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Output of the SBM inference

By infering the SBM on my network I get:

• Z: A clustering of the nodes/ species playing the same role in the
network

• α̂, π̂ : a mesoscopic view ot the network

What can I do with that?

• Clustering of the nodes: studying the species, linking the clustering
with other traits

• Resume of the structure:
• Using the influence of this mescopic structure to its robustness to

species extinction for instance? [Chabert-Liddell et al., 2022]
• Comparing networks? Clustering networks?
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Collection of networks: consensus in the structure

Objectives
Looking for commun patterns in networks involving non-common sets of
nodes

Applications

• Compare the structure of ecological networks
• Compare sociological networks : advices between lawyers,

researchers, judges, or priests
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Three foodwebs

• Pine-forest stream food webs issued from Maine, North-Caroline and
New-Zealand [Thompson and Townsend, 2003]

• Involve respectively 105, 58 and 71 species.
• Yij = 1 if i is eaten by j . Directed relation

• Look for similarities and differences between network structures.
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Separate SBMs

• Fitted SBM on each separately
• Reordered the matrices following the blocks
• Label the blocks following the average out-degrees order
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Separate SBMs

• Two bottom groups in each matrix are basal species : eaten by
many species and not eating anybody.

• • Martins: has a separation into 5 blocks, the third one is a medium
trophic level, which preys on basal species and is highly preyed by
species of the 1st block.

• Cooper. Higher trophic levels grouped together in the same block
(lack of statistical power).

• Herlzier: higher trophic level is separated into 2 blocks determined
on how much they prey on the less preyed basal block. 8
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Towards a joint modeling of the networks

• Need to model jointly the networks
• Identify the groups playing the same role through out the networks,

with an unsupervised strategy.
• Let (Ym)m=1,...,M denote the collection of networks each involving

nm nodes.
• (Ym) independent.
•

Ym ∼ SBMnm (Km,π
m,αm)

• Conditions on the parameters (πm)m=1,...,M and (αm)m=1,...,M
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First naive model

iid-colSBM

Ym ∼ SBMnm (K ,π,α)

with πk > 0 ∀k ∈ {1, . . . ,K} and
∑K

k=1 πk = 1.

• (K − 1) + K 2 unknown parameters, M clusterings (one for each
network)

• Too strict to be applied to the Thomson’s dataset
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A first relaxed model : π-colSBM

Same structure of connection α, specific proportions of blocks in each
network

π-colSBM

Ym ∼ SBMnm (K ,πm,α)

On the block proportions

• πm
k ≥ 0

• If πm
k = 0 then block k is not represented in network m
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π-colSBM: different proportions

M = 2 networks

α =

α11 α12 α13

α12 α22 α23

α13 α23 α33

 π1 = [.25, .25, .50]
π2 = [.20, .50, .30]

.

• Same connection structure between blocks
• Different block proportions
• 2× (3− 1) + 32 = 15 parameters.
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π-colSBM: nested structures

πm
k ≥ 0

α =

α11 α12 α13

α12 α22 α23

α13 α23 α33

 π1 = [.25, .25, .50]
π2 = [.40, 0 , .60]

.

• Blocks 1 and 3 are represented in the two networks while block 2
only exists in network 1.

• 3− 1 + 3− 2 + 32 = 14 parameters
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π-colSBM: partially nested structures

α =

α11 α12 α13

α21 α22 ·
α31 · α33

 π1 = [.25, .75, 0 ]
π2 = [.40, 0 , .60]

.

• The two networks share block 1 (for instance super predators or
basal species)

• The remaining nodes of each network not equivalent in terms of
connectivity.

• Blocks 2 and 3 never interact because their elements do not belong
to the same network and so α23 and α32 are not required to define
the model.

• (2− 1) + (2− 1) + 7 = 11 parameters.
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Number of parameters

Let S be the support M × K matrix such that

Smk =
{
1 if πm

k > 0
0 otherwise .

Then,

Nb(π-colSBM) =
M∑

m=1

( K∑
k=1

Skm − 1
)

+
K∑

k,`=1
1(S′S)k`>0
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Varying density model : δ-colSBM

δ-colSBM

Ym ∼ SBMnm (K ,π, δmα)

with πk > 0,

• M networks exhibit similar intra- and inter blocks connectivity
patterns but with proper densities.

• δm be a density parameter, specific to each network. δ1 = 1.
• Mimics differences of effort sampling or abundances
• (K − 1) + K 2 + (M − 1) parameters.
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Varying density and block proportion model

δπ-colSBM

Ym ∼ SBMnm (K ,πm, δmα)

with πm
k ≥ 0

• Most flexible model
• Nb(π-colSBM) + (M − 1) parameters.
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Summary

M independent networks.

Ym ∼ SBM(Km,π
m,αm)

Model name Block prop. Connexion param. Nb of param.
iid-colSBM πm

k = πk , πk > 0 αm
k` = αk` (K − 1) + K2

π-colSBM πm
k , πm

k ≥ 0 αm
k` = αk` ≤ M(K − 1) + K2

δ-colSBM πm
k = πk , πk > 0 αm

k` = δmαk` (K − 1) + K2 + (M − 1)
δπ-colSBM πm

k , πm
k ≥ 0 αm

k` = δmαk` ≤ M(K − 1) + K2 + M − 1
sep-SBM πm

k , πm
k > 0 αm

k`

∑M
m=1(Km − 1) + K2

m
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Identifiability

Demonstrated for the most complex SBM, upto label switching of the
blocks under light conditions.

For π-colSBM, let us define Km = {k ∈ {1, . . . ,K}|πm
k > 0}.

1. ∀m : nm ≥ 2|Km|
2. ∀k = 1, . . . ,K , ∃m : K ∈ Km

3. (α · πm)k 6= (α · πm)` for all (k 6= `) ∈ K2
m

4. Each diagonal entry of α is unique
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Inference

VEM algorithm

• Direct extension of VEM previously described for iid-colSBM and
π-colSBM

• Less obvious with δmα : M step not explicit.
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Model selection

ICL can be directly extended for iid-colSBM and the δ-colSBM

ICL(K ) = I(τ̂ , θ̂)− K − 1
2 log

( M∑
m=1

nm

)

−1
2
(
K 2 + ν(δ)

)
log
( M∑

m=1
nm(nm − 1)

)
, (1)

where ν(δ) = M − 1 for δcolSBM and 0 otherwise.
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Model selection i

• For iid-colSBM and the δ-colSBM

• πm
k possibly null. Asymptotic approximation do not hold

• Each couple (K ,S) defines a model.

eBICL(Y,K ) = max
S

[
max

θS∈ΘS
I(R̂,θS)

−1
2 (penπ(K ,S) + penα(K ,S) + penδ(K ,S) + penS(K ))

]
,
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Model selection ii

where

penπ(K ,S) =
M∑

m=1
(Km − 1) log(nm)

penα(K ,S) =
( K∑

q,r=1
1(S′S)qr>0

)
log (NM) ,

penδ(K ,S) =
{

0 for π-colSBM
(M − 1) log (NM) for δπ-colSBM

,

penS(K ) = −2 log pK (S).

Finally, K is chosen such that:

K̂ = arg max
K∈{1,...,Kmax}

eBIC-L(Y,K ).
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Separate SBM

Separate sbm
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Model choice

Model ICL
sepSBM −2080

iid-colSBM −1966
π-colSBM −1982
δ-colSBM −1969
δπ-colSBM −1989

• Reject sepSBM : commun structure in the networks
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Our 4 consensus models

Top left : iid (−1966). Top right: π-colSBM (−1982) Bottom-left: δ-colSBM (−1969).
Bottom-right: δπ-colSBM (-1989)
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iid-colSBM: the prefered model

• Makes 5 blocks
• Block 3 (light green) is a small block of intermediate trophic level

species with some within block predation.
• The higher trophic level is divided into 2 more blocks,

• block 2 (dark green) only preys on the 2 basal blocks
• block 1 (pink) preys on the intermediate block 3 level but only on

the most connected basal species block.
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π-colSBM

• Also 5 blocks.
• There are no empty blocks
• the block proportions are roughly corresponding to the ones of

iid-colSBM .
• Flexibility of the π-colSBM of little use compared to the iid-colSBM

on this collection.
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Principle

• If the networks in a collection do not have the same connectivity
structure, we aim to partition them accordingly.

• Finding a partition G = (Mg )g=1,...,G of {1, . . . ,M}.
such that

∀g ∈ {1, . . . ,G}, ∀m ∈Mg , Ym ∼ SBM(K g ,πm,αg )

networks belonging to the subcollectionMg share the same
mesoscale structure given by π-colSBM.
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Scoring a partition

• To any partition G we associate the following score:

Sc(G) =
G∑

g=1
BIC-L((Ym)m∈Mg , K̂ g ).

• Best partition G is chosen as follows:

G∗ = arg max
G

Sc(G).
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Partition of the networks from the Mangal database

• 67 networks issued from the Mangal database belonging to 33
datasets. [Vissault et al., 2020]

• predation networks which are all directed networks with more than
30 species,

• number of species ranges from 31 to 106 (3395 in total) by network
• Density ranging from .01 to .32 (14934 total predation links).

Aim use our model to propose partition of the networks into group of
networks with common mesoscale structure.
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Partition on the networks from the Mangal database
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Partition on the networks from the Mangal database

Groupe A

• 7 networks and 12 blocks are required to describe this group of
networks

• 5 networks are issued from the same dataset (id: 80).
• These 5 networks populate the 12 blocks, while the other 2 networks

only populate parts of them.
• Average density is about 0.18
• Blocks 1 to 3 represent the higher trophic levels, blocks 4 to 8 the

intermediate ones and block 9 to 12 the lower ones.
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Partition on the networks from the Mangal database

Group B : structure with 8 blocks

• 26 networks with heterogeneous size and density.
• Issued from various datasets
• Most networks populate only parts of the 8 blocks
• Block 4 is represented in only 5 networks where it is either an

intermediate or a bottom trophic level.
• It introduces some symmetry in the connectivity matrix rendering it

difficult to order the blocks by trophic order.
• Species from top trophic levels prey on basal species.
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Partition on the networks from the Mangal database

Group C : structure with 7 blocks

• 6 networks with density ranging from .06 to .11.
• All networks are represented in 5 or 6 of the 7 blocks, including the

first three blocks.
• 3 of the 5 networks of dataset 48 (diff. collecting sites).
• Top trophic level divided into 2 blocks, species from those blocks

preying only on intermediate trophic level species.
• Species from block 2 prey on species from block 4, which prey more

on basal species (block 7) than on others intermediate trophic
species (block 6),

• Species from block 1 prey on species from block 3 and 4, block 3
exhibiting the inverse behavior of block 4.
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Partition on the networks from the Mangal database

Group D : structure with 7 blocks

• 23 networks.
• The 10 networks from dataset 157 (stream food webs from New

Zealand) are divided between groups B and D based on the type of
ecosystem. The data from group B were collected in creeks, while
the one from group D were collected on streams.
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Partition on the networks from the Mangal database

Group E : structure with 7 blocks
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Conclusion

• Paper submitted to AoAS Arxiv + package
• Still need some work to convince ecologists
• Much needed for bipartite and tripartite networks
• On going work...
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Merci
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