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Stability of ecosystems

* Most ecologists describe ecosystem stability as the ability of an ecosystem to
maintain its structure and function over long period of time and despite
disturbances

e Natural ecosystems experience regular punctual environmental changes, or
disturbances

— Fire; flooding; storm; Insect outbreak...

e The Anthropocene is characterized by
— Anincrease in the frequency and amplitude of pulse perturbations
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Stability is a central concept of ecological science since its infancy, and is getting more and more interest recently. 
Its definition is largely related to perturbations. Perturbations that occur naturally are often called disturbances.
In ecology, perturbations or disturbances are classified in two main categories depending on the whether their effect is punctual or sustained in time.
Examples of punctual perturbations, also called pulse perturbations, are things like fire or flooding that occur repeatedly and naturally.
Currently, one characteristic of the Anthropocene is that such pulse perturbations happen more frequently, and that their amplitude, or strength, is increasing. 
As an example of that, you have the number of fire per year in the United States from 1950 to 2017 (left) and the number of mega fire per year from 1970 to 2017. A mega fire being defined as a fire that burn more than 100,000 acres
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The other type of perturbation are the ones that are sustained in time, imposing a forcing to the system, and that are called press perturbations. One can think of climate warming, diversity loss, enrichment…
Press perturbations are linked to the planetary boundary concept, from the Stockholm resilience center (https://www.stockholmresilience.org/research/planetary-boundaries.html). The idea is that there are limits over which the intensity of some press perturbation would result in unfavorable condition for humans. Some of these perturbations are already beyond the estimated safe zone. 
 



Complexity stability relashionship

e Original idea:

e Theoretical and experimental evidence that simple model

ecosystems are inherently unstable

e Observations suggest that diversity of species and interactions

among them favor community stability
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From the origin, ecologists such as Odum, Elton, or MacArthur, suggested that there was a link between the complexity of ecosystems and their stability. On one side, tropical forests harboring so many different species and that are so stable, and on the other side, crop fields with only one variety growing that are known to be susceptible to important pest damage.
This general beliefs was challenge in the 70’s by May, whose demonstrated that dynamical systems such as many species depending on each other (bottom left), using simple models as the ones presented in the last lesson (to the right), are less stable (measured as engineering resilience) when they are more complex.
He mathematically show that for a system to be stable, the equation at the bottom right should be respected. This means that the effect species have on each other should not be too strong (i), the total number of species should not be too high (S) and the number of interaction among species should not be too high (C).
This challenging theoretical result generated lots of work on the topic. One key assumption of May’s model is that interactions are randomly assigned among species. In other words, that there is no structure in ecological interaction networks. Current works indicate that ecosystems can harbor many species with lots of interactions among them because the way interactions are organized among species is not random.
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 How to reconcile May’s results with the idea that complexity favors
stability?

 Empirical approches to ecological stability

 The dimensionality of ecological stability
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Network structure and community dynamic
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Considering effects of foraging adaptation
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Considering effects of foraging adaptation
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Stabilty of networks integrating different interaction types
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 How to reconcile May’s results with the idea that complexity favors
stability?

 Empirical approches to ecological stability

 The dimensionality of ecological stability



The relationship between diversity and
temporal stability of communities
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Relative abundances

Evolutionary history of species and
the temporal stability of biomass production
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But are species fluctuations random? 
We know that different species share different amount of common evolutionary history. This is illustrated by the phylogeny (tree of life) on the left. Sister species, i.e. species close in the phylogeny such as the two black circles, share a lot of common evolutionary history and thereby might resemble each other and respond to environment fluctuation similarly. On the contrary, species faraway in the phylogeny might respond differently (figure middle top). The more different are the species fluctuations the more they compensate each other at community level (solid lines in the graphs). 
This hypothesis was tested using the experiment presented earlier. The results are presented in the graph on the right where points are plots and the Realized Had is a measurement of how distant in the phylogeny are species within communities. The results indicate that plot sawn with species from different position in the phylogeny were indeed the more stable.
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This study quantifies the temporal stability (variability in time), as well as the resistance and resilience to extreme climatic events from several experiments that manipulated the species richness (number of species) of plant communities in Europe and North America (map). They found the already presented relationship between species richness and temporal stability (left), but also that species rich communities are more resistant to extreme events. Regarding engineering resilience, they found mixed results, with species richness increasing the resilience in dry ecosystems but not in wet ones.
 



The relationship between diversity and
temporal stability of communities:
Limits of existing empirical studies

» Mostly comes from plant experimental communities
- diversity - stability relationship for other taxa?
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Data from citizen science programs to investigate the links between land
uses, species diversity and community stability
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Annual abundances of communities:
161 bat communities for 4 year

269 bird communities for 8 years

130 butterfly communities for 7 years

Standardized protocols in fixed sites

Non-lethal monitoring

Olivier et al. 2020



Assessing the links among:
land uses, species diversity and community stability

» 8 landscape variables " |
Agriculture

intensification

Olivier et al. 2020



Assessing the links among:
land uses, species diversity and communi

» 8 landscape variables

» Species richness and phylogenetic diversity
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Assessing the links among:
land uses, species diversity and community stability
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Results: relation between diversity and community stability
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Results: relation between land use and community stability
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Results: disentangling the effects of land use and diversity on
community stability
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Results: disentangling the effects of land use and diversity
on community stability

Effects on community stability

Diversity:
Total effects
Richness effects
Phylogenetic diversity effects
Effects via population stability

Effects via population asynchrony
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Negative effects of diversity
loss on community stability
mainly mediated through
decreased population
asynchrony

Olivier et al. 2020



Effects of habitat degradation and diversity loss on community stability
Conclusion

» Anthropogenic habitat degradation and species diversity loss have
both destabilizing effects at community level

» While the stabilizing effects of diversity are mediated by greater
population asynchrony, the destabilizing effects of habitat
degradation are mainly channeled by lower population stability

» These results suggest that classical studies on the diversity-
stability relationship might miss a critical determinant of natural
community stability by not including perturbations into the
framework



Stability of empirical multitrophic communities
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Stability of empirical multitrophic communities

» Standardized monitoring of river fish communities (ONEMA/OFB)
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Stability of empirical multitrophic communities

» Standardized monitoring of river fish communities (ONEMA/OFB)
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Stability of empirical multitrophic communities

Biomass stability
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 How to reconcile May’s results with the idea that complexity favors
stability?

 Empirical approches to ecological stability

 The dimensionality of ecological stability



What is the dimensionality of ecological stability?

Niche model to define network structure
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Three type of perturbations:

e pulse (e.g. mortality events)
e press (e.g. increased mortality rate, extinctions)
e environmental stochasticity (e.g. white noise)

Twenty seven stability metrics

Name Acronym [equation in Name Acronym [equation in
(time scale) 51 Appendix, section 10] (time scale) Si Appendix, section 10]
Reactivity (initial) Ro [6], MRg [11]

Maximum amplification
(transient) Amax [9], MAmzy [12]

Time to maximum amplification
(transient) Tmax, Mtmax

Resilience (long-term) Rins [10], MRy [13]

Stochastic invariability
(long-term) Is [14]

Sensitivity matrix (long-term)
<s; = [16], 5[15]

Tolerance (long-term):
To mortality ™ [17]

< TM' >, TML,,,

To extinctions <TE=>

Resistance of total biomass (long-term):

To mortality RMC [18]
< RM" =, RM,
To extinctions < RE = [20], REmax
Cascading extinctions (long-term) < CE =, CEmax

Sensitivity of species’ biomass (long-term):
To mortality SMC [19]

< SM* >, SME.,

To extinctions < SE = [21], SEmax

Domingues-Garcia et al. 2019



What is the dimensionality of ecological stability?

Modularity analysis on the spearman correlation
coefficients among stability metrics
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Effect of perturbations on the dimensionality of stability
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Insecticide x Herbicide x nutrients
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Effect of perturbations on the dimensionality of stability
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Effect of perturbations on the dimensionality of stability

.'\"\-

(@) No Nutrients (b) Nutrients

1.00 1 1.00 |

0.75 4 ; ‘ 0.75 1
o
£ :
S 050 0.50 -
> ° ] ® e

_'._..?_
0.25 - 0 025{ [~ :"j :
0.00 0.00 -
| H IxH | H IxH

Pollazo et al. 2021



Species contribution to different components of stability

Species loss Pulse perturbation
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White et al. (2020)



Species contribution to different components of stability
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Mathematical relationship among stability new metrics

Fulse perturbation

Persistent perturbation — white noise

Persistent perturbation — single frequency

AWA

A

ViRV,

A

slowest asymptotic rate

of return to equilibrivm

— asymptotic
resilience R«

slowest initial rate
of return to equilibrium
— initial

resilience R

most variable response
(as a function of
perturbation direction)
— stochastic
invariability 7s

largest amplitude

(over frequency and

perturbation direction)

— deterministic
invariability Tp

Stability measure Interpretation Formula
Asymptotic Slowest asympt. rate of return R = —R(Adom(A4)) ()
resilience to equilibrium after a shock.

Deterministic Inverse of maximal response Ip = (sup,, ||(iw — A)~1|[)~? (b)
invariability amplitude to periodic foreing.

Stochastic Inverse of maximal response Is = %H - :ii_l||_1 ()
invariability variance to white-noise.

Initial Slowest initial rate of return Ry = —%)«dmn(.ﬁi + AN (d)
resilience to equilibrium after a shock.

(3) A jom is the eigenvalue of community matrix A with maximal real part R(Agom)-

(b) 5

i is the imaginary unit and w > 0. || - || is the spectral norm of matrices.

A=A @1+ 1@ A where [ is the identity matrix; @ is the Kronecker product.

() AT is the transpose of A.

Ro<Is<Ip <R,

Arnoldi et al. 2016
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