Evolution of disassortative mating in a mimetic polymorphic butterfly

Ludovic Maisonneuve, Mathieu Chouteau, Mathieu Joron, Violaine Llaurens

Evolution of warning signals

Predators learn to associate the signal with the unpalatability

$\lambda =$ toxicity

d =strength of predation

Evolutionary convergence in mimetic patterns

A strong polymorphism is observed in *H.numata*

Disassortative mating in *H. Numata* favors polymorphism

- Females avoid males sharing their wing patterns => favors individuals with the rarest phenotype
- Cost of disassortative mating
- How does disassortative mating evolve in *H. numata butterflies* ?

- A single locus controlling wing pattern variations
- Chromosomal inversions => accumulation of deleterious mutations
- Genetic load linked to inverted haplotypes

- A single locus controlling wing pattern variations
- Chromosomal inversions => accumulation of deleterious mutations
- Genetic load linked to inverted haplotypes

- A single locus controlling wing pattern variations
- Chromosomal inversions => accumulation of deleterious mutations
- Genetic load linked to inverted haplotypes

- A single locus controlling wing pattern variations
- Chromosomal inversions => accumulation of deleterious mutations
- Genetic load linked to inverted haplotypes

Heterozygote advantage at the color pattern supergene ?

Could a genetic load linked to the locus promote disassortative mating ?

Genetic architecture

Locus P Locus M

 $\begin{array}{c|c} & & & & & & \\ a & & & b & & \\ a & & & b & & \\ \end{array}$

Reproduction : genetic architecture of preference

R = Random mating dis = Disassortative mating

Genetic architecture

Locus P Locus M

Genotype : $i = (p_1, p_2, m_1, m_2)$

 $N_{i,pop}^{t}$ = number of individual with the genotype i in the population pop at time t

Reproduction : The cost of choosiness

 $Pref_{i,P} = 0$ If individuals with i genotype **reject** individuals displaying phenotype P as mate.

 $Pref_{i,P} = 1$ If individuals with i genotype **accept** individuals displaying phenotype P as mate.

Fertility: $f_i = Pref_{i,A}P_A + Pref_{i,B}P_B + Pref_{i,C}P_C$

Reproduction : mate choice affects the number of available partners

$$F_{i,pop}^{t+1} = \sum_{j,k} coef(j,k,\rho) \frac{1 - cost + costf_j}{f_j} Pref_{j[k]} \frac{f_{j,pop}^t}{2} \frac{f_{k,pop}^t}{2}$$

 $f_{i,pop}^{t+1} = \frac{F_{i,pop}^{t+1}}{\sum_{j} F_{j,pop}^{t+1}}$ genetic distribution among newborns.

$$\Delta R_{i,pop}^{t} = r(1 - \frac{N_{tot,pop}^{t}}{K})N_{i,pop}^{t}f_{i,pop}^{t+1}$$

Survival : heterozygote advantage at locus P

 $\delta i = \text{strength of the genetic load for allele i}$ $\star \star \star \text{Recessive deleterious mutations}$

Simulations

δ cost of genetic load :

- δa and δb associated with mimetic alleles
- $\boldsymbol{\cdot} \, \boldsymbol{\delta c}$ associated with non-mimetic allele

Genetic loads impact on mate choice evolution

δ cost of genetic load :

- δa and δb associated with dominant alleles
- · δc associated with recessive allele

Literature shows no evidence for self-referencing rules

• Evidence for preference/trait mechanism in H. melpomene

Simulations

δ cost of genetic load :

- δa and δb associated with mimetic alleles
- $\boldsymbol{\cdot} \, \boldsymbol{\delta c}$ associated with non-mimetic allele

Impact of the genetic load on dominant phenotype allele on the evolution of mate choice

Genetic load linked to dominant alleles

Distaste for traits

Dominance relationship:

Impact of the genetic load on dominant phenotype allele on the evolution of mate choice

Genetic load linked to dominant alleles

Conclusion

- Genetic loads linked with the dominant phenotypic allele promote self-rejection behavior
- The genetic architecture impacts the evolution of mate choice

Thank you for your attention

Violaine Llaurens Mathieu Joron Mathieu Chouteau

