Evolutionary rescue and dispersal: the effect of habitat choice on successful adaptation

Pete Czuppon

in collaboration with
Florence Débarre (Sorbonne Université),
François Blanquart (Collège de France),
Hildegard Uecker (Max Planck Institute for Evolutionary Biology)

École de printemps MMB

Aussois, May 2019
Evolutionary rescue?

Carlson et al., 2014, *TRENDS in Ecology & Evolution*
Evolutionary rescue?

Carlson et al., 2014, *TRENDS in Ecology & Evolution*
Evolutionary rescue?

Applications: conservation biology, epidemiology

Carlson et al., 2014, *Trends in Ecology & Evolution*
Dispersal?

- Dispersal
- Emigration
- Immigration

- Migrant pool
- Good habitat
- Bad habitat
- Wild type
- (Rescue) mutant

- \(\pi_m \)
- \(\pi_w \)
Dispersal?

Emigration

migrant pool

1

(1) mutant

π

π

wild type

good habitat

bad habitat
Dispersal?

Immigration
Dispersal?

- Emigration
- Immigration

-migrant pool
-good habitat
-bad habitat

-wild type

(rescue) mutant

- \(\pi \)
- \(m \)
- \(\pi_w \)
Dispersal?

- Emigration
- Immigration

- migrant pool
- good habitat
- bad habitat

- wild type
- 1
- (rescue) mutant
- \(\pi_m \)
- \(\pi_w \)
Dispersal?

Random dispersal (RD) - no habitat bias
Dispersal?

Absolute habitat matching (AHM) - all prefer the good habitat
e.g. reptiles, birds, ...

Diagram:

- Two habitats: one with a single individual (left) and another with a migrant pool (right).
- Arrows indicate dispersal and immigration.

Dispersal?

Relative habitat matching (RHM) - all prefer the habitat where they are relatively more fit
e.g. ciliates (specialist vs generalist dispersal)
Dispersal?

Negative density-dependent dispersal (NDD) - all prefer the less crowded habitat

e.g. fish, birds, ...
Dispersal?

Negative density-dependent dispersal (NDD) - all prefer the less crowded habitat e.g. fish, birds, ...

\[\text{wild type} \]

\[\begin{array}{c}
1 \\
\pi_w \\
(\text{rescue}) \text{ mutant}
\end{array} \]

\[\begin{array}{c}
1 \\
\pi_m
\end{array} \]
How does dispersal (and different dispersal schemes) affect the probability of evolutionary rescue?
Model

Life cycle: Dispersal - Reproduction - Regulation

Good habitat dynamics:
Assumption: carrying capacity is always reached
⇒ Wright-Fisher sampling
wild type better adapted than the mutant
mean number of offspring of one mutant: $1 + s$
good

Regulation (competition)
⇒ typically
$s_{\text{good}} < 0$

Bad habitat dynamics:
Assumption: wild type population declines
⇒ carrying capacity is not reached (offspring number \sim Poisson)
mean number of offspring of one wild-type individual: $1 - r$
with $r \in (0, 1]$
mean number of offspring of one mutant: $1 + s$ with $s_{\text{bad}} > 0$
Model
Life cycle: Dispersal - Reproduction - Regulation

Good habitat dynamics:
- Assumption: carrying capacity is always reached
 ⇒ Wright-Fisher sampling
- wild type better adapted than the mutant
- mean number of offspring of one mutant: $1 + s_{\text{good}}$
- Regulation (competition) ⇒ (typically) $s_{\text{good}} < 0$
Good habitat dynamics:
- Assumption: carrying capacity is always reached
 ⇒ Wright-Fisher sampling
- Wild type better adapted than the mutant
- Mean number of offspring of one mutant: $1 + s_{\text{good}}$
- Regulation (competition) ⇒ (typically) $s_{\text{good}} < 0$

Bad habitat dynamics:
- Assumption: wild type population declines
 ⇒ carrying capacity is not reached (offspring number \sim Poisson)
- Mean number of offspring of one wild-type individual: $1 - r$ with $r \in (0, 1]$
- Mean number of offspring of one mutant: $1 + s_{\text{bad}}$ with $s_{\text{bad}} > 0$
Establishment probability in a heterogeneous environment

Technique: Multi-type branching process theory (weak selection, weak dispersal approximation)

\[
\varphi_{\text{good}} \approx s_{\text{good}} \left(1 + \frac{(1 - f_{\text{good}} + \pi_m f_{\text{good}})}{\sqrt{C}} (s_{\text{good}} - s_{\text{bad}}) \right)
\]

\[
+ m \left(\frac{s_{\text{bad}}(1 - f_{\text{good}})}{\sqrt{C}} + \frac{s_{\text{good}} \pi_m f_{\text{good}}}{\sqrt{C}} - \frac{(s_{\text{good}} - s_{\text{bad}})(1 - f_{\text{good}})}{\sqrt{C}} \right)
\]
Establishment probability in a heterogeneous environment

Technique: Multi-type branching process theory (weak selection, weak dispersal approximation)

\[\varphi_{\text{good}} \approx s_{\text{good}} \left(1 + \frac{1 - f_{\text{good}} + \pi_m f_{\text{good}}}{\sqrt{C}} \right) (s_{\text{good}} - s_{\text{bad}}) \]

local selection + weighted global correction
Establishment probability in a heterogeneous environment

Technique: Multi-type branching process theory (weak selection, weak dispersal approximation)

\[
\varphi_{\text{good}} \approx s_{\text{good}} \left(1 + \frac{(1 - f_{\text{good}} + \pi mf_{\text{good}})}{\sqrt{C}} (s_{\text{good}} - s_{\text{bad}}) \right)
\]

local selection + weighted global correction

\[
+ m \left(\frac{s_{\text{bad}}(1 - f_{\text{good}})}{\sqrt{C}} + \frac{s_{\text{good}}\pi mf_{\text{good}}}{\sqrt{C}} - \frac{(s_{\text{good}} - s_{\text{bad}})(1 - f_{\text{good}})}{\sqrt{C}} \right)
\]

effect of dispersal: bad patches + good patches − loss to the other patch type
Establishment probability in a heterogeneous environment

Technique: Multi-type branching process theory (weak selection, weak dispersal approximation)

\[\varphi_{\text{good}} \approx s_{\text{good}} \left(1 + \frac{(1 - f_{\text{good}} + \pi m f_{\text{good}})}{\sqrt{C}} (s_{\text{good}} - s_{\text{bad}}) \right) \]

local selection + weighted global correction

\[+ m \left(\frac{s_{\text{bad}}(1 - f_{\text{good}})}{\sqrt{C}} + \frac{s_{\text{good}} \pi m f_{\text{good}}}{\sqrt{C}} - \frac{(s_{\text{good}} - s_{\text{bad}})(1 - f_{\text{good}})}{\sqrt{C}} \right) \]

effect of dispersal: bad patches + good patches – loss to the other patch type

\[\varphi_{\text{bad}} \approx s_{\text{bad}} \left(1 + \frac{(1 - f_{\text{good}} + \pi m f_{\text{good}})}{\sqrt{C}} (s_{\text{bad}} - s_{\text{good}}) \right) \]

\[+ m \left(\frac{s_{\text{bad}}(1 - f_{\text{good}})}{\sqrt{C}} + \frac{s_{\text{good}} \pi m f_{\text{good}}}{\sqrt{C}} - \frac{(s_{\text{bad}} - s_{\text{good}}) \pi m f_{\text{good}}}{\sqrt{C}} \right) \]
Establishment probability in a heterogeneous environment
(constant patch configuration – 50% good patches)

Weak selection in the good habitat \((s_{\text{good}} \sim -0.01)\)

![emigration probability and establishment probability graphs with legend and data points for AHM, RHM, NDD, and RD methods, with numerical solution and approximation lines]

Increasing migration rates \(\Rightarrow\) influx to / outflux from bad habitat
Establishment probability in a heterogeneous environment

(constant patch configuration – 50% good patches)

Weak selection in the good habitat ($s_{\text{good}} \sim -0.01$)

Increasing migration rates \Rightarrow influx to / outflux from bad habitat
Establishment probability in a heterogeneous environment

(constant patch configuration – 50% good patches)

Strong selection in the good habitat \((s_{\text{good}} \sim -0.1)\)

![Graph with establishment and emigration probabilities]

- **Emergence in good patch**
- **Emergence in bad patch**

- **RD** • **NDD** ▼ **AHM** ▲ **RHM**

High migration rates ⇒ relaxed competition in good patches
Establishment probability in a heterogeneous environment
(constant patch configuration – 50% good patches)

Strong selection in the good habitat \((s_{good} \sim -0.1)\)

High migration rates \(\Rightarrow\) relaxed competition in good patches

![Graph comparing establishment and emigration probabilities in good and bad patches](image-url)
Probability of evolutionary rescue

\[t = 0 \]

\[t = 100 \]

\[t = 200 \]

\[t = 600 \]

. . .
Probability of evolutionary rescue

\[P(t) = \begin{cases} 1 & t = 0 \\ 0 & t = 100 \end{cases} \]

- \(t = 0 \)
- \(t = 100 \)
Probability of evolutionary rescue

\[P(t) = \begin{cases}
0 & \text{if } t < 0 \\
100 & \text{if } 0 \leq t < 200 \\
200 & \text{if } 200 \leq t < 600 \\
\vdots &
\end{cases} \]
Probability of evolutionary rescue

\[
t = 0 \\
t = 100 \\
t = 200 \\
t = 600
\]
Probability of evolutionary rescue
(deterioration of patches one after the other over time)

10 patches in total, 100 generations between deterioration events

- Weak selection
- Strong selection

![Graph showing evolutionary rescue probability for weak and strong selection with different models: AHM, RHM, NDD, and RD. The x-axis represents emigration probability, and the y-axis represents the probability of evolutionary rescue, P_{rescue}. The graphs illustrate the non-monotone probability of evolutionary rescue under stronger selection.](image-url)
Probability of evolutionary rescue
(deterioration of patches one after the other over time)

10 patches in total, 100 generations between deterioration events

Stronger selection ⇒ non-monotone probability
Conclusions

- Weak selection strength \Rightarrow positive effect of dispersal on adaptation and evolutionary rescue
- Strong selection strength \Rightarrow non-monotonic effect of dispersal on adaptation and evolutionary rescue
Conclusions

- Weak selection strength ⇒ positive effect of dispersal on adaptation and evolutionary rescue
- Strong selection strength ⇒ non-monotonic effect of dispersal on adaptation and evolutionary rescue
- Decomposition of the probability of establishment of a single mutant: selection + global correction + dispersal
Conclusions

- Weak selection strength \Rightarrow positive effect of dispersal on adaptation and evolutionary rescue
- Strong selection strength \Rightarrow non-monotonic effect of dispersal on adaptation and evolutionary rescue
- Decomposition of the probability of establishment of a single mutant: selection + global correction + dispersal
- Random dispersal is not the norm in nature (but it is in theory!)
- Habitat choice hinders adaptation and evolutionary rescue under weak selection
Conclusions

- Weak selection strength \Rightarrow positive effect of dispersal on adaptation and evolutionary rescue
- Strong selection strength \Rightarrow non-monotonic effect of dispersal on adaptation and evolutionary rescue
- Decomposition of the probability of establishment of a single mutant: selection + global correction + dispersal
- Random dispersal is not the norm in nature (but it is in theory!)
- Habitat choice hinders adaptation and evolutionary rescue under weak selection
- **Relative habitat choice** promotes adaptation and evolutionary rescue for strong selection (at least for low to intermediate dispersal rates)
Acknowledgements

Florence Débarre @flodebarre
François Blanquart @FrancoisJB
Hildegard Uecker

Merci de votre attention!

grant “MOLA” (F. Débarre)
Probability of evolutionary rescue

\[P_{\text{rescue}} \approx 1 - \exp \left(-\tau u \sum_{i=0}^{M-1} \phi_{\text{good}}(f_{\text{good}}(i)) N_{w}^{\text{good}}(i) \right) \]

old habitat contribution

\[+ \phi_{\text{bad}}(f_{\text{good}}(i)) i N_{w}^{\text{bad}}(i) (f_{\text{good}}(i)) \]

new habitat contribution

\[-u \phi_{\text{bad}}(0) \sum_{i=\tau(M-1)}^{\infty} N_{w}^{\text{bad}}(i) \]

contribution after the last patch has deteriorated