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Community assembly

“The process by which species from a regional pool colonize and interact

to form local communities”
HilleRisLambers et al. 2012
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Trait & phylogenetic relatedness

Environmental filter :
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Trait & phylogenetic relatedness

Biotic filter : Environmental filter :
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Functional trait approach e.g., Petchey & Gaston 2002, McGill et al. 2006
Phylogenetic approach from Webb 2000, 2002



Critique...

= Strong critique, other processes can cause trait/phylogenetic clustering: (¢ ¢,
Mayfield & Levine 2010, Kraft et al. 2015, Gerhold et al. 2015, Cadotte et al. 2017)

Plylogenetic pattern
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Coexistence

Modern coexistence theory by Chesson
= Species coexistence depends on two types of species differences:
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Modern coexistence theory by Chesson
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Coexistence

Modern coexistence theory by Chesson

Species coexistence depends on two types of species differences:

Stabilizing niche difference

Intraspecific competition > Interspecific competition

@i > Ajj

. aii&ij
Niche overlap (p) p= |——
@;jqji

Competitive ability difference
(or fitness difference)

f_}' _ aijaji
fi Qi Qjj

For stable coexistence Jj

<=<-
P fi p

)

Competitive ability difference

/7
/7
/7 SN8%E
Exclusion P 4 . C i &
/7
® 5
Z
Coexistence
&2 1l

)

Niche difference (1/p)

Mayfield & Levine 2010



Emergent neutrality

Lotka Volterra competition
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Emergent neutrality

Lotka Volterra competition
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Emergent neutrality

Lotka Volterra competition
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Emergent neutrality

Lotka Volterra competition
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Trophic groups or guilds

= An important topological feature of food webs
(Allesina & Pascual 2009)

= |Implications for food web

functioning (Thebault & Fontaine 2010,
Stouffer & Bascompte 2011)

Gauzens et al. 2015, J. R. Soc. Interface 7 / 14



Aim

Understand how trophic interactions affect clustering of
functional traits in communities and food webs, and thereby
the diversity of functional traits and the ecosystem functioning.



Competition & predation

Lotka Volterra competition
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Competition & predation

Lotka Volterra competition
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Competition & predation

Lotka Volterra competition
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Research question

How does resource availability (bottom up) and predation (top down)
shape the clustering of functional traits of coexisting species in

communities ?
How clustering of traits are affected by:

i ) Resource availability (K)
Example simulation

ii ) Predation intensity (c and e) Parameter range:
K:8-13
Sigma (for calculating 8) :
iii ) Level of specialization (68) 0.100 —0.130

among predators
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Cluster identification
“Gap statistic”

Dk = Z Z ninjdij

c i,jeC
Fy = —log(Dy)
Gk = Fx — Frnun

c = clusters (1 <c <Kk)
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relative abundance

relative abundance

0.09

0.06

0.03

0.00

0.09

0.06

0.03

0.00

d;; = trait distance sp. i and j

Predator population

1 generation = 1000
<
49
il
0.00 0.25 0.50 0.75 1.00
niche axis
Competing prey
L ]
LK ]
0.00 0.25 0.50 0.75 1.00

niche axis



Competition and predation
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Diversity

Competing prey Predator
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Modularity

Competing prey
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Thanks for your attention






Scheffer &
van Nes method

As a starti ng}uim to compute competition coefficients that allow
us to mimic competition of species for resources along a niche axis
(Fiz. 1 and Eq. 1) we characterize the width of the niche by normal

distributions on the niche axis (1)
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We assume that competition intensity between species | and species
f is related to niche overlap, and thus to the probability P that
individuals of the pwo species are at the same position on the niche
axis, which is the product of both probabilities
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We calculate competition coefficients as the ratio of the probability
of matching an individual of competing species j and the probabilicy
of matching a conspecific (43), which can be solved as follows

(cf. 24)
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To avoid edge cffects, the niche axis is defined circular
(“periodic’™) so that each species has equal numbers of com-
petitors on both sides. Alternatively we checked the effect of
having a finite lincar niche axis of length Ly In this case,
niche overlap is calculated as
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Scheffer &
van Nes method
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Fig. 2  Self-organized lumpy patterns In the abundance of competing
species along a niche axis. (3) A translent stata after a simudation run of 1,000
generation times. (b & stable pattern of speces abundance reached after
5,000 generation times In the presence of mild density-depandent losses (g
0.02, H = 0.1, Eq. 2. {c) The competitiea threshold for Imvasion of 2 new specles
expressed as percentage deviation of Its carrying capacity (k) ralative to that
of the resident specles 1s lowest In the spedes lumps, showing that thesa
represent relative windows of opportunity for Invasion, and attractors In the
fitness landscape. Note that the relatively low predation loss at low densities
allowws starting Imvaders to enter with a competithee powear (K shightly below
that of resldents.



Cluster identification with
KmeansGap()



