Inheritance and variability of kinetic gene expression parameters in microbial cells: Modelling and inference from lineage tree data

Aline Marguet¹, Marc Lavielle², Eugenio Cinquemani¹.

¹Univ. Grenoble Alpes, Inria, 38000 Grenoble, France ²Inria Saclay & Ecole Polytechnique, Palaiseau, France

Gene expression variability

Llamosi et al., What population reveals about cell identity: Single-cell parameter estimation of models of gene expression in yeast, 2016, PLOS Comput. Biol. 12(2), 2016.

Gene expression variability

Llamosi et al., What population reveals about cell identity: Single-cell parameter estimation of models of gene expression in yeast, 2016, PLOS Comput. Biol. 12(2), 2016.

Usually, cells are modeled as independent individuals.

cell division $\ \Rightarrow \$ correlations between mother and daughter cells

Usually, cells are modeled as independent individuals.

cell division $\ \Rightarrow\$ correlations between mother and daughter cells

random partitioning

Usually, cells are modeled as independent individuals.

cell division $\,\Rightarrow\,$ correlations between mother and daughter cells

random partitioning

inheritance

Usually, cells are modeled as independent individuals.

cell division $\,\Rightarrow\,$ correlations between mother and daughter cells

Questions: • do parameters usually treated as independent across cells show inheritance? • to what extend are these parameters conserved from one generation to the next?

Gene expression modelling over a lineage tree

Identification from lineage tree data

Validation in silico of the ARME algorithm

Application to the study of yeast osmotic shock response

Gene expression modelling over a lineage tree

Identification from lineage tree data

Validation in silico of the ARME algorithm

Application to the study of yeast osmotic shock response

Dynamical model of gene expression

$$\begin{pmatrix} \dot{m}(t) &= k_m u(t) - g_m m(t) \\ \dot{p}(t) &= k_p m(t) - g_p p(t). \end{cases}$$

• u(t): activity of transcription factors,

- k_m, g_m : production and decay rate of the mRNA,
- k_p, g_p : production and decay rate of the protein.

Individual parameters: mixed-effect modelling Each cell v in the population has its own parameters

 $\psi_{\mathbf{v}} = \left(k_m^{\mathbf{v}}, g_m^{\mathbf{v}}, k_p^{\mathbf{v}}, g_p^{\mathbf{v}}\right)$

Individual parameters: mixed-effect modelling Each cell v in the population has its own parameters

 $\psi_{\mathbf{v}} = \left(k_m^{\mathbf{v}}, g_m^{\mathbf{v}}, k_p^{\mathbf{v}}, g_p^{\mathbf{v}}\right)$

Variability in the response to the same stimulus:

$$\begin{cases} \dot{m}(t) = k_m^{\nu} u(t) - g_m^{\nu} m(t) \\ \dot{p}(t) = k_p^{\nu} m(t) - g_p^{\nu} p(t). \end{cases}$$

Individual parameters: mixed-effect modelling Each cell v in the population has its own parameters

 $\psi_{\mathbf{v}} = \left(k_m^{\mathbf{v}}, g_m^{\mathbf{v}}, k_p^{\mathbf{v}}, g_p^{\mathbf{v}}\right)$

Variability in the response to the same stimulus:

$$\begin{cases} \dot{m}(t) = k_m^{\nu} u(t) - g_m^{\nu} m(t) \\ \dot{p}(t) = k_p^{\nu} m(t) - g_p^{\nu} p(t). \end{cases}$$

Modelling inheritance

Individual parameters:

$$\psi^{\mathsf{v}} = (k_m^{\mathsf{v}}, g_m^{\mathsf{v}}, k_p^{\mathsf{v}}, g_p^{\mathsf{v}}) \text{ and } \varphi^{\mathsf{v}} = \log(\psi^{\mathsf{v}}).$$

Modelling inheritance

Individual parameters:

$$\psi^{\mathsf{v}} = (k_m^{\mathsf{v}}, g_m^{\mathsf{v}}, k_p^{\mathsf{v}}, g_p^{\mathsf{v}}) \text{ and } \varphi^{\mathsf{v}} = \log(\psi^{\mathsf{v}}).$$

Transmission mechanism:

 $\begin{array}{ll} \varphi^{\emptyset} \sim \mathcal{N}(\mu, \Sigma) & \varphi^{\nu} = A \varphi^{\nu^{-}} + (\mathbf{I} - A)b + \eta^{\nu} & \text{equal sharing} \\ \Sigma = A \Sigma A^{T} + \Omega & \eta^{\nu} \sim \mathcal{N}(0, \Omega) & \text{at division.} \end{array}$

Identification problem

► Additive noise model for the fluorescence measurements:

$$\begin{split} Y_{j}^{v} &= p(t_{j}^{v}, \psi_{v}) + h\varepsilon_{j}^{v} \\ \text{where } h \geq 0, \ (\varepsilon_{j}^{v}, j = 1, \dots, n^{v}, \ v \in V) \text{ are i.i.d. } \varepsilon_{j}^{v} \sim \mathcal{N}(0, 1). \end{split}$$

Identification problem

Additive noise model for the fluorescence measurements:

where $h \ge 0$, $(\varepsilon_j^v, j = 1, \dots, n^v, v \in V)$ are i.i.d. $\varepsilon_j^v \sim \mathcal{N}(0, 1)$.

• Goal: estimate $\theta = (A, b, \Omega, h)$ from y and lineage informations W.

Gene expression modelling over a lineage tree

Identification from lineage tree data

Validation in silico of the ARME algorithm

Application to the study of yeast osmotic shock response

ARME algorithm : a generalization of the SAEM algorithm

- 1. Initialisation : $\theta_0 = \vartheta_0$.
- 2. For k from 0 to N,
 - Simulation step : using MCMC methods, simulate

 $(\varphi_v^k)_{v\geq 0}\sim p((\varphi_v)_{v\geq 0}|Y,W,\theta_k).$

Stochastic approximation step :

 $Q_{k+1}(\theta) = Q_k(\theta) + \gamma_k \left(\log(p(Y, (\varphi_v^k)_{v \ge 0} | W, \theta) - Q_k(\theta) \right).$

• Maximization step : $\theta_{k+1} = \operatorname{argmax}_{\theta} (Q_{k+1}(\theta)).$

▲ For the simulation step: dependencies between individuals.

"Convergence of a stochastic approximation version of the EM algorithm." B. Delyon, M. Lavielle, E. Moulines, Ann. Statist. 27 (1999), no. 1, 94–128.

Implementation: detailed simulation step

 \diamond Using Metropolis-Hasting algorithm with several proposal law, simulate

```
(\varphi_v^k)_{v\geq 0} \sim p((\varphi_v)_{v\geq 0}|Y,W,\theta_k).
```

Update of $\varphi = (\varphi_v)_{v \ge 0}$

► at the **population level**: takes into account every correlations, very low acceptance rate.

Implementation: detailed simulation step

 \diamond Using Metropolis-Hasting algorithm with several proposal law, simulate

```
(\varphi_v^k)_{v\geq 0} \sim p((\varphi_v)_{v\geq 0}|Y,W,\theta_k).
```

Update of $\varphi = (\varphi_v)_{v \ge 0}$

► at the **population level**: takes into account every correlations, very low acceptance rate.

▶ at the **generation level**: takes into account the correlation with the previous and the next generation, better acceptance rate.

Implementation: detailed simulation step

 \diamond Using Metropolis-Hasting algorithm with several proposal law, simulate

```
(\varphi_v^k)_{v\geq 0} \sim p((\varphi_v)_{v\geq 0}|Y,W,\theta_k).
```

Update of $\varphi = (\varphi_v)_{v \ge 0}$

► at the **population level**: takes into account every correlations, very low acceptance rate.

▶ at the **generation level**: takes into account the correlation with the previous and the next generation, better acceptance rate.

► at the **individual level**: does not take into account any correlation, adaptative acceptance rate.

Gene expression modelling over a lineage tree

Identification from lineage tree data

Validation in silico of the ARME algorithm

Application to the study of yeast osmotic shock response

Validation in silico of the ARME algorithm

Simulation of 20 datasets with

- ▶ 128 individuals (7 generations),
- ▶ a fixed value of k_m , for identifiability reasons,
- inheritance parameter A = Diag(0.5, 0.5, 0.5),
- ▶ global mean parameter $b = [\log(0.294), \log(0.947), \log(0.1)]^T$,
- global covariance parameter $\Omega = Diag(0.1, 0.1, 0.1)$,

▶ noise of measure h = 20,

Validation in silico of the ARME algorithm

Validation in silico of the ARME algorithm

Gene expression modelling over a lineage tree

Identification from lineage tree data

Validation in silico of the ARME algorithm

Application to the study of yeast osmotic shock response

Application to the study of yeast osmotic shock response

Extended model for gene expression (Llamosi et al. (2016)):

$$\begin{cases} \dot{u}(t) = k_h u_c(t) - g_h u(t), \\ \dot{m}(t) = k_m u(t) - g_m m(t), \\ \dot{p}(t) = k_p m(t) - g_p p(t), \end{cases}$$

with fixed values for k_h and g_h .

► Maturation time for reporter molecules.

▶ Budding yeast (*S. cerevisiae*): the mother keeps its own kinetic parameter at division.

Single-cell data fits after ARME identification

Results from identification of a ARME model

Conclusions

- ◆ Daughter cell parameters are determined by the mother to an extent as large as 60% (a state-of-the art indirect method assessed this value at 20 40%).
- Indirect methods underestimate inheritance
- Inheritance is equal for the different parameters: it acts at the level of global regulatory factors (at least for the system and data we examined).

Perspectives

- Consider intrinsic noise, more complex inheritance models, etc.
- Proof of the convergence of the algorithm

Conclusions

- ◆ Daughter cell parameters are determined by the mother to an extent as large as 60% (a state-of-the art indirect method assessed this value at 20 40%).
- Indirect methods underestimate inheritance
- Inheritance is equal for the different parameters: it acts at the level of global regulatory factors (at least for the system and data we examined).

Perspectives

- Consider intrinsic noise, more complex inheritance models, etc.
- Proof of the convergence of the algorithm

Thank you for your attention!

Performance in presence of intrinsic noise

Performance in presence of intrinsic noise

Experimental design

