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Network data

Networks arise when one want to study interactions between entities of a
(eco)system.
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Biological networks at all scales

• Molecular networks: gene regulation, proteines interactions,
• Microbiote: interactions between micro-organisms, (bacterias,

fungi...)
• Ecological networks : Food web, Co-existence networks,

Host-parasite interactions, Plant-pollinator interactions
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Ecological networks

• Direct observations
• Direct application: allows to modelize the robustness of an

ecosystem
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Why are networks popular?

• Encodes/summarizes interactions between a large number of entities
• Represent a complex system in a synthetic and generic way
• Network: interesting mathematical object
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Statistical goal

• Unraveling / describing / modeling / summarizing the network
organization.

• Discovering particular structure of interaction between some subsets
of nodes.

• Understanding network heterogeneity.
• Inference of network: out of the scope of this talk
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Terminology

A network consists in:

• nodes/vertices which represent individuals / species / genes which
may interact or not,

• links/edges/connections which stand for an interaction between a
pair of nodes / dyads.

A network may be

• directed / oriented (e.g. food web...),
• symmetric / undirected (e.g. coexistence network),
• with or without loops.
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Bipartite / simple network

Networks may be or not bipartite: Interactions between nodes belonging
to the same or to different functional group(s).

Simple network

[Liu et al., 2019]

Bipartite network
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Network representation and adjacency matrix

For a non-directed network

Y =


0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0


• n rows and n columns,
• symmetric matrix
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Network representation and adjacency matrix

For a directed network

Y =


0 1 1 1
1 0 0 1
1 0 0 0
0 0 0 0


• n rows and n columns,
• non symmetric matrix
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Bipartite network and incidence matrix

Y =


0 0 1 1 0 0 0
0 1 0 0 1 1 0
0 0 1 0 0 0 0
0 0 0 0 1 1 0


• n rows and m columns,

rectangular matrix.
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Available data

• the network provided as:
• an adjacency matrix (for simple network) or an incidence matrix (for

bipartite network),
• a list of pair of nodes / dyads which are linked.

• some additional covariates on nodes, dyads: can account for
sampling effort, distances between species.
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Network analysis

Aim : give a short description of the network, give a hint about its
structure, look for heterogeneity in the connections

• Many metrics supplied for simple networks
• Have been extended to bipartite networks
• Metrics on nodes or on the network globally
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Example : Chilean foodweb

[Kéfi et al., 2016] [Aubert et al., 2022]
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• n = 106 species / nodes,
• density of edges: 12.1%.
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Degree

deg(u) =
∑

v∈V (u ↔ v), deg(v) =
∑

u∈U(u ↔ v)
degi =

∑|V |
j=1 Yij degj =

∑|U|
i=1 Yij

• Nodes with high degree are hubs
• Nodes with null degree are isolated
• If edges are oriented : in- and out- degrees can be computed.
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Degrees on Chilean foodweb

Out degree distribution

Histogram of outdeg
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Closeness centrality

Property on a node

Definition
Determine whether a node can communicate with other nodes of the
network directly or through the short paths.

C(u) = 1∑
w∈U∪V d(u,w)

where d(u,w) is the length of the shortest path between u and w
(through the network).

Note that, for bipartite networks

• A node u ∈ U can have a minimum distance of 1 with v ∈ V .
• A node u ∈ U can have a minimum distance of 2 with u′ ∈ U.
• All paths between nodes of the same set are of even length.
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Betweenness centrality

Property on a node

Definition
Betweenness centrality quantifies the number of times a node acts as a
bridge along the shortest path between two other nodes.

The betweenness of a vertex v is computed as follows.

• For each pair of vertices (w ,w ′), compute the shortest paths
between them. δw ,w ′ is the number of shortest paths between
(w ,w ′)

• For each pair of vertices (w ,w ′), determine the fraction of shortest
paths that pass through v : δw,w′ (v)

δw,w′

• Sum this fraction over all pairs of vertices (w ,w ′).

B(v) =
∑

w 6=w ′ 6=v

δw ,w ′(v)
δw ,w ′
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Betweenness centrality
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Nestedness

Property on the network

Definition
• Important property in ecology
• Defined as a pattern of interactions in which specialists (e.g.

pollinators that visit few plant species) interact with plants that are
visited by generalists.

• Mathematically, looking for a reordering of rows and columns such
that Y is nested
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Nestedness

• more generally used on incidence matrices,
• significance of the nestedness index computed by random

permutations of the matrix,
• this food web is found to be nested.
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Modularity

Property on the network

Definition
Existence of clusters (blocks, module, communities) where nodes are
much more connected than with other clusters
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Modularity
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Probabilistic approach

• Context: our matrix Y = (Yij)i,j=1,...,n is the realization of a
stochastic process.

• Aims:
• Propose a stochastic process is able to mimic heterogeneity in the

connections and
• Adjusting its parameters to fit the data Y.

• Advantages:
• Benefit from the statistical toolkit:

• Theoretical (asymptotic) properties, Tests, model selection
• Easy to extend to more complexe networks, to non binary

interactions, to partially observed networks etc...
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A first random graph model for network: null model

[Erdös and Rényi, 1959] Model for n nodes

∀1 ≤ i , j ≤ n, Yij
i.i.d.∼ Bern(p),

where Bern is the Bernoulli distribution and p ∈ [0, 1] a probability for a
link to exist.
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Limitations of an ER graph to describe real networks

• Homogeneity of the connections
• Degree distribution too concentrated

Di ∼ Bin(n, p)

No high degree nodes
• All nodes are equivalent (no nestedness...),
• No modularity, no hubs
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Stochastic Block Model

[Nowicki and Snijders, 2001] Let (Yij) be an adjacency matrix

Latent variables
• The nodes i = 1, . . . , n are partitionned into K clusters
• Zi = k if node i belongs to cluster (block) k
• Zi independant variables

P(Zi = k) = πk

Conditionally to (Zi )i=1,...,n...
(Yij) independant and

Yij |Zi ,Zj ∼ Bern(αZi ,Zj ) ⇔ P(Yij = 1|Zi = k,Zj = `) = αk`

Y ∼ SBMn(K ,π,α)
33



Stochastic Block Model : illustration

A1 A2

A3

α••

B1

B2

B3

B4

B5

α••

C1

C2

α••

α••

α••

α••

Parameters
Let n nodes divided into 3 clusters

• K = {•, •, •} clusters

• π• = P(i ∈ •), • ∈ K, i = 1, . . . , n

• α•• = P(i ↔ j|i ∈ •, j ∈ •)

Zi = 1{i∈•} ∼iidM(1, π), ∀• ∈ K,
Yij | {i ∈ •, j ∈ •} ∼ind B(α••)
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SBM : A great generative model

• Generative model : easy to simulate
• No a priori on the type of structure
• Combination of modularity, nestedness, etc...
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Networks with hubs generated by SBM

• π = c(.15, .35, .15, .35)

• α =


0.80 0.80 0.20 0.20
0.80 0.20 0.20 0.20
0.20 0.20 0.80 0.80
0.20 0.20 0.80 0.20


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Community network generated by SBM

• π = c(0.25, 0.35, 0.40)

• α =

 0.80 0.20 0.20
0.20 0.80 0.20
0.20 0.20 0.80


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Nestedness generated by SBM

• π = c(.15, .35, .15, .35)

• α =


0.80 0.80 0.80 0.80
0.80 0.80 0.80 0.20
0.20 0.80 0.20 0.80
0.80 0.20 0.20 0.20


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Statistical inference

N1 N2

N3 N1

N2

N3

N4

N5

N1

N2

Stochastic Block Model
Let n nodes divided into

• K = {•, •, •}, card(K) known

• π• =?,

• α•• =?

[Nowicki and Snijders, 2001], [Daudin et al., 2008]

R package: blockmodels, sbm
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Statistical inference

From....
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Statistical inference

... to
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Statistical inference

Tasks
• For a fixed number of clusters/blocks K

• Estimate the parameters :
• Block proportions π

• probabilities of connexion inside and between blocks α

• Get the better clustering Ẑ

• Find the number of clusters K

Practical implementation + Theoretical results
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Extension to bipartite networks

Let (Yij)i,j be a bi-partite network. Individuals in row and cols are not
the same (plants - pollinators for instance)

Latent variables : bi-clustering
• Nodes i = 1, . . . , n1 partitionned into K1 clusters, nodes

j = 1, . . . , n2 partitionned into K2 clusters
•

Z 1
i = k if node i belongs to cluster (block) k

Z 2
j = ` if node j belongs to cluster (block) `

• Z 1
i ,Z 2

j independent variables

P(Z 1
i = k) = π1k , P(Z 2

j = `) = π2`

43



Probabilistic model for binary bipartite networks

Conditionally to (Z 1
i )i=1,...,n1 , (Z 2

j )j=1,...,n2 ...

(Yij) independent and

Yij |Z 1
i ,Z 2

j ∼ Bern(αZ 1
i ,Z

2
j
) ⇔ P(Yij = 1|Z 1

i = k,Z 2
j = `) = αk`

[Govaert and Nadif, 2008]
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Latent Block Model : illustration

Latent Block Model
• n1 row nodes K1 = {•, •, •} classes

• π1
• = P(i ∈ •), • ∈ K1, i = 1, . . . , n

• n2 column nodes K2 = {•, •} classes

• π2
• = P(j ∈ •), • ∈ K2, j = 1, . . . ,m

• α•• = P(i ↔ j|i ∈ •, j ∈ •)

Z 1
i = 1{i∈•} ∼iidM(1,π1), ∀• ∈ Q1,

Z 2
j = 1{j∈•} ∼iidM(1,π2), ∀• ∈ Q2,

Yij | {i ∈ •, j ∈ •} ∼ind Bern(α••)

[Govaert and Nadif, 2008] and R package: blockmodels, sbm as well.
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Valued-edge networks

Values-edges networks
Information on edges can be something different from presence/absence.
It can be:
1. a count of the number of observed interactions,
2. a quantity interpreted as the interaction strength,

Natural extensions of SBM and LBM
1. Poisson distribution: Yij | {i ∈ •, j ∈ •} ∼ind P(λ••),
2. Gaussian distribution: Yij | {i ∈ •, j ∈ •} ∼ind N (µ••, σ2),

[Mariadassou et al., 2010]
3. More generally,

Yij | {i ∈ •, j ∈ •} ∼ind F(θ••)
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Multiplex networks

Several kind of interactions between nodes . For instance :

• Love and friendship
• Working relations and friendship
• In ecology : mutualistic and competition

Block model for multiplex networks
Yij ∈ {0, 1}Q = (Y a

ij ,Y b
ij ), ∀w ∈ {0, 1}2

P(Y a
ij ,Y b

ij = w |Zi = k,Zj = `) = αw
k`

[Kéfi et al., 2016], [Barbillon et al., 2017]

In R package: blockmodels, sbm when two relations are at stake.

Remark: a particular case of multiplex network is dynamic network,
[Matias and Miele, 2017].
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Taking into account covariates

Sometimes covariates are available. They may be on:

• nodes,
• edges,
• both.

1. They can be used a posteriori to explain blocks inferred by SBM.
2. Extension of the SBM which takes into account covariates. Blocks

are structure of interaction which is not explained by covariates !

If covariates are sampling conditions, case 2 be may more interesting.
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SBM with covariates

• As before : (Yij) be an adjacency matrix
• Let x ij ∈ Rp denote covariates describing the pair (i , j)

Latent variables : as before
• The nodes i = 1, . . . , n are partitioned into K clusters
• Zi independent variables

P(Zi = k) = πk

Conditionally to (Zi )i=1,...,n...
(Yij) independent and

Yij |Zi ,Zj ∼ Bern(logit(αZi ,Zj + β · xij)) if binary data
Yij |Zi ,Zj ∼ P(exp(αZi ,Zj + β · xij)) if counting data

If K = 1 : all the connection heterogeneity is explained by the covariates.
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Statistical Inference

• Selection of the number of clusters K for SBM or K1,K2 for LBM
• Estimation of the parameters π, θK for a given number of clusters
• Clustering Ẑ
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Maximum likelihood

θ̂ = arg max
θ∈Θ

`(Y; θ) = arg max
θ∈Θ

log `(Y; θ)

Looking for the value of θ such that under my SBM model, the observed
data is most probable.
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Likelihood for SBM

With latent variables Z

(Marginal) Likelihood (Y)

log `(Y; θ) = log
∑
Z∈Z

`c(Y,Z; θ) . (1)
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Complete likelihood (Y) et (Z)

For binary directed networks


Yij |Zi = k,Zj = ` ∼ind Bern(αk`)

P(Zi = k) = πk

(Zi )i=1,...n independent

`c(Y,Z; θ) = p(Y|Z;α)p(Z; π)

=
n∏

i 6=j=1
α

Yij
Zi ,Zj

(1− αZi ,Zj )1−Yij

n∏
i=1

πZi

=
n∏

(i 6=j)=1

K∏
k=1

K∏
`=1

(
α

Yij
k` (1− αk`)1−Yij

)1Zi =k1Zj =`
×

n∏
i=1

K∏
k=1

(πk)1Zi =k
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Marginal likelihood : remarks

log `(Y; θ) = log
∑
Z∈Z

`c(Y,Z; θ) .

Remarks
• Z = {1, . . . ,K}n ⇒ when K and n increase, heavy/impossible to

compute.
• Because of the

∑
Z∈Z , setting the derivatives with respect to the

parameters π, α to 0 will not lead to an explicit solution

Standard tool to maximize the likelihood when latent variables
involved : EM algorithm.
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EM algorithm [Dempster et al., 1977]

Standard EM
At iteration (t) :
• Step E: compute

Q(θ|θ(t−1)) = EZ|Y,θ(t−1) [log `c(Y,Z; θ)]

• Step M:
θ(t) = arg max

θ
Q(θ|θ(t−1))

58



Why EM seems to be a convenient solution?

Reason 1: E-step and M-step produce a sequence θ(t−1) such that

log `(Y; θ(t−1)) ≤ log `(Y; θ(t))

Proof

Reason 2: relies on log `c(Y,Z; θ)

log `c(Y,Z; θ) = log
n,K∏

(i 6=j)=1,k,`=1

(
α

Yij
k` (1− αk`)1−Yij

)1Zi =k1Zj =`

+ log
n,K∏

i=1,k=1

π
1Zi =k
k

=
n,K∑

(i 6=j)=1,k,`=1

1Zi =k1Zj =` [Yij logαk` + (1− Yij) log(1− αkl)]

+
n,K∑

i=1,k=1

1Zi =k log πk
59



Why EM is NOT a convenient solution?

Reason 2: relies on log `c(Y,Z; θ) EZ|Y,θ(t−1) [log `c(Y,Z; θ)]

EZ|Y,θ(t−1) [log `c(Y,Z; θ)]

=
n,K∑

(i 6=j)=1,k,`=1

EZ|Y,θ(t−1) [1Zi =k1Zj =`] [Yij logαk` + (1− Yij) log(1− αkl)]

+
n,K∑

i=1,k=1

EZ|Y,θ(t−1) [1Zi =k ] log πk

Problem: Zi and Zj are not independent conditionally to Y

60



DAG

Z1

Z2

Z3

Y11 Y12 Y13

Y22Y21 Y23

Y33Y31 Y32

• Step E requires the computation of EZ|Y,θ(t−1) [log `c(Y,Z; θ)]
• However, once conditioned by par Y, the Z are not independent

anymore: complex distribution if K and n big.

p(Z|Y; θ) ∝ p(Y|Z; θ)p(Z|θ)

∝
n∏

i,j=1
f (Yij ;αZi Zj )

n∏
i
πZi

Impossible to separate to get
∏

i=1 φi (Zi )
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Variational EM : maximization of a lower bound

Idea : replace the complicated distribution p(Z|Y; θ) = [Z|Y, θ] by a
simpler one.

Let RY,τ be any distribution on Z depending on a parameter τ .

Lower bound

Iθ(RY,τ ) = log `(Y; θ)−KL[RY,τ , p(·|Y; θ)] ≤ log `(Y; θ)

About the Kullback-Leibler divergence

• KL[RY,τ , p(·|Y; θ)] =
∫
ZRY,τ (Z) log RY,τ (Z)

p(Z|Y;θ) dZ ≥ 0
• KL[RY,τ , p(·|Y; θ)] 6= KL[p(·|Y; θ),RY,τ ]
• Iθ(RY,τ ) = log `(Y; θ)⇔ RY,τ = p(·|Y; θ)
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Variational EM : central equality

Let RY,τ be any distribution on Z depending on a parameter τ .

Central equality

Iθ(RY,τ ) = log `(Y; θ)−KL[RY,τ , p(·|Y; θ)] ≤ log `(Y; θ)
= ERY,τ [log `c(Y,Z; θ)]−

∑
Z
RY,τ (Z) logRY,τ (Z)

= ERY,τ [log `c(Y,Z; θ)] +H (RY,τ (Z))
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Proof i

By Bayes

log `c(Y,Z; θ) = log p(Z|Y; θ) + log `(Y; θ)
log `(Y; θ) = log `c(Y,Z; θ)− log p(Z|Y; θ)

By integration against RY,τ :

ERY,τ [log `(Y; θ)] = ERY,τ [log `c(Y,Z; θ)]− ERY,τ [log p(Z|Y; θ)]
log `(Y; θ) = ERY,τ [log `c(Y,Z; θ)]− ERY,τ [log p(·|Y; θ)]
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Proof ii

As a consequence:

Iθ(RY,τ ) = log `(Y; θ)−KL[RY,τ , p(·|Y; θ)]
= ERY,τ [log `c(Y,Z; θ)]− ERY,τ [log p(Z|Y; θ)]

−ERY,τ

[
log RY,τ (Z)

p(Z|Y; θ)

]
= ERY,τ [log `c(Y,Z; θ)]− ERY,τ [log p(Z|Y; θ)]
−ERY,τ [logRY,τ (Z)]︸ ︷︷ ︸

H(RY,τ (Z))

+ERY,τ [log p(Z|Y; θ)]

So as stated

Iθ(RY,τ ) = ERY,τ [log `c(Y,Z; θ)] +H (RY,τ (Z)) ≤ log `(Y; θ)
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Variational EM

Maximization of log `(Y; θ) w.r.t. θ replaced by maximization of the
lower bound Iθ(RY,τ ) w.r.t. τ and θ.

Iθ(RY,τ ) = log `(Y; θ)−KL[RY,τ , p(·|Y; θ)] ≤ log `(Y; θ)

Benefits
• Reformulation ERY,τ [log `c(Y,Z; θ)] +H (RY,τ (Z))
• Choose RY,τ such that the maximization / expectation calculus can

be done explicitly
• In our case: mean field approximation : neglect dependencies

between the (Zi )
PRY,τ (Zi = k) = τik
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Variational EM

Algorithm
At iteration (t), given the current value (θ(t−1),RY,τ (t−1) ),
• Step VE Maximization w.r.t. τ

τ (t) = arg max
τ∈T
Iθ(t−1) (RY,τ )

= arg max
τ∈T

log `(Y; θ(t−1))−KL[RY,τ , p(·|Y; θ(t−1))]

= arg min
τ∈T

KL[RY,τ , p(·|Y; θ(t−1))]

= arg max
τ∈T

ERY,τ

[
log `c(Y,Z; θ(t−1))

]
+H (RY,τ (Z))
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Variational EM

Algorithm
• Step M Maximization w.r.t. θ

θ(t) = arg max
θ
Iθ(RY,τ (t) )

= arg max
θ

ERY,τ(t) [log `c(Y,Z; θ)] +H
(
RY,τ (t) (Z)

)
= arg max

θ
ERY,τ(t) [log `c(Y,Z; θ)]
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Lower bound for SBM

•

Iθ(RY,τ ) =
∑
Z
RY,τ (Z) log `c(Y,Z; θ)−

∑
Z
RY,τ (Z) logRY,τ (Z) ,

•

log `c(Y,Z; θ) =
n,K∑

i,j=1,i 6=j,k,`
1Zi =k1Zj =` log p(Yij |αk`)+

n,K∑
i=1,k=1

1Zi =k log πk

• Integration with Z ∼ RY,τ

Iθ(RY,τ ) =
n,K∑

i,j=1,i 6=j,k`=1
τikτj` log p(Yij |αk`) +

n,K∑
i=1,k=1

τik log πk

−
n,K∑

i=1,k=1
τik log τik

with log p(Yij |αk`) = Yij log αk` + (1− Yij ) log(1− αk`)
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M-step for SBM i

θ(t) = arg max
θ
Iθ(t) (RY,τ (t) )

under the constraints:
∑k

k=1 πk = 1.

Maximization with respect to π is quite direct:

π̂k = 1
n

n∑
i=1

τ̂ik

For the Bernoulli SBM:

α̂k` =
∑n

i,j=1,i 6=j τ̂ik τ̂j`Yij∑n
i,j=1,i 6=j τ̂ik τ̂j`
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M-step for SBM ii

If the edge probabilities depend on covariates:

logit(pk`) = αk` + β · xij ,

then the optimization of (αk`) and (β) at step M of the VEM is not
explicit anymore and one should resort to optimization algorithms such as
Newton-Raphson algorithm.
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VE-step for SBM i

τ (t) = arg min
τ

KL[RY,τ , p(·|Y; θ(t−1))] = arg max
τ
Iθ(t−1) (RY,τ ) .

(we drop out the index (t−1) on θ)

Maximization under the constraint: ∀i = 1 . . . n,
∑K

k=1 τik = 1.

• Derivatives of

Iθ(RY,τ ) +
n∑

i=1
λi

[ K∑
k=1

τik − 1
]

with respect to (λi )i=1...n and (τik)i=1...n,k=1...K where λi are the
Lagrange multipliers,
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VE-step for SBM ii

• Leads to collection of equations: for i = 1 . . . n and k = 1 . . .K ,

K∑
`=1

n∑
j=1,j 6=i

log p(Yij |αk`)τj` + log πk − log τik + 1 + λi = 0 ,

• Leads to the following fixed point problem:

τ̂ik = e1+λiαk

n∏
j=1,j 6=i

K∏
`=1

p(Yij |αk`)τ̂j` , ∀i = 1 . . . n,∀k = 1 . . .K ,

which has to be solved under the constraints ∀i = 1 . . . n,∑K
k=1 τik = 1. This optimization problem is solved using a standard

fixed point algorithm.
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In practice

• Really fast
• Strongly depends on the initial values
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Theoretical properties

• Identifiability and a first consistency result by [Celisse et al., 2012]
• Consistency of the posterior distribution of the latent variables

[Mariadassou and Matias, 2015]
• Consistency and properties of the variational estimators

[Bickel et al., 2013]
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Model selection objective

Aim: choosing the number of clusters K (or K1, K2 in the LBM)

Remark K 7→ log `(Y, θ̂K )

• Maximized likelihood is not a good criterion
• Occam’s razor (philocophical principle): a model with fewer

parameters, is to be preferred.
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Penalized likelihood

Introduce a penalty term taking into account the number of parameters
to estimate AND the size of the data Y

K̂ = arg max
K

log `(Y, θ̂K )− pen(n,K )

when pen(n,K ) has to be chosen.
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Bayesian model selection in two slides i

Generally speaking

• LetMK be a stochastic model depending on parameters θK

Yn|θK ,MK ∼ `MK (·|θK )

• Prior distributions
• Prior distribution on θK |MK = pK (θK )
• Prior distribution onMK = p(MK ) ∝ 1

• Posterior probability

p(MK |Yn) = m(Yn|MK )p(K )
p(Yn) ∝ m(Y|MK )p(MK ) ∝ m(Yn|MK )
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Bayesian model selection in two slides ii

• Best model a posteriori
Chose

M̂K = arg max
MK

p(MK |Yn) = arg max
MK

m(Y|MK )
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Bayesian Information Criterion

• Relies on m(Yn|MK ) where

m(Yn|MK ) =
∫
θK

`MK (Yn|θK )pK (θK )dθK

θK has to be integrated out!
• Asymptotic approximation (Laplace approximation)

log m(Yn|MK ) n→∞max
θK

log `MK (Yn|θK )− dim(θK )
2 log n.

• BIC
K̂ = arg max

K
log `(Y, θ̂K )− dim(θK )

2 log n
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Limitations for SBM

• `MK (Yn|θK ) : latent variables have been integrated. Too heavy to
compute

• Laplace approximation relies on regularity conditions that we do not
have here
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Towards ICL [Biernacki et al., 2000] i

BIC if Z is observed.

• Assume that Y and Z are distributed as SBM.
• Let p(θK ) be a prior distribution on θK .

(π1, . . . πK ) ∼ Dir(b, . . . , b)
αk` ∼ Beta(a, c)

Then

log m(Y,Z|K ) = log
∫
θK

p(Y,Z; θK )p(dθK )

≈ n→∞ max
θK

log p(Y,Z; θK )− pen(MK ) (2)
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Towards ICL [Biernacki et al., 2000] ii

where

pen(MK ) = 1
2
{

(K − 1) log(n) + K 2 log(n(n − 1))
}

(3)

Proof
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From BIC to ICL

• Latent variables Z are not observed
• Remove Z in BIC : either maximize or integrate

ICL(MK) = Ep(Z|Y,θ̂K )[log `c(Y,Z; θ̂K )]− pen(MK ). (4)

Finally

K̂ = arg max
K

ICL(MK )

[Biernacki et al., 2000]
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Remarks

ICL(MK ) = Ep(Z|Y,θ̂K )[log `c(Y,Z; θ̂K )]− pen(MK ).

= `(Y; θ̂K )−H
(

p(Z|Y, θ̂K )
)
− pen(MK )

= BIC(MK )−H
(

p(Z|Y, θ̂K )
)

As a consequence, because of the entropy, ICL will encourage clustering
with well-separated groups

Advantages of the ICL

• its capacity to outline the clustering structure in networks
• Involves a trade-off between goodness of fit and model complexity
• ICL values : goodness of fit AND clustering sharpness.
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Penalization term for bipartite networks

penM = −1
2

(K1 − 1) log(n1) + (K2 − 1) log(n2)︸ ︷︷ ︸
Bi-Clust.

+ (K1K2) log(n1n2)︸ ︷︷ ︸
Connection


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Algorithm in practice

• Going trough the models and initiate VEM at the same time
• Bounds on K : {Kmin, . . . ,Kmax}

Stepwise procedure
Starting from K

• Split : if K < Kmax

• Maximize the likelihood (lower bound) ofMK+1

• K initializations of the VEM are proposed : split each cluster into 2
clusters

• Merge : If K > Kmin

• Maximize the likelihood (lower bound) of modelMK−1

• K(K−1)
2 initializations of the VEM are proposed : merging all the

possible pairs of clusters
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Chilean foodweb
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Chilean foodweb

• Intertidal zone of the Chilean Pacific coast
• 106 animal or plant species, sessile or mobile
• 1362 trophic interactions
• [Kéfi et al., 2016]
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Application on Chilean
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Application on Chilean foodweb

• Schematic representation (inspired by [Picard et al., 2009])
• Left: each vertex is a block and the thickness of the edges represents

the probability of interactions between each block (above the 0.1
threshold, for clarity)

• Right: type of species representative of each block. From top to
bottom: anemone and gull (B1), chiton (B2), Fissurella (B3),
Balanus and mussel (B4), crab (B5), Laminariale (B6) and red algae
(B7)
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Studying the blocks

• B1:
• gather the "super-predators" (top of the trophic chain) which have

no predators except some rare trophic links between them
• wide taxonomic variability, including diverse species such as the

anemone or the gull

• ...
• B6 and B7 contain basal algal species, including brown algae and

red algae respectively, and which are resources for various mollusks.
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Finally

• SBM allows to summarize the complexity induced by the observation
of more than a thousand interactions.

• The interpretation of its parameters (the probabilities of interactions
between each block) allows a synthetic description of the ecosystem,

• Interpretation of the blocks with exogenous information such as
taxonomy and ecological traits.
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Application on an a tree-fungus bipartite network

R package sbm

Vignette of the sbm R package
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Other extensions

• Time evolving networks Matias
• Multipartite, Multiplexe networks (R-package sbm, Bar-Hen,

Barbillon, Donnet)
• Multilevel networks (individuals and organizations)

(Chabbert-Liddell)
• Missing data in the network,
• Sampling effort (Emré Anakok, Pierre Barbillon, Colin Fontaine et

Elisa Thébault)
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Probabilistic model for networks in a nutshell

SBM/LBM

• generative models,
• flexible,
• comprehensive models which can be linked to a lot of classical

descriptors.
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About the EM algorithm

• First proposed by [Dempster et al., 1977] for a large class of
incomplete data models, including mixture models.

• Based on a decomposition of the incomplete data likelihood.

Proposition (Decomposition of the log-likelihood)
For any θ and θ′

log pθ(Y) = Eθ′ [log pθ(Y,Z)|Y ]− Eθ′ [log pθ(Z|Y)|Y] .
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Proof

It suffices to develop

Eθ′ [log pθ(Z|Y)|Y] = Eθ′ [log pθ(Y,Z)− log pθ(Y)|Y]

reminding that Eθ′ [log pθ(Y)|Y] = log pθ(Y ).
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Remarks

1. Decomposition of Slide 106 is convenient bacause makes a
connexion between log pθ(Y) (often intractable) and log pθ(Y,Z)
(generally more manageable).

2. if θ′ = θ, the second term is the entropy of the latent variables Z
given the observed Y:

H[pθ(Z|Y)] := −Eθ[log pθ(Z|Y)|Y]
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EM Algorithm

θ̂ = arg max
θ

log pθ(Y).

Algorithm (EM)
Repeat until convergence:

Expectation step (E-step) given the current estimate θh of θ,
compute pθh (Z|Y), or at least all the quantities needed to compute
Eθh [log pθ(Y,Z)|Y];
Maximization step (M-step) update the estimate of θ as

θh+1 = arg max
θ

Eθh [log pθ(Y,Z)|Y].
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Property

Proposition
The log-likelihood of the observed data log pθ(Y) increases at each step:

log pθh+1(Y) ≥ log pθh (Y).
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Proof i

Because θh+1 = arg maxθ Eθh [log pθ(Y,Z)|Y], we have

0 ≤ Eθh [log pθh+1(Y,Z)|Y]− Eθh [log pθh (Y,Z)|Y] (5)

= Eθh

[
log pθh+1(Y,Z)

pθh (Y,Z) |Y
]

(6)

≤ logEθh

[
pθh+1(Y,Z)
pθh (Y,Z) |Y

]
(7)

by Jensen’s inequality.
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Proof ii

We further develop logEθh [pθh+1(Y,Z) /pθh (Y,Z) |Y] as

log
∫ pθh+1(Y,Z)

pθh (Y,Z) pθh (Z|Y) dZ = log
∫ pθh+1(Y,Z)

pθh (Y,Z)
pθh (Y,Z)
pθh (Y) dZ(8)

= log
[

1
pθh (Y)

∫
pθh+1(Y,Z) dZ

]
(9)

= log
[

pθh+1(Y)
pθh (Y)

]
(10)

Finally :

log
[

pθh+1(Y)
pθh (Y)

]
≥ 0
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Convergence

There is no general guaranty about the convergence of the EM algorithm
towards the MLE θ̂. The main property is that the observed likelihood
increases at each iteration step.

Although, in practice : very sensible to the initialisation point.
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Illustration of the problems of convergence (I)

Mixture model
Yi ∼i.i.d.

1
2N (µ1, 1) + 1

2N (µ2, 2)

or equivalently

P(Zi = 1) = P(Zi = 2) = 1
2

Yi |Zi = k ∼ N (µk , 1)
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Illustration of the problems of convergence (I)
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Illustration of the problems of convergence (II)
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Illustration of the problems of convergence (III)
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Proof of the ICL expression

By definition, the marginal complete likelihood is:

log m(Y,Z|K ) = log
∫

p(Y,Z; θK )p(dθK )

= log
∫

p(Y|Z; αK )p(dαK ) + log
∫

p(Z; πK )p(dπK )

= log m(Y|Z,K ) + log m(Z|K )
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Proof: about log m(Y|Z, K ) i

log
∫

p(Y|Z; α)p(dα) = log
∫ K∏

k,`=1

∏
i,j|Zi =k,Zj =`

p(Yij |Zi ,Zj ;αk`)p(αk`)dαk`

=
K∑

k,`=1
log
[∫

e
∑

(i,j)∈Sk`
f (Yij ,αk`)p(αk`)dαk`

]

with Sk` = {(i , j)|Zi = k,Zj = `}.

In each term, (Yij)ij are i.i.d: ∀(k, `), BIC-like approximation:

log
[∫

e
∑

(i,j)∈Sk`
f (Xij ,αk`)p(αk`)dαk`

]
≈n→∞ max

αk`

∑
(i,j)∈Sk`

f (Xij , αk`)−
1
2 log

(
n(n − 1)

2

)
+ On(1) .
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Proof: about log m(Y|Z, K ) ii

As a consequence,

log m(Y|Z,K ) ≈n→∞ max
α

log p(Y|Z; α)− 1
2

K (K + 1)
2 log

(
n(n − 1)

2

)
(11)
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Proof: about log m(Z|K ) i

• p(Z; π) =
∏K

k=1(πk)Nk with Nk =
∑n

i=1 1Zi =k

• Dirichlet prior distribution is conjugate

log m(Z|K ) = log
∫

p(Z; π)p(π)dπ = log Γ(bK )
Γ(b)K

∏K
k=1 Γ(Nk + b)
Γ(n + bK )

(12)
where Γ is the Gamma function.

log m(Z|K ) ≈n→∞ max
π

log p(Y|Z; π)− 1
2(K − 1) log(n) (13)

[Daudin et al., 2008] [Brault, 2014]
Back to the talk
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