When do opposites attract? Impact of genetic architecture on the evolution of disassortative mating

Ludovic Maisonneuve PhD student supervised by Violaine Llaurens and Charline Smadi

Institut de Systématique, Evolution et Biodiversité (UMR 7205 CNRS/MNHN/SU/EPHE/UA) Muséum National d'Histoire Naturelle - CP50 45 rue Buffon 75005 PARIS FRANCE

@Imaisonneuve5

ludovic.maisonneuve@mnhn.fr

1. Males 2. Fearate Plant Cornus Florida-Vulgo DogWood.

Mate choice is key to evolution

How do mate preferences evolve ?

Fixed cost

Preference

Fixed cost

Preference

Methods

Disassortative mating

Lowter et al. 1961

Methods

Disassortative mating

Lowter et al. 1961

Methods

Disassortative mating

Lowter et al. 1961

Methods

Disassortative mating

Lowter et al. 1961

Introduction

The disassortative mating seems rare

Conclusion

Introduction

The disassortative mating seems rare

Conclusion

Introduction

The disassortative mating seems rare

Random mating

Introduction

The disassortative mating seems rare

Random mating

Introduction

The disassortative mating seems rare

How does disassortative mating evolve?

Random mating

Assortative mating

Methods

Cue locus

Results

Conclusion

Preference locus

 $1 + h_w$

w/t

Methods

Cue locus

Results

Conclusion

Preference locus

 $\int 1 + h_w$

w/t

Methods

Results

 $\int 1 + h_w$

w/t

Methods

Quasi Linkage Equilibrium analysis

Quasi Linkage Equilibrium analysis

Quasi Linkage Equilibrium analysis

2 allelic frequencies p_w (white allele) et p_m (disassortative mating allele)

9 genetic association terms

Assuming weak viable and sexual selection compared to recombination

2 allelic frequencies p_w (white allele) et p_m (disassortative mating allele)

9 genetic association terms

Assuming weak viable and sexual selection compared to recombination

Association term reached equilibrium faster than allelic frequency

2 allelic frequencies p_w (white allele) et p_m (disassortative mating allele)

9 genetic association terms

Under QLE hypothesis

$$\Delta p_m \approx G_{he,m}(H_{ns} + H_{ss}) + (G_{wm} + G_{w,m}) \frac{\Delta p_w}{D_C} + \mathbf{cost}$$

Under QLE hypothesis

$$\Delta p_m \approx G_{he,m}(H_{ns} + H_{ss}) + (G_{wm} + G_{w,m}) \frac{\Delta p_w}{D_C} + \mathbf{cost}$$

$$G_{he,m} \approx \frac{1}{2} p_m (1 - p_m) (p_w (1 - p_w))^2 \Delta \rho (p_w^2 + (1 - p_w)^2 + h_w (1 - 2p_w)) > 0$$

Under QLE hypothesis

$$\Delta p_m \approx G_{he,m}(H_{ns} + H_{ss}) + (G_{wm} + G_{w,m}) \frac{\Delta p_w}{D_C} + \mathbf{cost}$$

 $G_{he,m} \approx \frac{1}{2} p_m (1 - p_m) (p_w (1 - p_w))^2 \Delta \rho (p_w^2 + (1 - p_w)^2 + h_w (1 - 2p_w)) > 0$ the disassortative mating allele is associated with heterozygote

Under QLE hypothesis

$$\Delta p_m \approx G_{he,m}(H_{ns} + H_{ss}) + (G_{wm} + G_{w,m}) \frac{\Delta p_w}{D_C} + \mathbf{cost}$$

 $G_{he,m} \approx \frac{1}{2} p_m (1 - p_m) (p_w (1 - p_w))^2 \Delta \rho (p_w^2 + (1 - p_w)^2 + h_w (1 - 2p_w)) > 0$ the disassortative mating allele is associated with heterozygote

genetic association

Under QLE hypothesis

$$\Delta p_m \approx G_{he,m}(H_{ns} + H_{ss}) + (G_{wm} + G_{w,m}) \frac{\Delta p_w}{D_C} + \mathbf{cost}$$

$$G_{he,m} \approx \frac{1}{2} p_m (1 - p_m) (p_w (1 - p_w))^2 \Delta \rho (p_w^2 + (1 - p_w)^2 + h_w (1 - 2p_w)) > 0$$

the disassortative mating allele
is associated with heterozygote

$$G_{wm} \approx G_{w,m} \approx \frac{p_m (1 - p_m) p_w (1 - p_w)}{2} \Delta \rho (((1 - p_w)^4 - p_w^4) + \frac{h_w}{2} (p_w^2 + (1 - p_w)^2 - 2p_w (1 - p_w)^2) - 2p_w (1 - p_w)^4 - p_w^4) + \frac{h_w}{2} (p_w^2 + (1 - p_w)^2 - 2p_w (1 - p_w)^4) + \frac{h_w}{2} (p_w^2 + p_w^2 + p_w^2) + \frac{h_w}{2} (p_w^2 + p_w^2 + p_w^2) + \frac{h_w}{2} (p_w^2 + p_w^2 + p_w^2) + \frac{h_w}{2} (p_w^2 + p_w$$

genetic association

Under QLE hypothesis

$$\Delta p_m \approx G_{he,m}(H_{ns} + H_{ss}) + (G_{wm} + G_{w,m}) \frac{\Delta p_w}{D_C} + \mathbf{cost}$$

$$G_{he,m} \approx \frac{1}{2} p_m (1 - p_m) (p_w (1 - p_w))^2 \Delta \rho (p_w^2 + (1 - p_w)^2 + h_w (1 - 2p_w)) > 0$$

the disassortative mating allele
is associated with heterozygote

$$G_{wm} \approx G_{w,m} \approx \frac{p_m (1 - p_m) p_w (1 - p_w)}{2} \Delta \rho (((1 - p_w)^4 - p_w^4) + \frac{h_w}{2} (p_w^2 + (1 - p_w)^2 - 2p_w (1 - p_w)^2))$$

 $G_{\!\scriptscriptstyle W\!M}$ and $G_{\!\scriptscriptstyle W\!,m}$ as the same sign as $1-2p_{\!\scriptscriptstyle W}$

genetic association

Under QLE hypothesis

$$\Delta p_m \approx G_{he,m}(H_{ns} + H_{ss}) + (G_{wm} + G_{w,m}) \frac{\Delta p_w}{D_C} + \mathbf{cost}$$

$$G_{he,m} \approx \frac{1}{2} p_m (1 - p_m) (p_w (1 - p_w))^2 \Delta \rho (p_w^2 + (1 - p_w)^2 + h_w (1 - 2p_w)) > 0$$

the disassortative mating allele
is associated with heterozygote

$$G_{wm} \approx G_{w,m} \approx \frac{p_m (1 - p_m) p_w (1 - p_w)}{2} \Delta \rho(((1 - p_w)^4 - p_w^4) + \frac{h_w}{2} (p_w^2 + (1 - p_w)^2 - 2p_w (1 - p_w)^2) + \frac{h_w}{2} (p_w^2 + (1 - p_w)^2 - 2p_w (1 - p_w)^2) + \frac{h_w}{2} (p_w^2 + (1$$

 G_{wm} and $G_{w,m}$ as the same sign as $1 - 2p_w$

the disassortative mating allele is associated with the rarest allele

genetic association

Under QLE hypothesis

$$\Delta p_m \approx G_{he,m}(H_{ns} + H_{ss}) + (G_{wm} + G_{w,m}) \frac{\Delta p_w}{D_C} + \mathbf{cost}$$

$$G_{he,m} \approx \frac{1}{2} p_m (1 - p_m) (p_w (1 - p_w))^2 \Delta \rho (p_w^2 + (1 - p_w)^2 + h_w (1 - 2p_w)) > 0$$

the disassortative mating allele
is associated with heterozygote

$$G_{wm} \approx G_{w,m} \approx \frac{p_m (1 - p_m) p_w (1 - p_w)}{2} \Delta \rho(((1 - p_w)^4 - p_w^4) + \frac{h_w}{2} (p_w^2 + (1 - p_w)^2 - 2p_w (1 - p_w)^2) + \frac{h_w}{2} (p_w^2 + (1 - p_w)^2 - 2p_w (1 - p_w)^2) + \frac{h_w}{2} (p_w^2 + (1$$

 G_{wm} and $G_{w,m}$ as the same sign as $1-2p_w$

the disassortative mating allele is associated with the rarest allele

Relaxing QLE hypothesis

V

Relaxing QLE hypothesis

Under QLE hypothesis

The negative feedback limiting the evolution of disassortative mating is minimal when one cue allele is rare and dominant

High level of disassortative mating is promoted when the dominant cue allele is associated with genetic load

High level of disassortative mating is promoted when the dominant cue allele is associated with genetic load **Genetic load**

High level of disassortative mating is promoted when the dominant cue allele is associated with genetic load **Genetic load**

Methods

Prediction matches with disassortative mating observed in the *white throated sparrow*

1.0

significantly different from zero

no significantly different from zero

Genetic architecture of cue

_

-

Thank you for your attention !!

When do opposites attract? A model uncovering the evolution of disassortative mating, The American Naturalist, In press

Thomas **Beneteau**

Mathieu Joron

Charline Smadi

Violaine Llaurens

Mhite Throated Sparrow FRINGILLA PENSYLVANICA

1. Males 2. Permite Plant Cornus Florida-Vulgo BogWood.

National Audubon Society

