
bS�! E the protected prey leaves the refuge

S
cE��! H the searching predator enters the handling state

H
d�! S the handling predator quits handling

Y 2)



Existence and uniqueness of the fast dynamics equilibrium

Linear case:
⇢

ẋ = Ax

ẏ = Dy

The matrices A and D correspond to the 
transition rate matrices of a continuous time 
Markov chain, that is irreducible and aperiodic. 

There exists a unique stationary distribution.  

The convergence to the limit distribution is 
exponentially fast.  

A similar argument is used in the triangular 
case, when the transitions of one of the two 
species are not affected by the other population 
densities.

Non-linear case:
⇢

ẋ = (A+B(y))x
ẏ = (C(x) +D)y

Proposition: Under the following conditions: 

• A, B s.t. the linear system has a unique stable 
equilibrium 

• B, C irreducible matrices for every y,x>0 
• A,B,C,D transition matrices 
• the conservation laws on total populations hold 

 the system has at least one equilibrium.



E
bS�! P the exposed prey finds a refuge

P
a�! E the protected prey leaves the refuge

S
cE��! H the searching predator enter the handling state

H
d�! S the handling predator quits handling

b ⇠ number of refuges in the environment

Two cases:

✤ if b is small: convergence of the fast dynamics to a unique steady state  
✤ if b is large, no general result : no uniqueness if some conditions are relaxed (negativity 

of the diagonal coefficients of A, D) 

Existence and uniqueness of the fast dynamics equilibrium



Conclusions

✤ I have introduced a method for the derivation of the functional and numerical response, in 
contrast with the phenomenological approach which focuses on the population behaviour. 

✤ The bottom-up approach, from the individual level reactions to the population equations, allows 
the interpretation of all the parameters involved in the population level equations. 

✤ From the literature examples, we have derived a system of prey-predator states’ interactions 
which gives a more general formulation for the functional response and allows also the 
mechanistic derivation of the numerical responses, if we suppose different birth and death rates for 
each state. 

✤ An issue arises: the uniqueness of the fast dynamics steady state beyond the perturbative 
regime.  



Cecilia Berardo 
(cecilia.berardo@helsinki.fi) 

Department of Mathematics and Statistics 
University of Helsinki

Thanks for your attention!

mailto:cecilia.berardo@helsinki.fi

