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Bacterial growth (E. coli here)

From E. J. Stewart, R. Madden, G. Paul, F. Taddei, Plos Biol, 2005




What triggers bacterial division?
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What triggers bacterial division?

Different ways of investigation:

» details the intracellular mechanisms
many studies

» Observe and understand the population dynamics

Question: Can we deduce laws from our observations?



Protein polymerization

Common point between:

» Alzheimer's
(illustrated)

» Prion (mad cow)
» Huntington's

> and some Others Alzheimer cells
(Parkinson'’s, etc)?

*  healthy cells

(J. of Alzh.'s D., 2014)

Neurodegenerative diseases characterized by abnormal
accumulation of protein aggregates called AMYLOIDS
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Protein polymerization: main issues

A -

™
“

» Understand what are the key polymerization mechanisms

> Identify transient species, and the " most infectious” sizes of
polymers ; :

——» Study t’ge-'models,..;ii z =
SOy T 7
» How to select and caklil‘)rate the models; write new models...
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Of key imporé@nce: size distributions
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Protein polymers fragmentation

Experimental device: Atomic Force Microscopy (AFM)
Performed at the University of Kent, UK, by W.F. Xue's team.

Several proteins: Som, asynuclein, Lysozyme, BLactoglobuline
Fragmentation by agitation

0 10980 31380 85680
Fragmentation Time/s

(From W.F. Xue, S. Radford, Biophys. J., 2013)

Can we estimate the division features (rate, where the fibrils
divide) from such images?



Steps towards "laws” of division
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Steps towards "laws” of division

1.

Make the most of direct observations
Methods: statistical analysis, density estimation...

. Make assumptions or simplifications

Build model(s)
Methods: stochastic processes / ODE or PDE ...

Analyse the model(s): long-time asymptotics, qualitative
behaviours...

. Calibrate the model(s): estimation of unobserved parameters

Methods: inverse problems, statistics

Back to the data to (in)validate the model(s)



First step: take the most of our data
(before writing down a math model)



1. Observations for the protein fragmentation case

. . . - . . n(t,x
At different times, a sample of fibril sizes is measured ~~ _ltx)
J n(t.x)dx
! == 2.5¢-01 Y
0.9 i — — £ =2760
s t = 17740
081 Va4 2e-01 —— £ =16380
0.7 Vi ¢ = 38700
/ / — t=83700
0.6 /S 15e-01] —— ¢ = 107460
05 .
041 /7 it 1e-01
0.31 // // t=7740
— t=16380
021 Vs ¢ = 38700 5e-02
0.1 / / — t=83700
7 —— £ = 107460 _
0 0e00 '
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
@ @

Left: cumulative distribution functions, Right: density functions,
at several time points.



2. Observations of the population for bacteria

1st historical observations, the simplest and often the only possible
ones, and confirm the asymptotic behavior:

0 [l 2 3
T T T

———Linear Growth, CV=16%
== —Exponentiat Growth, CV=20%

FREQUENCY

CELL VOLUME IN UNITS OF Vb, Linear Growth

Observation (from Kubitschek, 1969): DOUBLING TIME and
STEADY SIZE DISTRIBUTION.



3." Complete” observations for bacteria

Major advantage of in vitro bacterial growth: EVERYTHING
may be measured to control/validate the assumptions.
2 types of data:
» initial video: all descendants till a certain time, several
microcolonies (Stewart et al, Plos Biol, 2005)
» 1 daughter cell kept at each generation, till a certain time,
several lineages (Wang, Robert et al, Current Biology, 2010)

The way we observe the data influence the math modeling.

11



Complete observations: individual growth
commonly accepted after much debate: exponential growth:

dx
— = RKX.
dt
(Stewart et al, Plos Biol, 2005)
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3. Complete observation: individual growth

variability of the exponential rate kK among cells
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Figure: growth rate distrib. (min™1)

Heritability? See (Delyon, de Saporta, Krell, Robert, 2018)



3. Complete observations: population growth

Growth of the population: exponential with Malthus parameter A
(almost) equal to the (average) individual growth rate .
Doubling time (= Log(2)/k) of approx. 20 min.
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Fi16. 10. — Phase exponentielle de la croissance d’une
culture de B. coli en milieu synthétique, avec 300 mgr
par L. de glucose. Coordonnées semi-logarithmiques.

Fi6. 11. — Phase exponentielle de la croissance d'une

culture de B. subtilis en milieu synthétique, avec 500 mgr.
par |. de saccharose. Coordonnées semi-logarithmiques.

Figure: Monod's 1942 thesis on E. Coli culture cells.



3. Complete observation: division

Distribution of the ratio (size of daughter/size of mother)
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3. Complete observation: "all cells” distributions
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Blue: 1 branch/genealogical data
Green: whole tree data till a certain time



3. Complete observation: "at division” distributions
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3. Complete observation: joint age-size distribution
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Left: Age-Size Distribution for all cells - " petri dish” / whole
population case

Right: Age-Size Distribution for microfluidic device - " 1-branch
data”
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Second step: making assumptions
(before writing down a math model)



Assumptions: some simplification

based on direct observations:
» daughter cell size= half of mother cell size

> growth rate = constant among cells (neglect variability)

dx _
dt

RX

» infinite nutrient and space

» first cell selected at random



Assumptions: modeling

» no memory

P a particle of size x may divide with a division rate B
depending on age
OR

P a particle of size x may divide with a division rate B
depending on size
OR

P a particle of size x may divide with a division rate B
depending on size AND age AND/OR something else...



Third step: models
(that we will analyse and calibrate)



Models

2 main ways of translating mathematically the previous
assumptions:

1. probability: model each cell

2. PDE: model the population of cells, considered either as large
or in expectation



Mathematical Modelling of the protein fragmentation
experiment

Noise model:
At time t, we measure xi,--- X, an i.i.d. sample of density n(t, x)

Model for n(t, x) : the fragmentation equation

i) =B+ [ k0B y)dy
Death y=x

Evol. of number of polymers

Creation
Measurement: at different times t;, a (noisy) n(t;, x) provided by

samples x1(t;), - - Xn(z;) (i)

Unknowns: the non-parametric functions B(x) (fragmentation
rate) and k(y, x) (fragmentation kernel)



The pure fragmentation equation: basic properties
" Fragmentation conserves the mass”: V B(-)n(t,-) € L*(xdx) :

/xB( n(t,x)dx = //xk ¥, X )n(t, y)dydx

The fragmentation kernel k(y, x) must satisfy

> y — k(y,-) nonnegative measure with Supp(k(y,-)) C [0,y]
(and V ¢ CO, y — [4(x)k(y, dx) is Lebesgue-measurable)

» mass conservation
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The pure fragmentation equation: basic properties
" Fragmentation conserves the mass”: V B(-)n(t,-) € L*(xdx) :

/xB( n(t,x)dx = //xk ¥, X )n(t, y)dydx

The fragmentation kernel k(y, x) must satisfy

> y — k(y,-) nonnegative measure with Supp(k(y,-)) C [0,y]
(and V ¢ CO, y — [4(x)k(y, dx) is Lebesgue-measurable)

y
> mass conservation = [ xk(y,dx) =y
0

» If binary fragmentation: = k(y,x) = k(y,y — x) (may be

y
relaxed); with the mass conservation it implies | k(y, dx) = 2
0

Self-similar fragmentation: k(y, x) := %ko(f), with
Supp(ko) < [0, 1]

2 main examples: uniform ko(z) = 2, equal mitosis ko(z) =25,_1.
2



Models: Branching processes modeling

See e.g. (Bansaye, Delmas, Marsalle, Tran, 2011); (Champagnat, Ferriere, Méléard, 2006
& 2008); (Bansaye, Méléard, 2015)

Piecewise Deterministic Markov Processes (PDMP):

>
>
>

start: a singe cell of size xp.
cell's growth: deterministic.

at each time, it has an instantaneous probabillity rate B to
divide (jump); B depends on size x or age a of the cell.

At division, two offspring of age 0 and initial size x; /2, where
x1 is the size of the mother at division.

The two offspring start independent growth (Markov property)
according to the (deterministic) rate x and divide according to
the (probabilistic) rate B.



Stochastic models

Genealogical tree: infinite random marked tree
U=|J{0.1}" with {0,1}°:=0.
n=0

To each node u € U, we associate a cell with size at birth &, and
lifetime (.
If u~ denotes the parent of u then

&
€= 5 exp (i, ).




Stochastic models
Age model: the division depends on the age of the individual:

P((, € (a,a+ da)|(, > a) = B(a)da, P((, >a)=¢e ©

l% ﬁ] il LU ﬂ |

Figure: Left: the size of each segment represents the lifetime of an
individual. Individuals alive at time t are represented in red. Right:
genealogical representation of the same realisation of the tree. Figure
taken from (Hoffmann, Olivier, 2016).



Models: From probability to PDE...

Equivalent view: random measures

X(t) = (X1(t), Xa(t), ... ) process of the sizes of the population at
time t, or A(t) = (A1(t), Az(t),...) of ages at time t.
X(t) has values in the space of finite point random measures on

R, \{0} via

81X (t) #A(t)

7P = > Sxi(e)s Z Op(t
i-1

microfluidic / genealogical case: only 1 individual O, ()



Stochastic evolution equation for the age model
ask Bertrand, Chi, Sylvie, Vincent... or refer to (Bansaye, Méléard, 2015)

z(" =12 +/ Z / (kde—s — (zs(f*a))ﬂ—s)

k a)
5_ Nl

“wss(a,-<zs‘éa)))}

N;(ds, d9),

k = 1: genealogical case / microfluidic device
k = 2 : population case



Age model: renewal process and renewal equation

P(¢y € (a,a+ da)|(, > a) = B(a)da, P((,>a)=e ©

Set, for (regular compactly supported) f

o0

(n(t,), f) =E(Z AT =E [ F(Ai1))].

i=1
In a weak sense:

O¢n(t, a) + 0an(t,a) = —B(a)n(t, a),
n(t,0) :2/B(a)n(t,a)da OR n(t,O):/B(a)n(t, 2)da
0 0

So the mean empirical distribution of A(t) satisfies the
deterministic renewal equation.



Size model: growth-fragmentation process or equation

- aB(Xe'“)ds
P(Cu > allu=x)=e Of

Set, for (regular compactly supported) f

(n(t,), ) :==E[D_F(Xi(1))].
i=1

Proof: tagged fragment approach (Bertoin, Haas, ...), many-to-one
formula (Bansaye et al, 2009, Cloez, 2011, Bertoin & Watson, 2019...)

We have (in a weak sense) IF we keep the 2 daughters at each
generation:

den(t, x) + Ox (kx n(t, x)) + B(x)n(t,x) = 4B(2x)n(t, 2x).

So the mean empirical distribution of X(t) satisfies the
deterministic growth-fragmentation / size-structured / cell division
equation (with binary fission and equal mitosis). »



Size model: growth-fragmentation process or equation

— aB(Xe'“)ds
P(Cu > aléy =x)=e Of

Set, for (regular compactly supported) f
(n(t,), ) :==E[D_F(Xi(1))].
i=1

Proof: tagged fragment approach (Bertoin, Haas, ...), many-to-one
formula (Bansaye et al, 2009, Cloez, 2011, Bertoin & Watson, 2019...)

We have (in a weak sense) IF we keep 1 daughter at each
generation:

den(t, x) + Ox (kx n(t, x)) + B(x)n(t,x) = 2B(2x)n(t, 2x).

So the mean empirical distribution of X(t) satisfies a deterministic
conservative growth-fragmentation equation (also encountered e.g.
for TCP/IP protocol) »



Age and Size model: PDE

n(t, a, x) density of cells of size x and age a.
PDE obtained from the PDMP (as previously) or by a mass

balance:
0 0 0
5" + 23" + &(ﬁxn) = —B(a, x)n(t, a, x),
n(t,a=0,x) = 4/ B(a,2x)n(t, a,2x)da
0

with n(0, a, x) = n(®(a, x), x > 0.

IF B = B(x) : back to growth-fragmentation equation
IF B = B(a) : back to renewal equation

IF we keep only 1 daughter at each generation:

[e. o]

n(t,a=0,x) =2 / B(a,2x)n(t, a,2x)da
0



A Specific Age and Size model: the "adder model”
(Taheri et al., Cell, 2015; A. Amir, PRL, 2014; Hall, Wake & Gandar, JMB, 1991)
n(t, a, x) density of cells of size x and increment a.
Definition of an increment: difference between size and size at birth
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A Specific Age and Size model: the "adder model”
(Taheri et al., Cell, 2015; A. Amir, PRL, 2014; Hall, Wake & Gandar, JMB, 1991)
n(t, a, x) density of cells of size x and increment a.
Definition of an increment: difference between size and size at birth

PDE obtained from the PDMP (as previously): same as the age

process:
— [ B(s)ds d
P((,>a)=e © , d—i:/ix
0 0 0
5" + a(/—exn) + a(/ﬁxn) = —rxB(a)n(t, a, x),
n(t,a=0,x) = 8/xB(a, 2x)n(t, a,2x)da
0

IF we keep only 1 daughter at each generation:

n(t,a=0,x) = 4/XB(a)n(t, a,2x)da
0

35



Fourth step: model analysis: long-time behaviour



The age model

A very pedagogical reference: B. Perthame, Transport Equations in Biology, 2007

historically the first structured-population model to be studied
(Kermack and Mc Kendrick, 1927 ; Metz and Diekmann, 1981)
n(t,a)e ** — N(a), with A and N uniquely determined by

8 o0
O Nean=-B@N.  NO)=2 0/ B(a)N(a)da.

—)\a—j B(s)ds
Explicit solution: N(a) = N(0)e 0 ,

A uniquely determined by the boundary condition:
either A = 0 (1 branch case) or

i —Aa—sB(s)ds
2/ B(a)e { da=1

0



The fragmentation and growth-fragmentation equations

General form
From a stochastic viewpoint:

%n(t, dx) + %(T(X)n(t, dx)) =

—B(x)n(t, dX)+ZOJp f PU(y, dx)B(y)n(t, dy),
j> y=x

in a weak sense (for measure solutions: see e.g. (Canizo, Carrillo,
Cuadrado, 2013); (MD, Gwiazda, Wiedemann, 2018))

PU)(y, dx): probability of an individual of size y to split in j parts,
one of them of size in the interval dx. In a more compact way:

k(y, dx) Z]p (YPY)(y, dx), with
j>0

y
/ k(y,dx) =Y p(j /JXP(Jde =y p(j) =

x=0 j>0 0 j>0



The fragmentation and growth-fragmentation equations
General form

%n(t, dx) + 8%(7’(X)n(t7 dx)) =

“B)n(t,dx) + [ k(y, dx)B(y)n(t, dy),
y=x
with

y y
/xk(y, dx) =y, /k(y, dx) =m > 1.
0 0

"One branch” process: ki(y,dx):= 3 p(j)PY)(y, dx) :
j>0

2m(t, dx) + 2 (T(x)m(t,dx)) =

_B(x)m(t, dx) + f ka(y, dx)B(y)m(t, dy).

y=x



The growth-fragmentation equation
Two fundamental relations
(and more generally: moments equations)
» First moment: mass balance only evolves by growth

% / xnlt, x)dx = / (x)n(t, x)dx.

» Zeroth moment: number of individuals only evolves by
fragmentation:

X

Ccllt/n(t,x)dx:/B(x) </ k(x,dy) — 1) n(t, x)dx.

0



The growth-fragmentation equation

Two fundamental relations
(and more generally: moments equations)
» First moment: mass balance only evolves by growth

i/m@@w:/wmm@w

» Zeroth moment: number of individuals only evolves by
fragmentation:

Ccllt/n(t,x)dx:/B(x) </x k(x,dy) — 1) n(t, x)dx.
0

» More generally: balance between growth & fragmentation

9 [ xPn(t,x)dx = [ pxP~17(x)n(t, x)dx
0 0

+fﬂ@ﬂ( gn XW)MLHW

40



Asymptotic behaviour 1: balance assumption on 7(x) and B(x):
=> convergence to a steady profile + exponential growth

starts in the 1980s (Diekmann, Heijmans, Thieme and Gyllenberg
& Webb)

n(t,x)e M — N(X)/FIO(X)dX
(N, ) : dominant eigenpair of the semi-group generator L* 4+ F*.
For compact strictly positive operators: Krein-Rutman.
Stochastic approaches: for recent ref. see (Bertoin& Watson,

2018); (B. Cavalli, 2019); (Bansaye, Cloez, Gabriel, Marguet,
2021); (Champagnat, Villemonais, 2018)...



Long-time asymptotics 1: steady growth

Eigenvalue problem and adjoint problem:
F(TIN()) + AN(x) = =B(x)N(x) + [ B(y)k(x, y)N(y)dy.
TN(x =0) =0, N(x) >0,  [5° N(x)dx =
~T(x) 5 (6(x)) + Ad(x) = B(x)(=d(x) + [ k(y,x)d(y)dy),
»(x) >0, Jo S d(x)N(x)dx = 1.

(1)
If 7(x) = x¥, B(x) =x7:if 1+~ — v > 0 (Michel, M3AS, 2004)

which optimal assumptions on (7, k, B) 7



Long-time asymptotics

Theorem (MD, P. Gabriel, M3AS, 2010)

Under balance assumptions on T, B and k, there exists a unique
triplet (A, N, ) with X\ > 0, solution of the eigenproblem (5) and

x*TN € LP(RY), Va>—v, Vpec[l,o0], x“7N e WHHRT),

¢

dp > 0 s.t.
p ° 1+ xP

loc

0
€ L*(R™), T—X¢> € L5 (RT).

Generalizes previous results by Michel, M3AS, 2004.

/ ‘n(t,x)ef’\t - <n(0),¢>>N(X)‘¢(x)dx —0 as t— o0
Ry

Proof: General Relative Entropy (Michel, Mischler, Perthame, 2004)
See also many recent improvements...



Some ideas on the proof
2 opposite dynamics:
» Growth = bigger and bigger = mass goes to infinity ?
» Fragmentation = smaller and smaller = dust formation ?



Some ideas on the proof
2 opposite dynamics:
» Growth = bigger and bigger = mass goes to infinity ?
» Fragmentation = smaller and smaller = dust formation ?
Balance: asymptotic steady profile.
» Enough growth at zero: % €L}

T\ X
» avoid shattering (0-size polymers)

3C>0,7y>0 s.t. /OX k(y,dz) < min(m, C<§>7>

and 2~ € L}

7(x)
» Enough fragmentation at infinity: Xfi%) —x—00 OO




Some ideas on the proof
2 opposite dynamics:
» Growth = bigger and bigger = mass goes to infinity ?
» Fragmentation = smaller and smaller = dust formation ?
Balance: asymptotic steady profile.
» Enough growth at zero: % €L}

» avoid shattering (0-size polymers)

3C>0,7y>0 s.t. /OX k(y,dz) < min(m, C<§>7>

and T(X) €Ly
» Enough fragmentation at infinity: Xfi%) —x—00 OO
Proof:

» regularized equation: Krein-Rutman/Perron-Frobenius

P balance assumptions=- compactness through successive
moments estimates

» uniqueness and convergence by entropy method w“@



Long-time asymptotics 1
Further comments on the "steady growth regime”

P Under extra assumptions, exponential convergence in some sense:
(Laurencgot, Perthame, 2009) (Balagué, Cafiizo, Gabriel, 2012)
(Bernard, Gabriel, 2019) (Caceres, Cafiizo, Mischler, 2011)

» (Mischler, Scher, 2015): spectral gap for a large class
for a more restrictive norm L}, C L}
Based on semi-group spectral analysis & a generalization of
Krein-Rutman theorem
Proof of no spectral gap in Lé (Bernard & Gabriel, 2017, & 2019)
Measure solutions (MD, Gwiazda, Wiedemann, 2018; Bansaye,
Cloez, Gabriel, Marguet, preprint, 2021)

> Age-size models: (MD, 2007), increment (Gabriel & Martin, 2019)
Other types of behaviours?



Growth-fragmentation eq., v = 1, ko(dz) = 26,

P )
{ () + - (xn(t, X)) + B(x)n(t, x) = 4B(2x)n(,2x), x >0,

n(0, x) = np(x).
(2)



Growth-fragmentation eq., v = 1, ko(dz) = 26,

P )
{ () + - (xn(t, X)) + B(x)n(t, x) = 4B(2x)n(,2x), x >0,

n(O,x) = nO(X)'
(2)
Same case but g(x) = 1: (Perthame, Ryzhik, 2004, +...)

n(t,x)e " — N(x)



Growth-fragmentation eq., v = 1, ko(dz) = 26,

{ 2n(t,x) + aax(xn(t?x)) + B(x)n(t,x) = 4B(2x)n(t,2x), x > 0,

n(O,x) = nO(X)'
(2)
Same case but g(x) = 1: (Perthame, Ryzhik, 2004, +...)

n(t,x)e " — N(x) fails here



Growth-fragmentation eq., v = 1, ko(dz) = 20,_1

ZZE

ﬁn(t,x) + aax(xn(t?x)) + B(x)n(t,x) = 4B(2x)n(t,2x), x > 0,
n(0, x) = np(x).
(2)

Same case but g(x) = 1: (Perthame, Ryzhik, 2004, +...)
n(t,x)e " — N(x) fails here

Intuition: stochastic process: if X(t) = xp, all descendants live on
the countable set of curves xget2~"

Where usual proofs (eigenproblem, entropy) fail?
semi-groups on compact support: abstract result (Greiner, Nagel, 1988)



Eigenproblem

AN(x) + (xN(x))" + B(x)N(x) = 4B(2x)N(2x),

3)
AG(x) = x(x) + B()3(x) = 2B(x)5 (3).
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AG(x) = x(x) + B()3(x) = 2B(x)5 (3).
Assumption on B:
B: (0,00) — (0, 00) is measurable, B(x)/x € L}, (R+),
(4)
F0,71, Ko, K1, x0 > 0,  Kox™ < B(x > xp) < Kix™.
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Under standard assumptions, 3! positive eigentriplet A = 1,
N e LYRy), ¢(x) = x, with [ xN(x)dx = 1.



Eigenproblem

AN(x) + (xN(x))" + B(x)N(x) = 4B(2x)N(2x),

(3)
AG(x) = x(x) + B()3(x) = 2B(x)5 (3).
Assumption on B:
B: (0,00) — (0, 00) is measurable, B(x)/x € L}, (R+),
(4)

Fv0,71, Ko, K1,x0 > 0,  Kox" < B(x > xp) < Kix™M.

Theorem (from MD, P. Gabriel, M3AS, 2010)
Under standard assumptions, 3! positive eigentriplet A = 1,
N e LYRy), ¢(x) = x, with [ xN(x)dx = 1.

2ik _ 2k ik
il Nk(X) =X I20g2 N(X), ¢k(X) = X1+|2og2

Ae=1 ,
. +Iog2’




Balance laws and Entropy

o
V k € Z, and V(k, I) € 72, [ Ni(x)i(x)dx = 0.
0

Vk € Z, YVt > 0, /n(t,x), dr(x)dxe Mt = /no(x)qbk(x)dx.
0 0

Lemma (General Relative Entropy Inequality)
n(t,x) sol. of (2), H: C — Ry positive, differentiable & convex.

i [ty - oo <o
0

w71 = [t #(d) - (o)
0
u(3) n(%) n(x
~H (i) (W - i) |



Dissipation of entropy

For H strictly convex, n: Ry — C satisfies D"[u] = 0 iff

n(x)  n(2x)

Nx) ~ N@2x)’ a.e. x>0.

In particular, for all k € Z, DH[N,] = 0.
(Escobedo, Mischler, Rodriguez Ricard, 2004), lemma 3.5 fails.



Dissipation of entropy

For H strictly convex, n: Ry — C satisfies D"[u] = 0 iff

n(x)  n(2x)

Nx) ~ N@2x)’ a.e. x>0.

In particular, for all k € Z, DH[N,] = 0.
(Escobedo, Mischler, Rodriguez Ricard, 2004), lemma 3.5 fails.
Theorem (E. Bernard, MD, P. Gabriel, Kin. Rel. Mod., accepted)

Under Hyp. (4), for any ny € L2(R,, x/N(x)dx), the unique
solution n(t,x) € C(Ry, L*(Ry, x/N(x)dx)) to (2) satisfies

o0 +00 2

s 2(;‘k7rt x dx
/ n(t,x)e™" — kz (no, Nk) Ni(x)e'os2 N P
0 =—o0

with (no, Ni) = [ nogr(x)dx



Numerical illustration

40 |

30

20 -

Non dissipative scheme:
» splitting transport & fragmentation
> grid xx = (14 20 )kN



Numerical illustration
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0.5

0.4

03

0.2

0.1

Non dissipative scheme:
» splitting transport & fragmentation
> grid xx = (14 20 )kN
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The case 7(x) = kx

If B(x) =x"":
» ~ > 0: in general, convergence (at an exponential speed)
given by n(t,x)e ™ — N(x)
» ~>0and k(y,x) = Ox= (our "idealised” case!):
convergence to an oscillatory profile
(Bernard, MD, Gabriel, 2018), (Martin & Gabriel, 2021)

remains true for any model where growth is exponential and
division in two equally-sized daughters

Intuition: depart from a cell of
size xp, at time t all its
descendants live on xpe®t2— N



The pure fragmentation case: 7 =0
Classical assumptions on the fragmentation equation
» B(x) = ax?

> k(y,x) = }%ko (}5/) where kg is a measure on [0, 1].

1

z V4 zZ
0

For v > 0, at a power law speed, we have
(Escobedo-Mischler-Ricard, 2005)

t—00

T _2 1
lim /’u(t,y)—t 7g(tﬂy>’ydy:0.
0

where g called the "self-similar profile” is the unique solution of

o0 o0

Sz (@) (12 e(@) = ar [ k() ey 0/ 2g(2)dz = p.

53



The fragmentation equation
Focus: 7(x) =0, B(x) = x": e.g. protein fibril fragmentation

1

0
atu(t,><)-|-X7U(l“7X):/( ) (t

0

bs ko(d )

> ~ > 0: self-similar profile (Escobedo, Mischler, Ricard, 2004)

[e o]
i [ ot e (¢4) =0
0
» ~ < 0: shattering: loss of mass + self-similar profile or steady
profile according to the initial condition (Haas, 2010, Bertoin &
Watson 2017 & 2018, Escobedo 2017...)



The fragmentation equation
Focus: 7(x) =0, B(x) = x": e.g. protein fibril fragmentation

1

a 2l
& () 4 x u(t,x):/( Yu(t,

0

bs ko(d )

> ~ > 0: self-similar profile (Escobedo, Mischler, Ricard, 2004)

o0
lim /‘u (t,y)—t vg(tvy)‘ydy—o
t—o00
0
» ~ < 0: shattering: loss of mass + self-similar profile or steady
profile according to the initial condition (Haas, 2010, Bertoin &
Watson 2017 & 2018, Escobedo 2017...)

» ~ = 0: critical case. Close to a mutation model (G. Garnier’s
PhD) (Bertoin 2003, MD Escobedo 2016, Bertoin & Watson 2016)



Fifth step: model calibration



Model calibration for the bacteria case

Only unobserved parameter: the division rate B.
Estimation procedure:

» mathematical analysis: asymptotic regime (PDMP or PDE)
P estimation methods

» comparison of calibrated model results and data



Use of the long-time asymptotics
Example: PDE - Size model asymptotics

Recall: if B(x) = xB(x) such that 8 € L} and 8 —x_y00 00,
3l (A > 0, N > 0) solution of

{ D (kxN(x)) + AN(x) = —B(x)N(x) + 4B(2x) N(2x)dx, o)
5
N(x) > 0, J5° N(x)dx = 1.

Moreover here Kk = \ and

/ ‘n(t,x)e"\t - (n(o),x>N(x)|xdx —0 as t— o0
Ry

false here (oscillations) but true in practice: experimental variability



Estimation methods

3 methods:

» use the "all cells” distributions: "indirect/inverse” approach,
based on N(x) or N(a)

P use the "at division” distributions: "direct” approach:
PDMP or B(x)N(x)/ | BNdx

» use both ! "direct” approach: measure of both
B(x)N(x)/ | BNdx, and N(x)

With E. coli: choose any of the 3 schemes and select the most
accurate

Preliminaries: How to estimate these densities?



First method, preliminaries: estimation of N(x)

1st historical observations, the simplest and often the only possible
ones, and confirm the asymptotic behavior:

0 [l 2 3
T T T T T 1

E coli WP2-HCR™
~2hr

———Linear Growth, CV=16%
== —Exponentiat Growth, CV=20%

FREQUENCY

Do g0, 00

CELL VOLUME [N UNITS OF Vb, Linear Growth

Observation (from Kubitschek, 1969): doubling time and steady
size distribution



First method: an indirect approach

Any cell at any time put together in this asymptotic distribution

0.06 0.5
A B
0057 0.4
2003 3
o 902
£ 0.02 -
0.01 01
. . : 0 —
% 10 20 30 40 0 2 4 6 8
Age (min) Size (um)

cf. video at the beginning: around 30.000 to 60.000 observations
(Blue: 1 branch, Green: whole tree)



Inverse Problem for the age model

From a (noisy) measure of N(a) and A, we look for B(a).
Since we have the explicit relation

N(a) = N(O)e—Aa—foa B(s)ds7

we get
0,N(a)

N(a) -
From a noisy version of N: regularization is needed:
"degree of ill-posedness”=1: if N isin H},_, B is in H,sozl

B(a) = -\ —



Inverse Problem for the size model

Inverse Problem: estimating the division rate B(x)

From: measurements of (x, N) with

aBX(RXN(X)) + AN(x) = —B(x)N(x) + 4B(2x)N(2x)dx.

Choice of a Hilbert space: L?(R ., xPdx)
(Engl, Hanke, Neubauer, Regularization of Inverse Problems, 1995)

Similar to the age problem: the equation implies a derivative for N



Inverse Problem for the Size Model

Estimate B through

L(N) = G(BN),  with

G(f)(x) = 4f(2x) — f(x), (6)
L(N)(x) = 0x(xN(x)) + £N(x), (7)

2 main steps:

» Solve G(f) = L for f, L in suitable weighted L? spaces:
PDE part. the problem N — f = BN is now linear.

» Find an estimate for L(N) in this L? space:
PDE or statistical part



Inverse Problem for the Size Model
Step 1: solve a dilation equation
Defining
G:f— G(f)=4f(2x) — f(x)

We want to invert G in a weighted L2 space: knowing L € L2, find
f € L? solution of
L(x) = 4f(2x) — f(x) (8)



Inverse Problem for the Size Model

Defining
G:f— G(f)=4f(2x) — f(x)

We want to invert G in a weighted L2 space: knowing L € L2, find
f € L? solution of

L(x) = 4f(2x) — f(x) (8)

Proposition (MD, Perthame, Zubelli, 2009)

V L € L?(xPdx), p # 3, there exists a unique solution f € L2(xPdx)
to (8). Moreover, defining

Ho:=Y 279127 jx),  Hu:=—) 2¥L(¥x),
j=1 j=0

we have f = Hy if p <3 and f = Hy, if p > 3. Moreover if L € L9
then Hy € L9 for any 1 < q < o0. For L =0, any distribution of
the form f(1°8X) with f € D'(R, ) log —2 periodic is solution.

x2




Inverse Problem for the Size Model

(Bourgeron, MD, Escobedo, Inv. Prob., 2014)
G(f) becomes in the case of a self-similar fragmentation kernel:
o x dy
6= 6N, GNW = [ k()Y ()
Mellin transform: " Multiplicative Fourier transform on R":
M isometry between L?(x9dx) and LQ(%1 + iR) defined by

M[f](s) = /xs_lf(x)dx, Mq_l[F](x) = /x_q;l_’."F(q—Qi_l—i—iv)dv
0 —00

MIG(M)](s) = (Mlko](s) — 1)MI[F](s)
Zeros of My, (s) — 1. at least for s = 2, since }xko(x)dx =1.So
0

for g # 3:

65

[ M)
Ao = Mg [M[ko](s)—l]



Estimating B with the Mellin transform
(Bourgeron, MD, Escobedo, Inv. Prob. 2014)

We measure N with a noise:
IN = Nell2(myy <&,

Theory of linear inverse problems: by the optimal regularisation
method of your choice, of parameter o > 0, define an
approximation L(N;), such that, for N € H™(R,), and g > 3, we
have

€ m
IL(NE)a = LNl 2((1am)a) < €+ ™),



Estimating B with the Mellin transform
(Bourgeron, MD, Escobedo, Inv. Prob. 2014)

We measure N with a noise:
IN = Nell2(myy <&,

Theory of linear inverse problems: by the optimal regularisation
method of your choice, of parameter o > 0, define an
approximation L(N;), such that, for N € H™(R,), and g > 3, we
have

IL(NE)a = L(N )HL2((1+xq)dx)<C( +am),

and since we want H = BN in L?((1 + x9)dx) with g > 3 large,
define for some a > 0

g1 [ MIL(N:)a(s) 1 [ MIL(N:)o](s)
Hg,a = MO |:M[ko]( ) :|le<a+./\/lq |:M[ko]( ) :|]lx>a



Estimating B with the Mellin transform
(Bourgeron, MD, Escobedo, Inv. Prob. 2014)

Proposition
For N € H*(R.) solution to the eigenequation we have

€
IN=Nelli2ryy < & = [[Hea=BNIli2(xaan) < C(+a7[Nl]we)

optimal ) e ' s
error i S

. _S_ 5
in O(es+1) v R

Figure : Rates of convergence for p1 and p», loglog plot

Numerical slopes: 0.68 (for p1) and 0.76 (for p2)
Theoretical slopes: 0.50 (for p1) and 0.66 (for p2)




Indirect Observation Scheme
Step 2: regularization - statistical setting

Joint work with M. Hoffmann, P. Reynaud-Bouret & V. Rivoirard
we have supposed
IIN = Nc||2 <€

But why an L? norm ? What about real data ?



Indirect Observation Scheme
Step 2: regularization - statistical setting

Joint work with M. Hoffmann, P. Reynaud-Bouret & V. Rivoirard
we have supposed
IIN = Nc||2 <€

But why an L? norm ? What about real data ?

We observe a sample of n cells, of sizes xi, - - - , x, realizations of
X1,...,Xp, i.i.d. random variables with density N

Lon(x) —pa*L< Zax X)



Inverse Problem for the age model: statistical treatment

We observe a sample of n cells, of ages a;y, - - - , a, realizations of
A1,...,Apn, i.id. random variables with density N,

(complete proof of this ansatz: M. Hoffmann, A. Olivier, 2016)
That is, your measure of N(a) is

1 n
Nyn(a) = " Z Oa=a;
i=1

Regularization: kernel method for instance: mollifier p,

n

Npa(a) = pa * (i > Gama)

i=1
with po = (%) with p € C°(R) and [ p(x)dx = 1, and define

05N, q(a)
max(N, «(a), threshold)’

B,a(a) = =X —



Indirect Observation Scheme
Step 2: regularization - statistical setting

How to adaptively select « 7
Goldenshluger & Lepski, Ann. Statist, 2009; Ann. Probab., 2010

We have a statistical estimator Ly, = pq * L(% >0x.),
we plug the first PDE step to inverse G and obtain

Theorem (MD, Hoffmann, Reynaud-Bouret, Rivoirard, 2012)
If Be H® (s > 1/2), then (under suitable assumptions)

E|[[(B - B)layll,| = 0 (n"55).



Indirect Observation Scheme
Step 2: regularization - comparison of stat and
deterministic settings

This optimal rate n"%7 is to be compared with the deterministic

rate &%/ (1)

see Engl, Hanke, Neubauer, 1995: for linear problems,

if ais the degree of ill-posedness, the optimal rate is 5=

Here, by the Central Limit and Berry-Essen Theorems, heuristically:
e~ n1/2

Degree of ill-posedness: a = 1 for a noise in L2, glves gstl

Degree a = 1 + 1/2 for a noise in H1/2, gives - V2 = me



Indirect Observation Scheme
Step 2: regularization - comparison of stat and
deterministic settings

This optimal rate n"%7 is to be compared with the deterministic

rate &%/ (1)

see Engl, Hanke, Neubauer, 1995: for linear problems,

if ais the degree of ill-posedness, the optimal rate is 5=

Here, by the Central Limit and Berry-Essen Theorems, heuristically:
e~ n1/2

Degree of ill-posedness: a = 1 for a noise in L2, glves gstl

Degree a = 1 + 1/2 for a noise in H1/2, gives - V2 = me

Coherence of the PDE and stat. settings



Numerical Results - Size Structured

55

450 [— B=1
4l | e B=1Tforx<1.5, thenincreases linearly to B=5
— - - B=1+exp(-8(x-2)%)

B(X)

Three tested division rates B



Numerical Results - Size Structured

09F

08
07t Vi

06} S

5
&
%

N(x)

05}

04F

03F

—— NforB=1
o2k { | N for B=1 for x<1.5, then linear increase to B=5
—-- Nfor B:1+exp(-8(><»2)2)

01F

-

0 L L 1 . - =y

0 05 1 15 2 25 3 35

Three related asymptotic distributions N



Numerical Results - Size Structured

—— Exact problem: B=1
LE:1 S B_ . Quasi-Reversibility method B
16k - B__, Filtering approach =0 |
' . __ B_ o Filter + Quasi-Reversibility
144 = 4
| <
124 . 4
— i\\ ____,,/‘__/_ 4
= 1 Ay e S
o
0.8 4
I
06} i
04t i
02t J
0 . . . . . .
05 1 15 25 3 35 4

X N

Results with no noise - constant B



Numerical Results - Size Structured

6 T T T
—— Exact problem: B=1then 5 B
______ ElE a Quasi-Reversibility method //r’
5l — - . B, . Filtering approach e
— . B_ . Filter + Quasi-Reversibility
=0
4+ i
—
= 3t i
o
2+ i
1 i
0 L L L L L
0.5 1 15 2 25

Results with no noise -



Numerical Results - Size Structured

22

08

— Exact problem: B=exp(-8(x-2)2}+1
- B, .. Quasi-Reversibility method

. B, . Filtering approach

B, . Filter + Quasi-Reversibility

Results with no noise - varying B

35



Numerical Results - Size Structured

evolution of error with o, e=0.01
05 s

—&— Quasi-reversibility method
0.45 | | —— Filtering method
—4— Filtering then quasi-reversibility method

04 %
r /

error §

Results with noise € = 0.01 - Error with respect to the
regularization parameter «



Numerical Results - Size Structured

£=0.01, B=exp(-8(x-2)%)+1

12 T T T T T T
---- Quasi-Reversibility method, cc=0.2, error =0.1
— - Filtering approach, «.=0.11, Error 5=0.09
1 — Filter (=0 1)+ Quasi-Reversibility (cc=02), Error 5=0 08 [T
)

Results with noise € = 0.01 - BN



Numerical Res

35

ults - Size Structured

25

—— Exact problem- B=exp(-8(x-2)%)+1
R Ba o Quasi-Reversibility method
— . Ba, o Filtering approach

— B, . Filter + Quasi-Reversibility

05

Results with n

0.5 1 1.5 2 25

oise e =0.01- B



Numerical Results - Size Structured

filter

—=—min over all « of obtained error
I

—#— o giving the minimum error

e

Optimal « with respect to €, compared to /¢ and the optimal error



Indirect measurement: the incremental model
With A. Olivier, L. Robert, DCDS-B, 2020

Recall: n(t,a,x) — e"tN(a, x) density of cells of size x and
increment a.

Definition of an increment: difference between size and size at birth
PDE obtained from the PDMP :

— [ B(s)d
PG >a)=e 0



Indirect measurement: the incremental model
With A. Olivier, L. Robert, DCDS-B, 2020

Recall: n(t,a,x) — e"tN(a, x) density of cells of size x and
increment a.

Definition of an increment: difference between size and size at birth
PDE obtained from the PDMP :

— [ B(s)ds da
> = _— =
P(CU - a) € 0 ) dt

RX

(kxN) = —rxB(a)N(a, x),

N(0,x) = /B(a)N(a,2x)da
0



Inverse problem for the increment-structured equation /
adder model

Reconstruction formula, deterministic setting - with A. Olivier and L. Robert
X

If we only measure N'(x) = [ N(a,x)da, can we estimate B(a)?
0



Inverse problem for the increment-structured equation /
adder model

Reconstruction formula, deterministic setting - with A. Olivier and L. Robert
X

If we only measure N'(x) = [ N(a,x)da, can we estimate B(a)?
0

Proposition (MD, A. Olivier, L. Robert, 2020, DCDS-B)
We have the following reconstruction formula:

IO (1 PN
s e T (1 e )

where H(x) is the solution of the dilation equation:

L(x) =rN + ;((KJXN) = 4H(2x) — H(x).

severely ill-posed inverse problem: infinite ("+1"!) degree of
ill-posedness... 82



Inverse problem for the increment-structured equation /
adder model

Idea of the proof: solve the equation along the characteristics and
integrate in a —

—f B(s)ds

—4/(y—aH(2 —a))e da

= deconvolution problem, where 4xH(2x) plays the role of
"noise”.
Estimates would require a priori bounds on F[4xH(2x)], e.g.
» Ordinary smooth "noise” of order 5:
alt|™? < Fl4xH(2x)|(t) < co|t| =7 for [t| > M
» Super smooth "noise” of order f:
altPrealtl” < | FlaxH(2x)(t)| < c|t|2ealt”



Inverse problem for the increment-structured equation /

adder model
Reconstruction formula, statistical setting - with A. Olivier and L. Robert, DCDS-B, 2020

We observe Xi,--- X, an i.i.d. sample of law N (x)

v C(9) E
_ 14+ie4®qg —iat g
i : ) 7 (1+i€g910,(6) Je¢de

Brila) = Snn(a) Vo ~ G 1/h |
’ I (1 + 'fg (5)19 (5))6—'55d§dsvw

s —1/h

with



Inverse problem for the increment-structured equation /
adder model

Simulation protocols - with A. Olivier and L. Robert

To analyse separately each term of the formula, we tested 4
protocols:

1. Protocol 1: from all direct functions, FFT & IFFT

2. Protocol 2: from "exact” (simulated) N(x)

3. Protocol 3: from X; ~ N(x) and "exact” (simulated) H(x)
4. Protocol 4: from X; ~ N(x).



Inverse problem for the increment-structured equation /

adder model
Simulation results - with A. Olivier and L. Robert

—— Size density at final time ___ Fourier transform
—— Size density at division of the density

Reconstruction by Protocol 2 Reconstruction ‘

" by Protocol 1
Reconstruction
by Protocol 2

Density
Modulus

T e s o
Size Frequency

Figure: Left: N(x), H(x) and H(x) by protocol 2
Right: |F(f)(&)|. |F(f);] (Protocol 1) and |F(f),| (Protocol 2)




Inverse problem for the increment-structured equation /

adder model
Simulation results - with A. Olivier and L. Robert, DCDS-B, 2020

— Density fy —— Survival function Sg

o __ Reconstruction ” —— Reconstruction by Protocol 1
by Protocol 1 o Reconstruction by Protocol 2
o [ Reconstruction by Protocol 2|
Reconstruction
05 by Protocol 2 o7
>
2 8
o5 3
2 gos
8o g,
& o
03
03
: s z 25 B 35 o o5 : (5 2 25
Increment of Size Increment of Size

Figure: Left: f( ), E(a) (Protocol 1) and E(a) (Protocol 2)
Right: S(a ff )ds, 51(a) and 5,(a)



Inverse problem for the increment-structured equation /

adder model
Simulation results - with A. Olivier and L. Robert, DCDS-B, 2020

— Division rate B
—— Reconstruction by Protocol 1
Reconstruction by Protocol 2

s
4

3 /
) /

1
3 35

Rate

1

o5 i 2 p
Increment of Size

0
o

Figure: B(a) §1(a) (Protocol 1) and B, (Protocol 2)



Inverse problem for the increment-structured equation /

adder model
Simulation results - with A. Olivier and L. Robert, DCDS-B, 2020

s s
95% Cl 95% Cl
7 Mean of 100 7t/ Mean of 100 ]
reconstructions reconstructions
R by Protocol 4 . by Protocol 4
— True — True
Qo . Reconstruction o . Reconstruction
© by Protocol 2 © by Protocol 2
c c
O 4 O«
0 K]
> >
E / a°
2 2
i+ .
. —/ . __/
o 05 s o 05

: s 2 2 : s 2
Increment of Size Increment of Size

Figure: B, with n = 500 (left), n = 50 000 (right)



Inverse problem for the increment-structured equation /

adder model

Simulation results - with A. Olivier and L. Robert

Error

Linear regression: slope -0.37
= Protocol 4

10" 10
Sample size

Error

Linear regression: slope -0.25
= Protocol 4

10° 10*
Sample size

Figure: Estimation of N(x) (left) and % (right)



Inverse problem for the increment-structured equation /
adder model

Simulation results - with A. Olivier and L. Robert

Error
I
Error

Linear regression: slope -0.23 Linear regression: slope -0.49
= Protocol 4 = Protocol 3 & Protocol 4
10? 107
W . :

10° 10¢ 10° 10¢
Sample size Sample size

Figure: Estimation of xH(x) (left) and (/ZE (right)



Inverse problem for the increment-structured equation /
adder model

Simulation results - with A. Olivier and L. Robert

s,
Ty [
S b S
.. R
s 11 L wl i TT T
g g
w w
—— Linear regression: slope -0.2 —— Linear regression: slope -0.16
= Protocol 3 = Protocol 3
Linear regression: slope -0.24 Linear regression: slope -0.18
= Protocol 4 = Protocol 4
10° 10* 10° 10*
Sample size Sample size

Figure: Estimation of F(f) (left) and f (right)



Inverse problem for the increment-structured equation /

adder model

Simulation results - with A. Olivier and L. Robert
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Figure: Estimation of | f(s)ds (left) and B (right)



Inverse problem for the increment-structured equation /

adder model
Test on experimental data - with A. Olivier and L. Robert
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04 0.5
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0.1 0.1
0 0

0 5 10 15 0
size (pm) size (um)

Figure: experimental size distribution (left),
reconstructed " at division” size distribution (right)



Inverse problem for the increment-structured equation /
adder model

Test on experimental data - with A. Olivier and L. Robert

0.8 5
~——From the size sample of all cells — From the size sample of all cells
-~ from the increment-and-size sample of dividing cells - from the increment-and-size sample of dividing cells
4
0.6
3
0.4
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Figure: experimental size distribution (left), reconstructed "at division”
size distribution (right)



What if we observe more ?

Second method: full observation
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Second method: direct and full observation

Statistical reconstruction
(MD, M. Hoffmann, N. Krell, L. Robert, 2015)
Observation scheme

{(fua Cu)a uc un}7

with U, C U a set of n nodes having the property

If u e U, then u= € U,.

Asymptotics taken as n — oc.

We use the link between f(t) the density of the lifetime and the
division rate B.



Second method: full observation

We have for the age model

P(¢, € [t, t+ dt]|Cu > t,&, = x) = B(t)dt

or for the size model
P(Cy € [t t+dt]|[Cy > t, &y = x) = B(xe™)dt

from which we obtain the density of the lifetime {, = t, for the
age model:

f(t) = B(t)exp ( - /Ot B(s)ds)

For the size model it is conditional on the size at birth = x:

f(t,x) = B(xe"t) exp ( - /O t B(xe"‘s)ds)




Second method: full observation
Age Model (Hoffmann, Olivier, 2015)

To make it short: survival analysis:

we observe a sample of n cells, of ages at division ai, -, an
realizations of Az,..., A, i.i.d. random variables with density
fd(a) = B(a)Nk(a)/ [ BNkda, and it is well-known that (branch
tree)

B(a) —_ fld(a) — f2d(a)e)\a .
[ fi(s)ds [ £ (s)ersds

For the whole tree data till a certain time: "bias" term: £ is
replaced by ff(a)e*® = cf? for a normalisation constant ¢
(Efromovich, Ann. Statis. 2004)



Second method: full observation
Size Model (M.D., M. Hoffmann, N. Krell, L. Robert, Bernoulli, 2015)

> explicit representation for the transition kernel Pg (which
links the daughter size/age law to its mother size/age law)
reminiscent of conditional survival function estimation.

» Under appropriate condition on B close to the conditions for
the eigenvalue PDE problem, the Markov chain is
geometrically ergodic (but not reversible).

> existence and uniqueness of an invariant measure vg(dx) such
that

vgPpg = vg.

Convergence through a Lyapunov function.
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Second method: direct and full observation

Influence of the observations on the estimator 3 fundamental
cases:

> sparse tree case: a line of descendants (0, u1, -+, up)
» full tree case: n = 2k", kn first generations

» measurements stop at a given time (independent of the

ik

i Wi i

‘wrwhw' It

lm’[

The first two cases are equivalent, the third is different.



Second method: full observation
Size Model (M.D., M. Hoffmann, N. Krell, L. Robert, Bernoulli, 2015)

We prove
Ky fP(y/2)

B(y) = = :
2
B [1{559, £u>y/2)

Stat. estimation: introduce a mollifier sequence to estimate f,°

Error estimate: if B € H®, for appropriate «, we find B, , such that

E Ban — B 22 1/2 5 |0gn nfs/(2s+l)
bl L

convergence rate to compare with the indirect approach: n™ 243,



Second method: full observation
From stat back to PDE...
Key representation:

O B 7 M )
2 2y :
Eflb |:1{5u_§y: EuZ}’/z}} f flb(x)dx

NI<

1 branch data: steady state:
O (kx N(x)) + B(x)N(x) = 2B(2x)N(2x).
we identify, up to a constant ¢, £°(x) = 2f7(2x) = 2cB(2x)N(2x)
CBNG) BN my 3

B(y) = = Ry 7
o) 2fyB/V(x)dx 2 ] Fo(x)dx
y 3
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Second method: full observation

Comparison of the convergence rates and conclusion

fd fd Aa
> Reference case: renewal: B(a) = foolﬁ§‘(;’z)ds = foo;zﬁzfeA%
a a

» Deterministic problem: well-posed! Degree of ill-posedness
a =0 - estimate in O(¢) -
> Statistical viewpoint: density estimate, H~1/2 to L2 so that

a=1/2
65/(S+1/2) _ n—s/(2s+1)

P> to be compared to the indirect method: error in the order of
es/(s+3/2) — p=s/(25+3)

» Population case: formula to adapt (MD, Hoffmann, 2022)

() (x) I S C))

o A ;(VA T r2x £d .
fx (f2d(y)—2f2b(y))e 2 J; (s) dy fx yi5 (y)dy

B(x) =



Step 6: Finally back to the data...

Will we be able to select or reject our models ?



6. Back to the data
(M.D., M. Hoffmann, N. Krell, L. Robert, BMC Biology, 2014)

To test a model:

» calibrate it (previously seen methods and data)

» simulate the PDE model:
0 0 0
5" T "t g(/ﬁxn) = —B(a, x)n(t, a, x),

n(t,a=0,x) = 4/ B(a,2x)n(t, a,2x)da
0

till its asymptotic steady behaviour n(t,a, x) = e N(a, x)
P> compare quantitatively data and simulations

» conclude !
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6. Back to the data
(M.D., M. Hoffmann, N. Krell, L. Robert, BMC Biology, 2014)

To test a model:

» calibrate it (previously seen methods and data)

» simulate the PDE model:
0 0 0
5" T "t g(/ﬁxn) = —B(a, x)n(t, a, x),

n(t,a=0,x) = 4/ B(a,2x)n(t, a,2x)da
0

till its asymptotic steady behaviour n(t,a, x) = e N(a, x)
P> compare quantitatively data and simulations

» conclude ! If possible...
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6. Back to the data
experimental age/size data - whole tree till a certain time

7
6
5
84
w
3
2-
1
o)
(0] 10 20 30 40
Age

Figure: Age Size Distribution for all cells - whole tree data



6. Back to the data
experimental age/size data - 1 branch data

0.035
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0.025
g 0.02
w
/ 0.015
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0 10 20 30 40
Age

Figure: Age Size Distribution for all cells - tree branches data
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Testing the Age Model
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Back to the data: testing the Age Model
(M.D., M. Hoffmann, N. Krell, L. Robert, BMC Biology, 2014)

Size
AN WA OO N

OO

10 20 30 40
Age

Figure: Age Size simulation for the Age Model - whole tree data



Back to the data: testing the Age Model
with a corrected growth rate

7 0.05
6
. 0.04
=
=» 0.03
N
»n 3 0.02 |
-
0.01
’
0
0 10 20 30 40
Age (min)

Figure: Age Size simulation for the Age Model - whole tree data



Back to the data: testing the Age Model

(0] 10 20 30 40
Age

Figure: Age Size simulation for the Age Model - branch tree data




Back to the data: testing the Age Model
with a corrected growth rate

10 20

Age (min)

30

Figure: Age Size simulation for the Age Model - branch tree data
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Age Model: conclusion

P> As it is, this model is rejected

P Theoretical reason: exponential growth + age-dependent

division rate lead to accumulation towards 0.
» Refer to theoretical results for the asymptotic regime: we need
B(x)

=X € L - false here

» This theory is not sufficient: corrected growth rate
dependence on these corrections is too important



Testing the Size Model



Back to the data: testing the Size Model
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Figure: Reconstruction of the division rate - green:

branches data

whole tree, blue:
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Size Model: reconstruction for B
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Back to the data: testing the Size Model

Not too bad but...

\

Size
= N W AN O O N

0

OO
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Age

Figure: Age Size simulation for the Size Model - whole tree data



Back to the data: testing the Size Model

Not too bad but...
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Age

Figure: Age Size experimental data - whole tree data



Back to the data: testing the Size Model

Not too bad but...

0] 10 20 30 40
Age

Figure: Age Size simulation for the Size Model - branch tree data
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Back to the data: testing the Size Model

Not too bad but...
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Figure: Age Size experimental data - branch tree data



The incremental /adder model

Rich data / "direct” approach: from "at division” distributions
The incremental model:
Increment= difference between size and size at birth

PDE obtained from the PDMP (as previously): asymptotically, for
the 1-branch case:

o0

755(5)(15_ B(a)bfo(a,x)dx

P(a < (, < a+da) = f(a) = B(a)e [ xB(a)N(a, x)dadx

0 0
a(H,XN) + a—(/ﬁ;xN) = —krxB(a)N(a, x),

X

N(O, x) = 4 / B(a)N(a, 2x)da
0

The best argument to date: the correlation between size at birth
and increment of size at division

(increment model: 0, size model: ~ —0.4, data: ~ —0.1) 122



What about an Age-Size Model ?

To test it, we would need an extra variable:

0.1
—H 2901
——-H 2901 fitted by age model
0.08; —E 1009 I
—-E 1009 fitted by age model
0.06f 1

0.041

0.02¢

% 10 20 30 40 50
age (min)

Figure: Age distribution: data and fit by the age model
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What about an Age-Size Model ?

To test it, we would need an extra variable:

0.1
, —H 2901
i - H 2901 fitted by age model
0.083 ——E 1009 I
- E 1009 fitted by age model
0.06} } 1
0.04
0.02f .\
A ST —r )
0 50 100 150

size

Figure: Size distribution: data and fit by the age model



The fragmentation case
application to fragmenting protein fibrils

(with Miguel Escobedo, Bilbao and Magali Tournus, Marseille,
data from W.F. Xue's group in Canterbury)



Classical assumptions on the fragmentation equation
Also assumed by W.F. Xue and S. Radford, Biophys. J., 2013
x) = Fragmentation rate of particles of size x.

(
B(x) = ax?”
(x,y) = Fragmentation kernel.
(

k(x,y) = }%ko (}5/) , where ko is a measure on [0, 1].

Theorem (Escobedo-Mischler-Ricard — Ann. IHP 2005)

Under reasonable technical assumptions, for large time, the profile
tends to a self-similar profile g :

2

n(t,x) — t?g(xt%), LY(x dx) (9)
where g is the unique solution of

o0 o0

S (zE(@)+ (L2 g() = v [ o)y ey, [ zetz

z 0
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Two examples.

800 4

7004

600
< 5001
= 400

0 0.5 1 1.5 2 2.5 3 35

size & size x

ko(X) = 2]1[071](X) ko(X) = 2(5X:1/2(X)

First reconstruction idea: use self-similar profile g
to estimate «, v and kg



First reconstruction idea: use self-similar dynamics

e For fragmentation equations: Old problem

recover the transition probability of droplet breakage from
experimental measurements of transient drop size distributions in a
stirred liquid-liquid dispersion: using a fragmentation equation
assuming self similarity.

Valentas, K. J., and N. R. Amundson, |.E.C. Fundls., 1966, 1968.
G. Narsimhan, D. Ramkrishna, J. P. Gupta, Chem. Ing. Sci, 1979

e Similar idea as seen above for growth fragmentation equations,
where steady Malthusian behaviours replace self similarity.
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Inverse problem observing g

Estimate all the fragmentation characteristics v, a, and ko

6 o

5@ + 1+ v g(@) = v [ o)y ey

z

Mellin transform: M|g](s) = /000 xS Lg(x)dx
(2 = s)M(gl(s) + ayM(g](s +7) = ayMlko](s)M[g](s + ),

Theorem (MD,Escobedo, Tournus, Ann. IHP, 2018)

For any g € LY(R}.) such that for all k > 0 [ x*g(x)dx < oo,
there exists at most one triplet

(7, a, ko(x)) € Ry x Ry x M?2([0,1]) such that g is the self-similar
profile of the fragmentation equation.
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Some ideas and comments on the proof
(2 = s)Mlg(s) + arMlgl(s +7) = arM[ko](s)MIg](s +7)
First step: determine ~y

Proposition
Given any constant R > 0:

Mig](s) 0, VR>~

. S 8IS .

| SIS _ ), ifR=

s—>o<:,rrs]eR+ M(g](s + R) “r 7
oo, VYR e (0,7)

Use the asymptotic behaviour of g(x) in 0 and +oo / of M|g](s)
for s - +o0

[other result: direct estimates in (Balagué, Cafiizo, Gabriel, 2013)]
Second step: determine « : Plug s = 2.

Mg
T Mlgl(1+7)
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Some ideas and comments on the proof
(2 = s)M[gl(s) + avM[g](s + 7) = ayMlko](s) M(gl(s + )

Third step: determine M[ko]. (~ ko)

Mgl(s)(2 —s)

Mlkol(s) — 1) = )
Mlkol(s) 1) ayM[g](s +7)

Cauchy integral to solve this equation ; first prove that the

denominator does not vanish by explicit solution.
(see also Hoang Ngoc Rivoirard Tran, 2020)

seC.

Existence: of a reconstruction formula = invert Mellin



Some ideas and comments on the proof
(2 = s)M[gl(s) + avM[g](s + 7) = ayMlko](s) M(gl(s + )

Third step: determine M[ko]. (~ ko)

Mgl(s)(2 —s)
Mlkol(s) — 1) = )
Mlkol(s) 1) ayM[g](s +7)
Cauchy integral to solve this equation ; first prove that the

denominator does not vanish by explicit solution.
(see also Hoang Ngoc Rivoirard Tran, 2020)

seC.

Existence: of a reconstruction formula = invert Mellin
Stability only in a very weak sense: severely ill-posed inverse
problem

+ estimation for @ and «y use g(0) or g(4o00) : impossible to
observe



Some asymptotic profiles in practice...
Tournus, Escobedo, Xue, MD, PLoS Comp Biol, 2021
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Back to

a-Synuclein

Lysozyme

biologists... and to experimental data

18900 S 257100 ] 606300 s 1293300 s

(7.0d) (15.0d)

300 s s 86400 s 432000s 1126800 s
(5.0 min) (1.0d) .00 (13.0d)

18000 S 264600 s 1048500 s

(10.0 min) (3.149) (7.14d) (12.1 d)
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Back to biologists... and to experimental data

Length / um
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What did experimentalists before they met us?
W.F. Xue, S. Radford, PNAS 2008 & Biophys. J., 2013

Question : Determine v € R, € R and ko.

» Regularization of the data. Polynomial functions (instead of
kernel regularization).

» Parametrization of the fragmentation kernel kg ~» The
problem becomes : Determine =, a, ky, ko, k3, ks € R®

» Solve the direct problem for the comprehensive set of
admissible parameters ~, a, ki, ko, k3, ks € RO.

» Total linear least square analysis to determine which set of
parameters fits best.

. and it worked quite well in practice...



What we proposed them to do
D.M. Beal, M. Tournus,... M. Doumic, W-F. Xue, biorXiv

At different times, a sample of fibril sizes is measured:
f(t,x) = n(t,x)
) fn(t,x)dx'

Average length: p(t) = [ xf(t,x)dx ~¢_ 00 ct

1 1
& e vt [ xVF(t, x)dx

— 2.5e-01 —_——t=0
0.94 - — = 1 =2760
t = 7740
08 2e-01 —— 1= 16380
0.7] t = 38700
— t = 83700
0.6 15e-01] —— ¢ = 107460
0.5
0.44 / ——1t=0 le-01
/ / —_—— t = 2760
0.31 y t=7740
— t = 16380
02 v ¢ = 38700 Se-02
0.1 —— £ =83700
—— ¢ — 107460
0 0e00 =
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
z z

Left: cumulative distribution functions, Right: density functions,
at several time points.
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Estimate v + First test on the model

For large times, log (M[@(](s +1, t)) = —% log(t) + log(Cs).

7 is the slope of log(t) — — log <M[f5dx](s +1, t)) /s, for
s € [0, +o0].

Here we predict v ~ 4.2 : small fibrils more unlikely to break up. 157



Estimate ~ with p(t
D.M. Beal,

M. Tournus,...

M. Doum|c, W-F. Xue, iScience, 2020
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Back to the data: simulations with («, )

little influence of kg
D.M. Beal, M. Tournus,... M. Doumic, W-F. Xue, biorXiv
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Results: influence of a and ~, small influence of k...
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Results: influence of a and ~, small influence of k...
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Then what to do? Some numerical investigation first
Tournus, Escobedo, Xue, MD, PLoS Comp Biol, 2021

15 - " 1 =
0.8 o ] o8 10
SL { B
0.6 £ o
2 % 05 1 506 0 05 — 1
= .
z ‘ 2
6 0.4 504
0.2 0.2
0 0
0 0.2 0.4 0.6 0.8 1 0 2 4 6 8 10

t t

When can we distinguish 2 distributions?

Insets: 2 different kernels
Initial condition: Black: peaked gaussian -

Blue: spread gaussian - Red: decreasing exponential

Time evolution of the p-value of a Kolmogorov-Smirnov test
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Then what to do? Some numerical investigation first
Tournus, Escobedo, Xue, MD, PLoS Comp Biol, 2021

N = 200
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Use the short time behaviour

Some heuristics first

If u(0,x) =0(x—1),and0< t <1,

ou y B ! x 5 Xy ko(dz)

2 (20 + ax u(t,x)fa/o (Eyru(e, )

u(t+ At, x) — u(t,x) . N b x N x| ko(dz)
At + ax u(t,x)Na/O (E) u(t,;) >

u(At,x) —6(x —1) - N b x e X ko(dz)
At + ax 5(x—1)~o¢/0(;) 6(;—1)7

u(At,x) — 6(x — 1)
At

+ ad(x — 1) = ako(x)

ko(x) & k*t(x) =

(u(At,x) — (1 — aAt)é(x —1)).

alAt




Use the short time behaviour
A first Total Variation result

Theorem (MD, Escobedo, Tournus, preprint arXiv:2112.10423)

The unique fundamental solution U to the fragmentation equation
with the initial condition uy = §(x — 1) satisfies, for t € [0, T| and
for some K > 0 depending on T and «

— ko < Kt.

H U(t) — et§(x — 1)
TV

at

lpl[Tv = sup {/{0 )sO(X)du(X),so € L'(dlul) n L=, lelle < 1}-

BUT: The situation for the experimentalists:

1.- 0(x — 1) as initial data impossible — build something “close”

Uq’()

2.- Do not measure ug g and its solution ug(t), but ugo ., and

tg.e(t).



Use the short time behaviour
A stability result in a Bounded-Lipshitz norm

Theorem (MD, Escobedo, Tournus, preprint arXiv:2112.10423)
Let ugo € M(R") such that Supp(ugo) C [m, M] for m, M > 0 and

lugo =d(x = 1)[lar <gq.

Let uq the unique solution to the frag eq. with ug(0) = ugo. Let ugo .,
and uq.. noisy measurements:

|Ug.0.c0 — UgollBr < €0, |luge(t) — ug(t)llaL < e.
Then, for constants Ky and K, depending on M and T,

Kog+eg+e
—kOH < Kyt 29T TE
BL ot

H Uge(t) — e *fugoe,
at

where ||ul|gL = sup {/[ )@(X)du(X),w € LY(d|p) N Wh>, Jlpllwie < 1}
0,00
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Use the short time behaviour

Numerical illustration

1 05
X (size) X (size)

Plot of u(t,x) — e *§(x — 1) for « = =1 and 4 different ko.
Blue: t =1073; Red: t = 3.
A good approximation of the kernel is seen on the curves in blue.



Conclusion and perspectives

» Method may be adapted to other cases and models
» Coherence and complementarity between PDE, stoch and stat

» a basis for new biological questions: coordination between
growth and division, influence of variability...

» Short-time behaviour well-adapted to estimate the frag kernel;
to test on real data ... and study from a stochastic viewpoint

> A new problem: estimate the mutation rate in bacteria - G.
Garnier's Ph.D

Many have contributed...

Pierre Gabriel, Thibault Bourgeron, Miguel Escobedo, Magali
Tournus, Benoit Perthame, , Pedro Maia, Marc
Hoffmann, Patricia Reynaud-Bouret, Lydia Robert, Vincent
Rivoirard, Nathalie Krell, Adélaide Olivier, Adeline Fermanian,
Anais Rat, Wei-Feng Xue, Cédric Doucet...
to be continued!
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The fragmentation and growth-fragmentation equations

General form
Recall of the probabilist view: "our” operator is " their" adjoint

%n = 1*n+ F*n,

where

> [* is the adjoint of the infinitesimal generator L of the cadlag
strong Markov process (X;)¢>0. Here X = (0,00) and L* is
taken deterministic: Lf = 7(x)f’(x) so that L*n = (Tn)/.

> F* is the adjoint of the fragmentation operator

/ S (f(y) — £()) p() P9 (x, dy),

j>0

where P(f)(x, dy) is the symetrized fragmentation kernel:
probability of an individual of size x to split in j parts, one of
them of size y.
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Inverse problem for the increment-structured equation /
adder model

Reconstruction formula, deterministic setting - with A. Olivier and L. Robert
X

If we only measure N'(x) = [ N(a,x)da, can we estimate B(a)?
0
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Inverse problem for the increment-structured equation /
adder model

Reconstruction formula, deterministic setting - with A. Olivier and L. Robert
X

If we only measure N'(x) = [ N(a,x)da, can we estimate B(a)?
0

Proposition (MD, A. Olivier, L. Robert, 2020, DCDS-B)
We have the following reconstruction formula:

IO (1 PN
s e T (1 e )

where H(x) is the solution of the dilation equation:

L(x) =rN + ;((KJXN) = 4H(2x) — H(x).

severely ill-posed inverse problem: infinite ("+1"!) degree of
ill-posedness... 150



Inverse problem solution with the Mellin transform

Problem.
Without any a priori knowledge on the fragmentation process,
but measuring g identify the parameters ~, o, and kg.

Supplementary hypothesis on kg: no Dirac mass at x = 0 or
x =1,

de >0, kg € C[0,e] N C[1 —¢,¢],
3" >0,m > >0; ko(2) > €', Vz € [n1,m].

Theorem (MD,Escobedo, Tournus, Ann. IHP, 2018)

For any g € L*(R.) such that for all k > 0 [ x*g(x)dx < oo,
there exists at most one triplet

(7, a, ko(x)) € Ry x Ry x M([0,1]) such that g is the
self-similar profile of the fragmentation equation.



The fragmentation and growth-fragmentation equations

First focus: 7(x) = x

1
n(t,x)+£<(xn(t,x)) + B(x)n(t, x) :/B()z()”(t’);)k()(dz)
0

Linked to the fragmentation equation
Pl ; ko(d
Seultx) + Bt ) = [ BCE)ue, L)
ot z
0

by u(t,x) = e'n(t, xe")



Critical fragmentation: first insight in the asymptotics

1
%u(hx) + u(t,x) = f u(t, g)ko(zc/z)7

0 (10)
u(0,x) = u™(x)e L*((1+ x)dx)

Proposition
A solution u € C*((0,00); L*((1 4 x)dx)) of (10) satisfies

xu(t,x) = M§, ast— +oo, inD'R"), M= /xui"(x)dx.
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Mellin transform for the fragmentation equation

o0

M;e(s) = /xs_lf(x)dx
0
The Mellin transform is the Fourier transform in y = log x

Denote U(t,s) := M. )(s), Uo(s) = My (s), K(s) := My, (s).
%U(t, §)+ U(t,s) = K(s) U(t, s)
= U(t, s) = Up(s) eK()-D)t



Mellin transform for the fragmentation equation

o0

Mge(s) = /xs_lf(x)dx
0
The Mellin transform is the Fourier transform in y = log x

Denote U(t,s) := M. )(s), Uo(s) = My (s), K(s) := My, (s).

9
5;U(t.s) + U(t,5) = K(s) U(t.s)
= U(t,s) = Up(s) elK()71)t

Formally (assumptions on kg, up and v € R required)

v+ioco

/ UO K(s)-1)t x"Sds

v—ioo




Mellin transform for the fragmentation equation

o0

M;e(s) = /xs_lf(x)dx
0
The Mellin transform is the Fourier transform in y = log x

Denote U(t,s) := M. )(s), Uo(s) = My (s), K(s) := My, (s).

9
5;U(t.s) + U(t,5) = K(s) U(t.s)
= U(t,s) = Up(s) elK()71)t

Formally (assumptions on kg, up and v € R required)

v+ioco

/ UO K(s)-1)t x"Sds

v—ioo

Nice formula... But asymptotically?...



Mellin transform and self-similar profiles

v+ioco

271'1 / Uols

v—ioo

K(s)— 1)t

°ds

(as for the case v > 0): does there exist ¢ s.t.

F(£)(xg(t))

is a solution to (10) and so that, for any u',
u(t, x) Resoo ()P (xg(t))

?



Mellin transform and self-similar profiles

v+ioco

K(s)— l)t
271'1 / Uols "ds

v—ioo

(as for the case v > 0): does there exist ¢ s.t.

F(£)(xg(t))

is a solution to (10) and so that, for any u',
u(t, x) Reooo F(E)®(xg(t)) 7

Proposition
If we look for ® € L'((1 + x)dx), no such solution.

But for all s > p1, pointwise self-similar solutions are given by

(KDt =s — exp((K(s) — 1)t — slog(x)) := exp(¢(s, t, x))



First step: integration domain for the Mellin transform

[1,2] C I(wp) := {p eR; U(p) = / uo(x)xP~Ldx < oo} = (po, qo)-
0

po = inf/(uo), qo := supl(uo), p1 = inf/(ko) < 2.

ug ~g x_ M, Ug Ryoo X P

Proposition
For p1 :=inf I(ko) < 2, 3! sol. to (10), ¥V max(po, p1) < v < qo:

v+ioco

Uo(S) e~s Iog(x)-i-t(K(s)—l)ds'
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First step: integration domain for the Mellin transform

[1,2] C I(w) == peR;, Us(p) = / uo(x)xPLdx < oo p := (po, q0)-
0

po :=infI(up), qo:=supl(uw), p1:=infl(ky) < 2.
ug ~g x_ M, Ug Ryoo X P
Proposition
For p1 :=inf I(ko) < 2, 3! sol. to (10), ¥V max(po, p1) < v < qo:
v+ioco

Uo(S) e~s Iog(x)-i-t(K(s)—l)ds'

For v > 2 and x fixed: K(v)—1 < 0 = exponential decay t — co.
But which exponential rate? And when t — oo and x — 07 156



Main idea: study ¢(s, t, x)
u(t, x) = 5 j[oo Us(s) e+ ds with é(s, £, x) = —s log(x) + t(K(s) — 1)

s € R — ¢(s, t,x) is convex: define for x < 1

se(t,x) =arg_min  o(s,t,x) = K'Y 'Ogt(x))

In the zone s (t,x) > qo: = &(s+, t,x) < ¢(qo, t, x)

= Steps for sy > gg or s; < py :
» move to the residue qg

» cross it: residue theorem (+ extra regularity assumptions)

» evaluate the rest as small since R(p(s5, t,x)) < R(P(qo, t, x))



The zones of convergence
Example: mitosis kernel
t

0.8 1.0

Figure: Different curves of the form s, = ~y for different values of v > 0,

so that 2t = —y2log x. As t — oo, the function xu(t, x) concentrates in

_ 2t 2t
. 2 -
the interval x € (e t,e ?> .
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Numerical lllustration

Example: mitosis kernel

8 in
an(t,y)ﬂLn(t,y)=4n(t,y+|og2), n(0,y) = n"(y).

151

10-

—%O -50 -40 -30 -20 -10 0
X

Figure: solution in a log-scale. Inside the blue and green curves,
u(t,x) > 10%max,u(t,-).
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Case x > etK'(q)

v+ioco
u(t,x):% / Uo(s) etK&)=Dtx=s s,

v—ioo

Theorem
As t — oo and qo < si(t,x) :

u(t,x) = agx P g(K(q0)—1)t <1 L0 (X—V'+qoe(K(u’)—K(q0))t>) ‘

forav' > qo.
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Case x > etK'(q)

v+ioco
u(t,x):zim_ / Uo(s) etK&)=Dtx=s s,

v—ioo

Theorem
As t — oo and qo < si(t,x) :

u(t,x) = agx P g(K(q0)—1)t <1 L0 (X—V'+qoe(K(u’)—K(q0))t>) ‘
fora v > qq.

—>  Rate of convergence: exponential.
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case etK'(P) « x < etK'(q)



case etK'(P) « x < etK'(q)

v+ioco

u(t,x) = =— / Uo(s) e?(=tX)~tds.

= steps:
» Choose v = s, (t, x)

» Method of the stationary phase to localize the dominant
contribution in the integral



case etK'(P) « x < etK'(q)

oo
1 .
u(t,x) = i / Uo(s+ + iv) eP(s++ivitx)—t 4,
—0oQ

Lemma
Re(p(s4 + iv, t,x)) maximal iff

» v =0 if kg has an absolutely continuous part,



case ef'(m) < x < etK'(a)

oo
1 .
u(t,x) = i / Uo(s+ + iv) eP(s++ivitx)—t 4,
—0oQ

Lemma

Re(p(s4 + iv, t,x)) maximal iff
» v =0 if kg has an absolutely continuous part,
> for ko(z) = 2(552%:



case etK'(P) « x < etK'(q)

oo
1 .
u(t,x) = i / Uo(s+ + iv) eP(s++ivitx)—t 4,
—0oQ

Lemma
Re(p(s4 + iv, t,x)) maximal iff
» v =0 if kg has an absolutely continuous part,

> for ko(z) = 255:%5 v E % Z

(more complex probability measures also dealt with, but not all...)



Case etK'(m) « x = etK'(s+) < gtK'(q)
& v =0 only max of Re(¢)

Theorem
For any § > 0, for pg + 9 < sy (t,x) < qo — ¢ and t — oo, we have

Uo(sy)x—s+ e(K(st)-1)t

u(t,x) =
(£:) 21tK" (s,

+0(t777),

for o > 0 well chosen.

= Rate of convergence: at most polynomial.
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Case etK/(PO) < X = etK/(5+) < etK/(qO)
& ko = 262:%

2itk
log?2 -

Same analysis around each s, = s, +

Theorem (MD, M. Escobedo)
For any § > 0, for pp + 9 < sy (t,x) < qo — ¢ and t — oo, we have

2imk
(tvx)e(K(S-F(th))_l)t ZkGZ UO(Sk)X log 2

u(t,x) = x°F
2mtK" (sy)

Poisson summation formula:

(K(5+

u(t,x)wlog2W2uo(2 x)

= Rate of convergence: at most polynomial.



Comparison with (Bertoin, 2003)

see also (Bertoin, Watson, 2016)

Stochastic process X = (X(t),t > 0), values in S¥(y) set of all
sequences Y = (y;);en+ such that

V22 Yy > >0 and y=3 y <1,
Random measure p(dy) defined by

pt(dy Z X 51 : log X;(t) (dy)

converges to d_,, in probability for some p < oo.
pr image of pr by x = Vt(x + p)/o
converges in probability to the standard normal distribution

N(0,1).



Comparison with (Bertoin, 2003)

see also (Bertoin, Watson, 2016)

The laws of p¢(dy) and p:(dy) correspond to rescalings of u:

oz

V't

r(t,y) = ye¥u(t ), Kt z) = r(t,yo +

)i
\/E’

with yp := K’(2) and o2 := K”(2).

Under previous assumptions we prove

r(t) ) - 5K'(2) U0(2)7 F(t7 ) - U0(2)G7
2

with G(z) = €2, in the weak sense of measures.

9
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Fragmentation + binary fission: oscillations?

with Bruce van Brunt



Dirac kernel: an explicit formula
with B. van Brunt

Here

ko = 26x:% = K(s) = 22_5,
For x = e~ tK'(s+) with —K’(pg) < K'(s4) < —K'(qo):
K(S+)—1)t

el

V2mtK"(s,) %

u(t, x) ~ log2 up(2"x).
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Dirac kernel: an explicit formula

with B. van Brunt

Here
ko = 26x:1 = K(s) = 22_5,

2
For x = e~ tK'(s+) with —K’(pg) < K'(s4) < —K'(qo):
e(K(sp)—-1)t

u(t,x) ~log2—-——
(1) ~los \/27rtK”(s+)é

Direct formula:

up(2"x).

u(t,x)=e ! Z uo(2%x) (4kt!)k

k=0

"oscillations” in these formulae?
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Dirac kernel: oscillations?

Recall (Bertoin, 2003):
92y %
V'V

with yp := K’(2) = —log2 and 02 := K"(2) = (log 2)>.
Under previous assumptions we prove

r(t.y) = tye®u(t,e),  F(t,z) = r(t,yo +

I’(t, ) - 5K’(2) U0(2)7 F(t7 ) - U0(2)G7
2

with G(z) = e\‘/% in the weak sense of measures.

not contradictory with oscillations: weak convergence
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Dirac kernel: oscillations?
with B. van Brunt

r(t, o) ot —t t 2ikm —2i7rkt( B )
=12 t,27%) = ,/—E 2 1 t

keZ

= oscillations for ﬁ of period 1.

lllustration: v/tn(t,y) with n(t,y) = e u(t, e”) solution to

0
a”(ta)/)ﬂL”(ta)/):”(tay—l-logz), n(oa}/):nO(y)



Series representation of the solution

The fundamental solution U € M(R") with initial data uy = §(x — 1):

U=e*(x—1)+ Z (at)ap; ap(x) =0,

L x X Iz —1)"
o) = (xWan(xH / Cyran(yRld2) )

n+1 z z z n!

The series is convergent in the TV norm for measures: with

1= pis o
”a"HTVSU":H,Z3 I(=1Y,vn>1



Proof of the TV convergence result

We have -
t. n
U — e®td(x — 1) 2 (at)"an
T k=" ko
at ot
= Z(at)"*lan — ko = Z(at)"anﬂ — ko
n=1 n=0
and since a; = kg, we have
Z(at)"an+1 — ko = Z(at)”a,,+1 = atZ(at)"an+2.
n=0 n=1 n=0

Thus

oo
<aty (at)"anll1v.
TV n=0

_kO

U—eot§(x — 1)
at




Proof of the TV convergence result

The series converges (normal convergence) and thus it is bounded on any
compact set, for instance for t € [0, T]. Then the result holds for

oo

K+ o, = o max t)"||a .
T =@ Max n:O(a )" llant2ll v

By simple scaling:
Corollary 1 If Uy is the solution with initial data Uy(0) = d(x — X), for
t € [0, T] and for some K > 0 depending on T,,~

< KtA7.
TV

Ur(t) —e ™M o(x =) 1, (f)
at\y A0\

Corollary 2 If u is the solution with initial data ug, for t € [0, T] and for
some K > 0 depending on T,y and [[uo 1(¢2vdp)

U(t) _ efoztx“"uo
at

< Kt
%

— Kk Ho

Here x denotes the multiplicative/Mellin convolution
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Proof of the stability result in BL norm

Remember the hypothesis:

l(ugo —d(x—=1))|ler <q

[Ug.0.20 — Ugollr < €0, [luge(t) — ug(t)ller < e
Then,
H Ug,e(t) — € ug0,6 -~ kOH < [|ug,e(t) — uq(t)||BL+

at BL at
ug(t) — U(t U(t) —e 2(x—1

+H q(t) ()”BL+H (1) ( )_kOH n

at at BL
Lot [0(x = 1) — ugollar Lot [|ug,0 — Ug,0,e0llBL
at «t

H U(t) —e *o(x—1

) koH < Kt
at BL

By the TV Theorem:



Proof of the stability result in BL norm

For the last remaining term:

lug(t) — u(t)|[sr < Cllugo — wollsr, Vv € (0,1],
lug(t) = u(t)|[sr < Cllugo — wollr, Yy =1

using the following.

Proposition There exists a constant C > 0 such that, for all bounded
measure g compactly supported in [0, M], and either Supp(up) C [m, M]
with m > 0 or v > 1, the weak solution u of the fragmentation equation
satisfies, for all t € [0, T,

lu(t)llsL < C(M, T)|luollBe-



Numerical simulations
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Extensions of the model

Variability:

3} 0
an(t, x,v) + vxn(t,x,v)) =

ax

—B(x)n(t,x,v)+2 / / B(y)k(y,x)p(V',v)n(t,y, V' )dy, dV'

X

with [7° p(V/,v)dv =1

9]
0



Extensions of the model

Variability:

0 0
an(t,x, V) + &(

vxn(t,x,v)) =

—B(x)n(t,x,v)+2 / / B(y)k(y,x)p(V',v)n(t,y, V' )dy, dV'

X

with [7° p(V/,v)dv =1

9]
0

Age + variability:
0 o) _
ain(t,a,x,v) + 8—X(vxn(t, a, x, v)) = —B(a,x)n(t, a, x, v),

n(t,a=0,x,v)=2[ [ B(a,y)k(y,x)p(V'.v)n(t,a,y,v')dydv'da
x 0

(related (maturity) models: Lebowitz, Rubinow, 1977 - Rotenberg,
1983 - Mischler, Perthame, Ryzhik, 2002,...)



Incorporating variability
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Figure: Effect on the distribution of growth rate variability

178



Incorporating variability

Frequency
© o ©
w » o

I~
N

Size

Figure: Effect on the distribution of variability in daughter sizes
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Use the short time behaviour
First back to theory...

Hypothesis on ky: contains no Dirac mass at x =0 or x =1, and

1 1
supp (ko) € [0, 1], / dio(2) < +o, / 2dko(2) =
0 0
Weak solution:
A family (u(t))r>0 C M(RT) is called a measure solution with

initial data uo € M(R+) if for all ¢ € CO(R™) and all t >0,
t — [ o(x)u(t,dx) is continuous and

[ etute.d = [ otou(a

ta / /R ( XV p(x)u(s, dx) + / o(x2)x " ko(dz)u(s, dx)) ds.

Existence and uniqueness (y > 0) in M (R™) in Carrillo & al.
2012.
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