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Bacterial growth (E. coli here)

From E. J. Stewart, R. Madden, G. Paul, F. Taddei, Plos Biol, 2005
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What triggers bacterial division?

Different ways of investigation:

I details the intracellular mechanisms
many studies

I Observe and understand the population dynamics

Question: Can we deduce laws from our observations?
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Protein polymerization

Common point between:

I Alzheimer’s
(illustrated)

I Prion (mad cow)

I Huntington’s

I and some others
(Parkinson’s, etc)?

(J. of Alzh.’s D., 2014)

Neurodegenerative diseases characterized by abnormal
accumulation of protein aggregates called AMYLOIDS
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Protein polymerization: main issues

I Understand what are the key polymerization mechanisms

I Identify transient species, and the ”most infectious” sizes of
polymers

I Study the models...

I How to select and calibrate the models; write new models...

Of key importance: size distributions
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Protein polymers fragmentation

Experimental device: Atomic Force Microscopy (AFM)
Performed at the University of Kent, UK, by W.F. Xue’s team.

Several proteins: β2m, αsynuclein, Lysozyme, βLactoglobuline
Fragmentation by agitation

(From W.F. Xue, S. Radford, Biophys. J., 2013)

Can we estimate the division features (rate, where the fibrils
divide) from such images?
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Steps towards ”laws” of division

1. Make the most of direct observations
Methods: statistical analysis, density estimation...

2. Make assumptions or simplifications

3. Build model(s)
Methods: stochastic processes / ODE or PDE ...

4. Analyse the model(s): long-time asymptotics, qualitative
behaviours...

5. Calibrate the model(s): estimation of unobserved parameters
Methods: inverse problems, statistics

6. Back to the data to (in)validate the model(s)
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First step: take the most of our data
(before writing down a math model)
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1. Observations for the protein fragmentation case

At different times, a sample of fibril sizes is measured  n(t,x)∫
n(t,x)dx

.

Left: cumulative distribution functions, Right: density functions,
at several time points.
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2. Observations of the population for bacteria
1st historical observations, the simplest and often the only possible
ones, and confirm the asymptotic behavior:

Observation (from Kubitschek, 1969): DOUBLING TIME and
STEADY SIZE DISTRIBUTION.
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3.”Complete” observations for bacteria
Major advantage of in vitro bacterial growth: EVERYTHING
may be measured to control/validate the assumptions.
2 types of data:

I initial video: all descendants till a certain time, several
microcolonies (Stewart et al, Plos Biol, 2005)

I 1 daughter cell kept at each generation, till a certain time,
several lineages (Wang, Robert et al, Current Biology, 2010)

The way we observe the data influence the math modeling.
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3. Complete observations: individual growth
commonly accepted after much debate: exponential growth:

dx

dt
= κx .

(Stewart et al, Plos Biol, 2005)
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3. Complete observation: individual growth
variability of the exponential rate κ among cells

Figure: growth rate distrib. (min−1)

Heritability? See (Delyon, de Saporta, Krell, Robert, 2018)



14

3. Complete observations: population growth

Growth of the population: exponential with Malthus parameter λ
(almost) equal to the (average) individual growth rate κ.
Doubling time (= Log(2)/κ) of approx. 20 min.

Figure: Monod’s 1942 thesis on E. Coli culture cells.
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3. Complete observation: division

Distribution of the ratio (size of daughter/size of mother)
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3. Complete observation: ”all cells” distributions

Blue: 1 branch/genealogical data
Green: whole tree data till a certain time
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3. Complete observation: ”at division” distributions

Blue: 1 branch/genealogical data
Green: whole tree data till a certain time
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3. Complete observation: joint age-size distribution

Left: Age-Size Distribution for all cells - ”petri dish” / whole
population case
Right: Age-Size Distribution for microfluidic device - ”1-branch
data”
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Second step: making assumptions
(before writing down a math model)
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Assumptions: some simplification

based on direct observations:

I daughter cell size= half of mother cell size

I growth rate = constant among cells (neglect variability)

dx

dt
= κx

I infinite nutrient and space

I first cell selected at random
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Assumptions: modeling

I no memory

I a particle of size x may divide with a division rate B
depending on age
OR

I a particle of size x may divide with a division rate B
depending on size
OR

I a particle of size x may divide with a division rate B
depending on size AND age AND/OR something else...
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Third step: models
(that we will analyse and calibrate)
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Models

2 main ways of translating mathematically the previous
assumptions:

1. probability: model each cell

2. PDE: model the population of cells, considered either as large
or in expectation
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Mathematical Modelling of the protein fragmentation
experiment

Noise model:

At time t, we measure x1, · · · xn an i.i.d. sample of density n(t, x)

Model for n(t, x) : the fragmentation equation

∂n

∂t
(t, x)︸ ︷︷ ︸

Evol. of number of polymers

= −B(x)n(t, x)︸ ︷︷ ︸
Death

+

y=∞∫
y=x

k(y , x)B(y)n(t, y)dy

︸ ︷︷ ︸
Creation

Measurement: at different times ti , a (noisy) n(ti , x) provided by
samples x1(ti ), · · · xn(ti )(ti )

Unknowns: the non-parametric functions B(x) (fragmentation
rate) and k(y , x) (fragmentation kernel)
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The pure fragmentation equation: basic properties
”Fragmentation conserves the mass”: ∀ B(·)n(t, ·) ∈ L1(xdx) :

∞∫
0

xB(x)n(t, x)dx =

∞∫
0

∞∫
x

xk(y , x)B(y)n(t, y)dydx

The fragmentation kernel k(y , x) must satisfy

I y → k(y , ·) nonnegative measure with Supp
(
k(y , ·)

)
⊂ [0, y ]

(and ∀ ψ C 0, y →
∫
ψ(x)k(y , dx) is Lebesgue-measurable)

I mass conservation

=⇒
y∫
0

xk(y , dx) = y

I If binary fragmentation: =⇒ k(y , x) = k(y , y − x) (may be

relaxed); with the mass conservation it implies
y∫
0

k(y , dx) = 2

Self-similar fragmentation: k(y , x) := 2
y k0( xy ), with

Supp(k0) ⊂ [0, 1].
2 main examples: uniform k0(z) ≡ 2, equal mitosis k0(z) = 2δz= 1

2
.
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Models: Branching processes modeling
See e.g. (Bansaye, Delmas, Marsalle, Tran, 2011); (Champagnat, Ferrière, Méléard, 2006
& 2008); (Bansaye, Méléard, 2015)

Piecewise Deterministic Markov Processes (PDMP):

I start: a singe cell of size x0.

I cell’s growth: deterministic.

I at each time, it has an instantaneous probabillity rate B to
divide (jump); B depends on size x or age a of the cell.

I At division, two offspring of age 0 and initial size x1/2, where
x1 is the size of the mother at division.

I The two offspring start independent growth (Markov property)
according to the (deterministic) rate κ and divide according to
the (probabilistic) rate B.
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Stochastic models

Genealogical tree: infinite random marked tree

U =
∞⋃
n=0

{0, 1}n with {0, 1}0 := ∅.

To each node u ∈ U , we associate a cell with size at birth ξu and
lifetime ζu.
If u− denotes the parent of u then

ξu =
ξu−

2
exp

(
κζu−

)
.
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Stochastic models
Age model: the division depends on the age of the individual:

P(ζu ∈ (a, a + da)|ζu ≥ a) = B(a)da, P(ζu ≥ a) = e
−

a∫
0

B(s)ds

Figure: Left: the size of each segment represents the lifetime of an
individual. Individuals alive at time t are represented in red. Right:
genealogical representation of the same realisation of the tree. Figure
taken from (Hoffmann, Olivier, 2016).
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Models: From probability to PDE...

Equivalent view: random measures

X (t) =
(
X1(t),X2(t), . . .

)
process of the sizes of the population at

time t, or A(t) =
(
A1(t),A2(t), . . .

)
of ages at time t.

X (t) has values in the space of finite point random measures on
R+ \{0} via

Z
(x)
t =

]X (t)∑
i=1

δXi (t), Z
(a)
t =

]A(t)∑
i=1

δAi (t)

microfluidic / genealogical case: only 1 individual δX1(t)
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Stochastic evolution equation for the age model
ask Bertrand, Chi, Sylvie, Vincent... or refer to (Bansaye, Méléard, 2015)

Z
(k,a)
t = τtZ0 +

∫ t

0

∑
i≤〈Z (k,a)

s− ,1l〉

∫ ∞
0

(kδt−s − δai (Z (k,a)
s− )+t−s)

1l{ϑ≤B(ai (Z
(k,a)
s− ))}Ni (ds, dϑ),

k = 1 : genealogical case / microfluidic device
k = 2 : population case
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Age model: renewal process and renewal equation

P(ζu ∈ (a, a + da)|ζu ≥ a) = B(a)da, P(ζu ≥ a) = e
−

a∫
0

B(s)ds

Set, for (regular compactly supported) f

〈n(t, ·), f 〉 := E[〈Z (k,a)
t , f 〉] = E

[ ∞∑
i=1

f
(
Ai (t)

)]
.

In a weak sense:

∂tn(t, a) + ∂an(t, a) = −B(a)n(t, a),

n(t, 0) = 2

∞∫
0

B(a)n(t, a)da OR n(t, 0) =

∞∫
0

B(a)n(t, a)da

So the mean empirical distribution of A(t) satisfies the
deterministic renewal equation.
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Size model: growth-fragmentation process or equation

P(ζu ≥ a|ξu = x) = e
−

a∫
0

B(xeκs)ds

Set, for (regular compactly supported) f

〈n(t, ·), f 〉 := E
[ ∞∑
i=1

f
(
Xi (t)

)]
.

Proof: tagged fragment approach (Bertoin, Haas, ...), many-to-one

formula (Bansaye et al, 2009, Cloez, 2011, Bertoin & Watson, 2019...)

We have (in a weak sense) IF we keep the 2 daughters at each
generation:

∂tn(t, x) + ∂x
(
κx n(t, x)

)
+ B(x)n(t, x) = 4B(2x)n(t, 2x).

So the mean empirical distribution of X (t) satisfies the
deterministic growth-fragmentation / size-structured / cell division
equation (with binary fission and equal mitosis).
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Size model: growth-fragmentation process or equation

P(ζu ≥ a|ξu = x) = e
−

a∫
0

B(xeκs)ds

Set, for (regular compactly supported) f

〈n(t, ·), f 〉 := E
[ ∞∑
i=1

f
(
Xi (t)

)]
.

Proof: tagged fragment approach (Bertoin, Haas, ...), many-to-one

formula (Bansaye et al, 2009, Cloez, 2011, Bertoin & Watson, 2019...)

We have (in a weak sense) IF we keep 1 daughter at each
generation:

∂tn(t, x) + ∂x
(
κx n(t, x)

)
+ B(x)n(t, x) = 2B(2x)n(t, 2x).

So the mean empirical distribution of X (t) satisfies a deterministic
conservative growth-fragmentation equation (also encountered e.g.
for TCP/IP protocol)



34

Age and Size model: PDE
n(t, a, x) density of cells of size x and age a.
PDE obtained from the PDMP (as previously) or by a mass
balance:

∂

∂t
n +

∂

∂a
n +

∂

∂x

(
κxn
)

= −B(a, x)n(t, a, x),

n(t, a = 0, x) = 4

∞∫
0

B(a, 2x)n(t, a, 2x)da

with n(0, a, x) = n(0)(a, x), x ≥ 0.
IF B = B(x) : back to growth-fragmentation equation
IF B = B(a) : back to renewal equation
IF we keep only 1 daughter at each generation:

n(t, a = 0, x) = 2

∞∫
0

B(a, 2x)n(t, a, 2x)da
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A Specific Age and Size model: the ”adder model”
(Taheri et al., Cell, 2015; A. Amir, PRL, 2014; Hall, Wake & Gandar, JMB, 1991)

n(t, a, x) density of cells of size x and increment a.
Definition of an increment: difference between size and size at birth

PDE obtained from the PDMP (as previously): same as the age
process:

P(ζu ≥ a) = e
−

a∫
0

B(s)ds
,

da

dt
= κx

∂

∂t
n +

∂

∂a

(
κxn
)

+
∂

∂x

(
κxn
)

= −κxB(a)n(t, a, x),

n(t, a = 0, x) = 8

∞∫
0

xB(a, 2x)n(t, a, 2x)da

IF we keep only 1 daughter at each generation:

n(t, a = 0, x) = 4

∞∫
0

xB(a)n(t, a, 2x)da
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Fourth step: model analysis: long-time behaviour
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The age model
A very pedagogical reference: B. Perthame, Transport Equations in Biology, 2007

historically the first structured-population model to be studied
(Kermack and Mc Kendrick, 1927 ; Metz and Diekmann, 1981)
n(t, a)e−λt → N(a), with λ and N uniquely determined by

∂

∂a
N + λN = −B(a)N, N(0) = 2

∞∫
0

B(a)N(a)da.

Explicit solution: N(a) = N(0)e
−λa−

a∫
0

B(s)ds
,

λ uniquely determined by the boundary condition:
either λ = 0 (1 branch case) or

2

∞∫
0

B(a)e
−λa−

s∫
0

B(s)ds
da = 1
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The fragmentation and growth-fragmentation equations
General form

From a stochastic viewpoint:

∂
∂t n(t, dx) + ∂

∂x

(
τ(x)n(t, dx)

)
=

−B(x)n(t, dx) +
∑
j≥0

jp(j)
∞∫

y=x
P(j)(y , dx)B(y)n(t, dy),

in a weak sense (for measure solutions: see e.g. (Canizo, Carrillo,

Cuadrado, 2013); (MD, Gwiazda, Wiedemann, 2018))

P(j)(y , dx): probability of an individual of size y to split in j parts,
one of them of size in the interval dx . In a more compact way:

k(y , dx) :=
∑
j≥0

jp(j)P(j)(y , dx), with

y∫
x=0

xk(y , dx) =
∑
j≥0

p(j)

y∫
0

jxP(j)(y , dx) = y
∑
j≥0

p(j) = y .
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The fragmentation and growth-fragmentation equations
General form

∂
∂t n(t, dx) + ∂

∂x

(
τ(x)n(t, dx)

)
=

−B(x)n(t, dx) +
∞∫

y=x
k(y , dx)B(y)n(t, dy),

with
y∫

0

xk(y , dx) = y ,

y∫
0

k(y , dx) = m > 1.

”One branch” process: k1(y , dx) :=
∑
j≥0

p(j)P(j)(y , dx) :

∂
∂t n1(t, dx) + ∂

∂x

(
τ(x)n1(t, dx)

)
=

−B(x)n1(t, dx) +
∞∫

y=x
k1(y , dx)B(y)n1(t, dy).
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The growth-fragmentation equation
Two fundamental relations
(and more generally: moments equations)
I First moment: mass balance only evolves by growth

d

dt

∫
xn(t, x)dx =

∫
τ(x)n(t, x)dx .

I Zeroth moment: number of individuals only evolves by
fragmentation:

d

dt

∫
n(t, x)dx =

∫
B(x)

( x∫
0

k(x , dy)− 1

)
n(t, x)dx .

I More generally: balance between growth & fragmentation

d
dt

∞∫
0

xpn(t, x)dx =
∞∫
0

pxp−1τ(x)n(t, x)dx

+
∞∫
0

B(x)xp
(

1−
x∫
0

yp

xp k(x , dy)

)
n(t, x)dx
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Asymptotic behaviour 1: balance assumption on τ(x) and B(x):
⇒ convergence to a steady profile + exponential growth
starts in the 1980s (Diekmann, Heijmans, Thieme and Gyllenberg
& Webb)

n(t, x)e−λt → N(x)

∫
n0(x)dx

(N, λ) : dominant eigenpair of the semi-group generator L∗ + F∗.

For compact strictly positive operators: Krein-Rutman.

Stochastic approaches: for recent ref. see (Bertoin& Watson,
2018); (B. Cavalli, 2019); (Bansaye, Cloez, Gabriel, Marguet,
2021); (Champagnat, Villemonais, 2018)...
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Long-time asymptotics 1: steady growth

Eigenvalue problem and adjoint problem:

∂
∂x (τ(x)N(x)) + λN(x) = −B(x)N(x) +

∫∞
x B(y)k(x , y)N(y)dy ,

τN(x = 0) = 0, N(x) ≥ 0,
∫∞

0 N(x)dx = 1,

−τ(x) ∂
∂x (φ(x)) + λφ(x) = B(x)(−φ(x) +

∫ x
0 k(y , x)φ(y)dy),

φ(x) ≥ 0,
∫∞

0 φ(x)N(x)dx = 1.
(1)

If τ(x) = xν , B(x) = xγ : if 1 + γ − ν > 0 (Michel, M3AS, 2004)

which optimal assumptions on (τ, k,B) ?
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Long-time asymptotics

Theorem (MD, P. Gabriel, M3AS, 2010)

Under balance assumptions on τ, B and k , there exists a unique
triplet (λ,N, φ) with λ > 0, solution of the eigenproblem (5) and

xατN ∈ Lp(R+), ∀α ≥ −γ, ∀p ∈ [1,∞], xατN ∈W 1,1(R+),

∃p > 0 s.t.
φ

1 + xp
∈ L∞(R+), τ

∂

∂x
φ ∈ L∞loc(R+).

Generalizes previous results by Michel, M3AS, 2004.∫
R+

∣∣n(t, x)e−λt − 〈n(0), φ〉N(x)
∣∣φ(x)dx → 0 as t →∞

Proof: General Relative Entropy (Michel, Mischler, Perthame, 2004)

See also many recent improvements...
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Some ideas on the proof
2 opposite dynamics:

I Growth ⇒ bigger and bigger ⇒ mass goes to infinity ?

I Fragmentation ⇒ smaller and smaller ⇒ dust formation ?

Balance: asymptotic steady profile.

I Enough growth at zero: B(x)
τ(x) ∈ L1

0

I avoid shattering (0-size polymers)

∃C > 0, γ ≥ 0 s.t.

∫ x

0
k(y , dz) ≤ min

(
m,C

(x
y

)γ)
and xγ

τ(x) ∈ L1
0

I Enough fragmentation at infinity: xB(x)
τ(x) →x→∞ ∞

Proof:

I regularized equation: Krein-Rutman/Perron-Frobenius

I balance assumptions⇒ compactness through successive
moments estimates

I uniqueness and convergence by entropy method
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Long-time asymptotics 1
Further comments on the ”steady growth regime”

I Under extra assumptions, exponential convergence in some sense:
(Laurençot, Perthame, 2009) (Balagué, Cañizo, Gabriel, 2012)
(Bernard, Gabriel, 2019) (Càceres, Cañizo, Mischler, 2011)

I (Mischler, Scher, 2015): spectral gap for a large class
for a more restrictive norm L1

ψ ( L1
φ

Based on semi-group spectral analysis & a generalization of
Krein-Rutman theorem
Proof of no spectral gap in L1

φ (Bernard & Gabriel, 2017, & 2019)
Measure solutions (MD, Gwiazda, Wiedemann, 2018; Bansaye,
Cloez, Gabriel, Marguet, preprint, 2021)

I Age-size models: (MD, 2007), increment (Gabriel & Martin, 2019)

Other types of behaviours?
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Growth-fragmentation eq., ν = 1, k0(dz) = 2δz= 1
2


∂

∂t
n(t, x) +

∂

∂x

(
xn(t, x)

)
+ B(x)n(t, x) = 4B(2x)n(t, 2x), x > 0,

n(0, x) = n0(x).
(2)

Same case but g(x) ≡ 1 : (Perthame, Ryzhik, 2004, +...)

n(t, x)e−λt → N(x) fails here

Intuition: stochastic process: if X (t) = x0, all descendants live on
the countable set of curves x0e

t2−n

Where usual proofs (eigenproblem, entropy) fail?
semi-groups on compact support: abstract result (Greiner, Nagel, 1988)
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Eigenproblem

λN(x) +
(
xN(x)

)′
+ B(x)N(x) = 4B(2x)N(2x),

λφ(x)− xφ′(x) + B(x)φ(x) = 2B(x)φ
(
x
2

)
.

(3)

Assumption on B:
B : (0,∞)→ (0,∞) is measurable,B(x)/x ∈ L1

loc(R+),

∃γ0, γ1,K0,K1, x0 > 0, K0x
γ0 ≤ B(x ≥ x0) ≤ K1x

γ1 .
(4)

Theorem (from MD, P. Gabriel, M3AS, 2010)

Under standard assumptions, ∃! positive eigentriplet λ = 1,
N ∈ L1(R+), φ(x) = x , with

∫∞
0 xN(x)dx = 1.

λk = 1 +
2ikπ

log 2
, Nk(x) = x−

2ikπ
log 2 N(x), φk(x) = x1+ 2ikπ

log 2 ,
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Balance laws and Entropy

∀ k ∈ Z, and ∀(k, l) ∈ Z2,
∞∫
0

Nk(x)φl(x)dx = δkl .

∀k ∈ Z, ∀t ≥ 0,

∞∫
0

n(t, x), φk(x)dxe−λk t =

∞∫
0

n0(x)φk(x)dx .

Lemma (General Relative Entropy Inequality)

n(t, x) sol. of (2), H : C→ R+ positive, differentiable & convex.

d

dt

∞∫
0

x N(x)H
( n(t, x)

N(x)et

)
dx = −DH [n(t)e−t ] ≤ 0,

with DH [n] :=

∞∫
0

xB(x)N(x)

[
H
( n( x2 )

N( x2 )

)
− H

( n(x)

N(x)

)
−∇H

( u( x2 )

N( x2 )

)
·
( n( x2 )

N( x2 )
− n(x)

N(x)

)]
dx .
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Dissipation of entropy

For H strictly convex, n : R+ → C satisfies DH [u] = 0 iff

n(x)

N(x)
=

n(2x)

N(2x)
, a.e. x > 0.

In particular, for all k ∈ Z, DH [Nk ] = 0.
(Escobedo, Mischler, Rodriguez Ricard, 2004), lemma 3.5 fails.

Theorem (E. Bernard, MD, P. Gabriel, Kin. Rel. Mod., accepted)

Under Hyp. (4), for any n0 ∈ L2(R+, x/N(x)dx), the unique
solution n(t, x) ∈ C

(
R+, L

2(R+, x/N(x)dx)
)

to (2) satisfies

∞∫
0

∣∣∣∣n(t, x)e−t −
+∞∑

k=−∞
(n0,Nk)Nk(x)e

2ikπ
log 2

t

∣∣∣∣2 x dx

N(x)
−−−−→
t→+∞

0,

with (n0,Nk) =
∫
n0φk(x)dx
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Numerical illustration

Non dissipative scheme:
I splitting transport & fragmentation

I grid xk = (1 + 2
1
n )k−N
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Numerical illustration

Non dissipative scheme:
I splitting transport & fragmentation
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1
n )k−N
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The case τ(x) = κx

If B(x) = xγ :

I γ > 0: in general, convergence (at an exponential speed)
given by n(t, x)e−λt → N(x)

I γ > 0 and k(y , x) = δx= y
2

(our ”idealised” case!):
convergence to an oscillatory profile
(Bernard, MD, Gabriel, 2018), (Martin & Gabriel, 2021)

remains true for any model where growth is exponential and
division in two equally-sized daughters

Intuition: depart from a cell of
size x0, at time t all its

descendants live on x0e
κt2−N



53

The pure fragmentation case: τ = 0
Classical assumptions on the fragmentation equation

I B(x) = αxγ

I k(y , x) = 1
y k0

(
x
y

)
, where k0 is a measure on [0, 1].

∂

∂t
u(t, x) + xγu(t, x) =

1∫
0

(
x

z
)γu(t,

x

z
)
k0(dz)

z

For γ > 0, at a power law speed, we have
(Escobedo-Mischler-Ricard, 2005)

lim
t→∞

∞∫
0

∣∣∣u(t, y)− t−
2
γ g
(
t

1
γ y
)∣∣∣ ydy = 0.

where g called the ”self-similar profile” is the unique solution of

∂

∂z
(zg(z))+(1+αγzγ)g(z) = αγ

∞∫
z

1

y
k0(

z

y
)yγg(y)dy ,

∞∫
0

zg(z)dz = ρ.
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The fragmentation equation
Focus: τ(x) ≡ 0, B(x) ≡ xγ : e.g. protein fibril fragmentation

∂

∂t
u(t, x) + xγu(t, x) =

1∫
0

(
x

z
)γu(t,

x

z
)
k0(dz)

z

I γ > 0 : self-similar profile (Escobedo, Mischler, Ricard, 2004)

lim
t→∞

∞∫
0

∣∣∣u(t, y)− t−
2
γ g
(
t

1
γ y
)∣∣∣ ydy = 0.

I γ < 0 : shattering: loss of mass + self-similar profile or steady
profile according to the initial condition (Haas, 2010, Bertoin &

Watson 2017 & 2018, Escobedo 2017...)

I γ = 0: critical case. Close to a mutation model (G. Garnier’s
PhD) (Bertoin 2003, MD Escobedo 2016, Bertoin & Watson 2016)
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Fifth step: model calibration
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Model calibration for the bacteria case

Only unobserved parameter: the division rate B.
Estimation procedure:

I mathematical analysis: asymptotic regime (PDMP or PDE)

I estimation methods

I comparison of calibrated model results and data
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Use of the long-time asymptotics
Example: PDE - Size model asymptotics

Recall: if B(x) = xβ(x) such that β ∈ L1
0 and β →x→∞ ∞,

∃! (λ > 0,N ≥ 0) solution of
∂
∂x (κxN(x)) + λN(x) = −B(x)N(x) + 4B(2x)N(2x)dx ,

N(x) ≥ 0,
∫∞

0 N(x)dx = 1.
(5)

Moreover here κ = λ and∫
R+

∣∣n(t, x)e−λt − 〈n(0), x〉N(x)
∣∣xdx → 0 as t →∞

false here (oscillations) but true in practice: experimental variability
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Estimation methods

3 methods:

I use the ”all cells” distributions: ”indirect/inverse” approach,
based on N(x) or N(a)

I use the ”at division” distributions: ”direct” approach:
PDMP or B(x)N(x)/

∫
BNdx

I use both ! ”direct” approach: measure of both
B(x)N(x)/

∫
BNdx , and N(x)

With E. coli: choose any of the 3 schemes and select the most
accurate

Preliminaries: How to estimate these densities?
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First method, preliminaries: estimation of N(x)
1st historical observations, the simplest and often the only possible
ones, and confirm the asymptotic behavior:

Observation (from Kubitschek, 1969): doubling time and steady
size distribution
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First method: an indirect approach

Any cell at any time put together in this asymptotic distribution

cf. video at the beginning: around 30.000 to 60.000 observations
(Blue: 1 branch, Green: whole tree)
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Inverse Problem for the age model

From a (noisy) measure of N(a) and λ, we look for B(a).
Since we have the explicit relation

N(a) = N(0)e−λa−
∫ a

0 B(s)ds ,

we get

B(a) = −λ− ∂aN(a)

N(a)
.

From a noisy version of N: regularization is needed:
”degree of ill-posedness”=1: if N is in Hs

loc , B is in Hs−1
loc
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Inverse Problem for the size model

Inverse Problem: estimating the division rate B(x)

From: measurements of (κ,N) with

∂

∂x
(κxN(x)) + λN(x) = −B(x)N(x) + 4B(2x)N(2x)dx .

Choice of a Hilbert space: L2(R+, x
pdx)

(Engl, Hanke, Neubauer, Regularization of Inverse Problems, 1995)

Similar to the age problem: the equation implies a derivative for N
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Inverse Problem for the Size Model

Estimate B through

L(N) = G (BN), with

G (f )(x) = 4f (2x)− f (x), (6)

L(N)(x) = κ∂x
(
xN(x)

)
+ κN(x), (7)

2 main steps:

I Solve G (f ) = L for f , L in suitable weighted L2 spaces:
PDE part. the problem N → f = BN is now linear.

I Find an estimate for L(N) in this L2 space:
PDE or statistical part
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Inverse Problem for the Size Model
Step 1: solve a dilation equation

Defining
G : f → G (f ) = 4f (2x)− f (x)

We want to invert G in a weighted L2 space: knowing L ∈ L2, find
f ∈ L2 solution of

L(x) = 4f (2x)− f (x) (8)

Proposition (MD, Perthame, Zubelli, 2009)

∀ L ∈ L2(xpdx), p 6= 3, there exists a unique solution f ∈ L2(xpdx)
to (8). Moreover, defining

H0 :=
∞∑
j=1

2−2jL(2−jx), H∞ := −
∞∑
j=0

22jL(2jx),

we have f = H0 if p < 3 and f = H∞ if p > 3. Moreover if L ∈ Lq

then H0 ∈ Lq for any 1 ≤ q ≤ ∞. For L = 0, any distribution of
the form f ( log x

x2 ) with f ∈ D′(R+) log−2 periodic is solution.
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Inverse Problem for the Size Model
Step 1: solve a dilation equation for self-similar kernels
(Bourgeron, MD, Escobedo, Inv. Prob., 2014)

G (f ) becomes in the case of a self-similar fragmentation kernel:

G : g → G (f ), G (f )(x) :=

∫ ∞
x

k0(
x

y
)f (y)

dy

y
− f (x),

Mellin transform: ”Multiplicative Fourier transform on R+”:
M isometry between L2(xqdx) and L2(q+1

2 + i R) defined by

M[f ](s) :=

∞∫
0

x s−1f (x)dx , M−1
q [F ](x) :=

∞∫
−∞

x−
q+1

2
−ivF (

q + 1

2
+iv)dv

M[G(f )](s) = (M[k0](s)− 1)M[f ](s)

Zeros of Mk0(s)− 1: at least for s = 2, since
1∫

0

xk0(x)dx = 1. So

for q 6= 3:

Hq :=M−1
q

[
M[G(f )](s)

M[k0](s)− 1

]
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Estimating B with the Mellin transform
(Bourgeron, MD, Escobedo, Inv. Prob. 2014)

We measure N with a noise:

‖N − Nε‖L2(R+) ≤ ε,

Theory of linear inverse problems: by the optimal regularisation
method of your choice, of parameter α > 0, define an
approximation L(Nε)α such that, for N ∈ Hm(R+), and q > 3, we
have

‖L(Nε)α − L(N)‖L2((1+xq)dx) ≤ C (
ε

α
+ αm),

and since we want H = BN in L2((1 + xq)dx) with q > 3 large,
define for some a > 0

Hε,α :=M−1
0

[
M[L(Nε)α](s)

M[k0](s)− 1

]
1lx≤a +M−1

q

[
M[L(Nε)α](s)

M[k0](s)− 1

]
1lx>a
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Estimating B with the Mellin transform
(Bourgeron, MD, Escobedo, Inv. Prob. 2014)

We measure N with a noise:

‖N − Nε‖L2(R+) ≤ ε,

Theory of linear inverse problems: by the optimal regularisation
method of your choice, of parameter α > 0, define an
approximation L(Nε)α such that, for N ∈ Hm(R+), and q > 3, we
have

‖L(Nε)α − L(N)‖L2((1+xq)dx) ≤ C (
ε

α
+ αm),

and since we want H = BN in L2((1 + xq)dx) with q > 3 large,
define for some a > 0

Hε,α :=M−1
0

[
M[L(Nε)α](s)

M[k0](s)− 1

]
1lx≤a +M−1

q

[
M[L(Nε)α](s)

M[k0](s)− 1

]
1lx>a
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Estimating B with the Mellin transform
(Bourgeron, MD, Escobedo, Inv. Prob. 2014)

Proposition

For N ∈ Hs(R+) solution to the eigenequation we have

‖N−Nε‖L2(R+) ≤ ε =⇒ ‖Hε,α−BN‖L2((1+xq)dx) ≤ C (
ε

α
+αs‖N‖Hs )

optimal
error
in O(ε

s
s+1 )
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Indirect Observation Scheme
Step 2: regularization - statistical setting

Joint work with M. Hoffmann, P. Reynaud-Bouret & V. Rivoirard
we have supposed

||N − Nε||L2 ≤ ε

But why an L2 norm ? What about real data ?

We observe a sample of n cells, of sizes x1, · · · , xn realizations of
X1, . . . ,Xn, i.i.d. random variables with density N

Lα,n(x) := ρα ∗ L
(

1

n

n∑
i=1

δx=Xi

)
,
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Inverse Problem for the age model: statistical treatment
We observe a sample of n cells, of ages a1, · · · , an realizations of
A1, . . . ,An, i.i.d. random variables with density N,
(complete proof of this ansatz: M. Hoffmann, A. Olivier, 2016)
That is, your measure of N(a) is

N 6εn(a) =
1

n

n∑
i=1

δa=ai

Regularization: kernel method for instance: mollifier ρα

Nn,α(a) = ρα ∗
(

1

n

n∑
i=1

δa=ai )

with ρα = 1
αρ( x

α) with ρ ∈ C∞c (R) and
∫
ρ(x)dx = 1, and define

Bn,α(a) = −λ− ∂aNn,α(a)

max(Nn,α(a), threshold)
.
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Indirect Observation Scheme
Step 2: regularization - statistical setting

How to adaptively select α ?
Goldenshluger & Lepski, Ann. Statist, 2009; Ann. Probab., 2010

We have a statistical estimator Lα,n = ρα ∗ L( 1
n

∑
δXi

),
we plug the first PDE step to inverse G and obtain

Theorem (MD, Hoffmann, Reynaud-Bouret, Rivoirard, 2012)

If B ∈ Hs (s > 1/2), then (under suitable assumptions)

E
[∥∥(Bn

α − B)1[a,b]

∥∥
2

]
= O

(
n−

s
2s+3

)
.
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Indirect Observation Scheme
Step 2: regularization - comparison of stat and
deterministic settings

This optimal rate n−
s

2s+3 is to be compared with the deterministic
rate εs/(s+1).

see Engl, Hanke, Neubauer, 1995: for linear problems,
if a is the degree of ill-posedness, the optimal rate is ε

s
s+a

Here, by the Central Limit and Berry-Essen Theorems, heuristically:

ε ≈ n−1/2

Degree of ill-posedness: a = 1 for a noise in L2, gives ε
s

s+1

Degree a = 1 + 1/2 for a noise in H−1/2, gives ε
s

s+3/2 = n−
s

2s+3

Coherence of the PDE and stat. settings
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Numerical Results - Size Structured

Three tested division rates B
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Numerical Results - Size Structured

Three related asymptotic distributions N
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Numerical Results - Size Structured

Results with no noise - constant B
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Numerical Results - Size Structured

Results with no noise - step B
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Numerical Results - Size Structured

Results with no noise - varying B
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Numerical Results - Size Structured

Results with noise ε = 0.01 - Error with respect to the
regularization parameter α
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Numerical Results - Size Structured

Results with noise ε = 0.01 - BN
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Numerical Results - Size Structured

Results with noise ε = 0.01 - B
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Numerical Results - Size Structured

Optimal α with respect to ε, compared to
√
ε and the optimal error
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Indirect measurement: the incremental model
With A. Olivier, L. Robert, DCDS-B, 2020

Recall: n(t, a, x)→ eκtN(a, x) density of cells of size x and
increment a.
Definition of an increment: difference between size and size at birth
PDE obtained from the PDMP :

P(ζu ≥ a) = e
−

a∫
0

B(s)ds
,

da

dt
= κx

κN +
∂

∂a

(
κxN

)
+

∂

∂x

(
κxN

)
= −κxB(a)N(a, x),

N(0, x) = 8

∞∫
0

B(a)N(a, 2x)da
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Inverse problem for the increment-structured equation /
adder model
Reconstruction formula, deterministic setting - with A. Olivier and L. Robert

If we only measure N (x) =
x∫
0

N(a, x)da, can we estimate B(a)?

Proposition (MD, A. Olivier, L. Robert, 2020, DCDS-B)

We have the following reconstruction formula:

B(a) =
f (a)

∞∫
a
f (s)ds

, f (a) := F−1

(
1 + iξ

F [τx2N (x)](ξ)

F [4xH(2x)](ξ)

)
,

where H(x) is the solution of the dilation equation:

L(x) = κN +
∂

∂x
(κxN ) = 4H(2x)− H(x).

severely ill-posed inverse problem: infinite (”+1”!) degree of
ill-posedness...
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Inverse problem for the increment-structured equation /
adder model

Idea of the proof: solve the equation along the characteristics and
integrate in a =⇒

κx2N (x) = 4

x∫
0

(y − a)H(2(y − a))e
−

a∫
0

B(s)ds
da

=⇒ deconvolution problem, where 4xH(2x) plays the role of
”noise”.
Estimates would require a priori bounds on F [4xH(2x)], e.g.

I Ordinary smooth ”noise” of order β:
c1|t|−β ≤ F [4xH(2x)](t) ≤ c2|t|−β for |t| ≥ M

I Super smooth ”noise” of order β:
c1|t|γ1e−c0|t|β ≤ |F [4xH(2x)](t)| ≤ c2|t|γ2e−c0|t|β
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Inverse problem for the increment-structured equation /
adder model
Reconstruction formula, statistical setting - with A. Olivier and L. Robert, DCDS-B, 2020

We observe X1, · · ·Xn an i.i.d. sample of law N (x)

B̂n,h(a) =
f̂n,h(a)

Ŝn,h(a) ∨$2

=

1/h∫
−1/h

(
1 + iξ Ĉ

∗
n (ξ)

Ĝ∗n (ξ)
1Ωn(ξ)

)
e−iaξdξ

+∞∫
s

1/h∫
−1/h

(
1 + iξ Ĉ

∗
n (ξ)

Ĝ∗n (ξ)
1Ωn(ξ)

)
e−isξdξds ∨$

with

Ĉ∗n(ξ) =
1

n

n∑
j=1

τX 2
j e

iXjξ, Ĝn(y) = 4yĤn(2y)
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Inverse problem for the increment-structured equation /
adder model
Simulation protocols - with A. Olivier and L. Robert

To analyse separately each term of the formula, we tested 4
protocols:

1. Protocol 1: from all direct functions, FFT & IFFT

2. Protocol 2: from ”exact” (simulated) N (x)

3. Protocol 3: from Xi ∼ N (x) and ”exact” (simulated) H(x)

4. Protocol 4: from Xi ∼ N (x).
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Inverse problem for the increment-structured equation /
adder model
Simulation results - with A. Olivier and L. Robert

Figure: Left: N (x), H(x) and Ĥ(x) by protocol 2

Right: |F(f )(ξ)|, |F̂(f )1| (Protocol 1) and |F̂(f )2| (Protocol 2)
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Inverse problem for the increment-structured equation /
adder model
Simulation results - with A. Olivier and L. Robert, DCDS-B, 2020

Figure: Left: f (a), f̂1(a) (Protocol 1) and f̂2(a) (Protocol 2)

Right: S(a) =
∞∫
a

f (s)ds, Ŝ1(a) and Ŝ2(a)
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Inverse problem for the increment-structured equation /
adder model
Simulation results - with A. Olivier and L. Robert, DCDS-B, 2020

Figure: B(a), B̂1(a) (Protocol 1) and B̂2 (Protocol 2)
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Inverse problem for the increment-structured equation /
adder model
Simulation results - with A. Olivier and L. Robert, DCDS-B, 2020

Figure: B̂n with n = 500 (left), n = 50 000 (right)



90

Inverse problem for the increment-structured equation /
adder model
Simulation results - with A. Olivier and L. Robert

Figure: Estimation of N (x) (left) and dN
dx (right)
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Inverse problem for the increment-structured equation /
adder model
Simulation results - with A. Olivier and L. Robert

Figure: Estimation of xH(x) (left) and Ĉ∗n (right)
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Inverse problem for the increment-structured equation /
adder model
Simulation results - with A. Olivier and L. Robert

Figure: Estimation of F(f ) (left) and f (right)
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Inverse problem for the increment-structured equation /
adder model
Simulation results - with A. Olivier and L. Robert

Figure: Estimation of
∞∫
a

f (s)ds (left) and B (right)
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Inverse problem for the increment-structured equation /
adder model
Test on experimental data - with A. Olivier and L. Robert

Figure: experimental size distribution (left),
reconstructed ”at division” size distribution (right)
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Inverse problem for the increment-structured equation /
adder model
Test on experimental data - with A. Olivier and L. Robert

Figure: experimental size distribution (left), reconstructed ”at division”
size distribution (right)
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What if we observe more ?

Second method: full observation
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Second method: direct and full observation

Statistical reconstruction
(MD, M. Hoffmann, N. Krell, L. Robert, 2015)

Observation scheme {
(ξu, ζu), u ∈ Un

}
,

with Un ⊂ U a set of n nodes having the property

If u ∈ Un then u− ∈ Un.

Asymptotics taken as n→∞.

We use the link between f (t) the density of the lifetime and the
division rate B.
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Second method: full observation

We have for the age model

P(ζu ∈ [t, t + dt] |ζu ≥ t, ξu = x) = B(t)dt

or for the size model

P(ζu ∈ [t, t + dt] |ζu ≥ t, ξu = x) = B(xeκt)dt

from which we obtain the density of the lifetime ζu = t, for the
age model:

f (t) = B(t) exp
(
−
∫ t

0
B(s)ds

)
For the size model it is conditional on the size at birth = x :

f (t, x) = B(xeκt) exp
(
−
∫ t

0
B(xeκs)ds

)
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Second method: full observation
Age Model (Hoffmann, Olivier, 2015)

To make it short: survival analysis:

we observe a sample of n cells, of ages at division a1, · · · , an
realizations of A1, . . . ,An, i.i.d. random variables with density
f dk (a) = B(a)Nk(a)/

∫
BNkda, and it is well-known that (branch

tree)

B(a) =
f d1 (a)

∞∫
a
f d1 (s)ds

=
f d2 (a)eλa

∞∫
a
f d2 (s)eλsds

.

For the whole tree data till a certain time: ”bias” term: f d1 is
replaced by f d2 (a)eλa = cf d1 for a normalisation constant c
(Efromovich, Ann. Statis. 2004)
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Second method: full observation
Size Model (M.D., M. Hoffmann, N. Krell, L. Robert, Bernoulli, 2015)

I explicit representation for the transition kernel PB (which
links the daughter size/age law to its mother size/age law)
reminiscent of conditional survival function estimation.

I Under appropriate condition on B close to the conditions for
the eigenvalue PDE problem, the Markov chain is
geometrically ergodic (but not reversible).

I existence and uniqueness of an invariant measure νB(dx) such
that

νBPB = νB .

Convergence through a Lyapunov function.
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Second method: direct and full observation
Influence of the observations on the estimator 3 fundamental
cases:

I sparse tree case: a line of descendants (∅, u1, · · · , un)

I full tree case: n = 2kn , kn first generations

I measurements stop at a given time (independent of the
number of generations)

The first two cases are equivalent, the third is different.
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Second method: full observation
Size Model (M.D., M. Hoffmann, N. Krell, L. Robert, Bernoulli, 2015)

We prove

B(y) =
κy

2

f b1 (y/2)

Ef b1

[
1{ξ−u ≤y , ξu≥y/2}

] .
Stat. estimation: introduce a mollifier sequence to estimate f b1

Error estimate: if B ∈ Hs , for appropriate α, we find Bα,n such that

E
[
‖Bα,n − B‖2

L2

]1/2
. (log n)n−s/(2s+1)

convergence rate to compare with the indirect approach: n−
s

2s+3 .
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Second method: full observation
From stat back to PDE...

Key representation:

B(y) =
κy

2

f b1 (y/2)

Ef b1

[
1{ξ−u ≤y , ξu≥y/2}

] =
κy

2

f b1 (y/2)
y∫
y
2

f b1 (x)dx

.

1 branch data: steady state:

∂x
(
κx N(x)

)
+ B(x)N(x) = 2B(2x)N(2x).

we identify, up to a constant c , f b1 (x) = 2f d1 (2x) = 2cB(2x)N(2x)

B(y) =
BN(y)

N(y)
= κy

BN(y)
2y∫
y
BN(x)dx

=
κy

2

f b1 ( y2 )
y∫
y
2

f b1 (x)dx



104

Second method: full observation
Comparison of the convergence rates and conclusion

I Reference case: renewal: B(a) =
f d1 (a)∫∞

a f d1 (s)ds
=

f d2 (a)eλa∫∞
a f d2 (s)eλsds

I Deterministic problem: well-posed! Degree of ill-posedness
a = 0 - estimate in O(ε) -

I Statistical viewpoint: density estimate, H−1/2 to L2 so that
a = 1/2

εs/(s+1/2) = n−s/(2s+1)

I to be compared to the indirect method: error in the order of
εs/(s+3/2) = n−s/(2s+3).

I Population case: formula to adapt (MD, Hoffmann, 2022)

B(x) =
τ(x)f d2 (x)∫∞

x (f d2 (y)−2f b2 (y))e
λ2

∫ y
x

ds
τ(s) dy

=
κx2f d2 (x)∫ 2x

x yf d2 (y)dy
.
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Step 6: Finally back to the data...

Will we be able to select or reject our models ?
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6. Back to the data
(M.D., M. Hoffmann, N. Krell, L. Robert, BMC Biology, 2014)

To test a model:

I calibrate it (previously seen methods and data)

I simulate the age-size PDE model:

∂

∂t
n +

∂

∂a
n +

∂

∂x

(
κxn
)

= −B(a, x)n(t, a, x),

n(t, a = 0, x) = 4

∞∫
0

B(a, 2x)n(t, a, 2x)da

till its asymptotic steady behaviour n(t, a, x) = eλtN(a, x)

I compare quantitatively data and simulations

I conclude !

If possible...
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6. Back to the data
experimental age/size data - whole tree till a certain time

Figure: Age Size Distribution for all cells - whole tree data
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6. Back to the data
experimental age/size data - 1 branch data

Figure: Age Size Distribution for all cells - tree branches data
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Testing the Age Model
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Back to the data: testing the Age Model
(M.D., M. Hoffmann, N. Krell, L. Robert, BMC Biology, 2014)

Figure: Age Size simulation for the Age Model - whole tree data
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Back to the data: testing the Age Model
with a corrected growth rate

Figure: Age Size simulation for the Age Model - whole tree data
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Back to the data: testing the Age Model

Figure: Age Size simulation for the Age Model - branch tree data
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Back to the data: testing the Age Model
with a corrected growth rate

Figure: Age Size simulation for the Age Model - branch tree data
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Age Model: conclusion

I As it is, this model is rejected

I Theoretical reason: exponential growth + age-dependent
division rate lead to accumulation towards 0.

I Refer to theoretical results for the asymptotic regime: we need
B(x)
x ∈ L1

0 - false here

I This theory is not sufficient: corrected growth rate
dependence on these corrections is too important
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Testing the Size Model
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Back to the data: testing the Size Model

Figure: Reconstruction of the division rate - green: whole tree, blue:
branches data
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Size Model: reconstruction for B
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Back to the data: testing the Size Model
Not too bad but...

Figure: Age Size simulation for the Size Model - whole tree data
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Back to the data: testing the Size Model
Not too bad but...

Figure: Age Size experimental data - whole tree data
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Back to the data: testing the Size Model
Not too bad but...

Figure: Age Size simulation for the Size Model - branch tree data
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Back to the data: testing the Size Model
Not too bad but...

Figure: Age Size experimental data - branch tree data
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The incremental/adder model
Rich data / ”direct” approach: from ”at division” distributions

The incremental model:
Increment= difference between size and size at birth
PDE obtained from the PDMP (as previously): asymptotically, for
the 1-branch case:

P(a ≤ ζu ≤ a+da) = f (a) = B(a)e
−

a∫
0

B(s)ds
=

B(a)
∞∫
0

xN(a, x)dx∫∫
xB(a)N(a, x)dadx

∂

∂a

(
κxN

)
+

∂

∂x

(
κxN

)
= −κxB(a)N(a, x),

N(0, x) = 4

∞∫
0

B(a)N(a, 2x)da

The best argument to date: the correlation between size at birth
and increment of size at division
(increment model: 0, size model: ∼ −0.4, data: ∼ −0.1)
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What about an Age-Size Model ?

To test it, we would need an extra variable:

Figure: Age distribution: data and fit by the age model
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What about an Age-Size Model ?

To test it, we would need an extra variable:

Figure: Size distribution: data and fit by the age model
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The fragmentation case

application to fragmenting protein fibrils

(with Miguel Escobedo, Bilbao and Magali Tournus, Marseille,
data from W.F. Xue’s group in Canterbury)
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Classical assumptions on the fragmentation equation
Also assumed by W.F. Xue and S. Radford, Biophys. J., 2013

I B(x) = Fragmentation rate of particles of size x .
B(x) = αxγ

I k(x , y) = Fragmentation kernel.

k(x , y) = 1
y k0

(
x
y

)
, where k0 is a measure on [0, 1].

Theorem (Escobedo-Mischler-Ricard – Ann. IHP 2005)

Under reasonable technical assumptions, for large time, the profile
tends to a self-similar profile g :

n(t, x)→ t
2
γ g
(
xt

1
γ
)
, L1(x dx) (9)

where g is the unique solution of

∂

∂z
(zg(z))+(1+αγzγ)g(z) = αγ

∞∫
z

1

y
k0(

z

y
)yγg(y)dy ,

∞∫
0

zg(z)dz = ρ.
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Two examples.

k0(x) = 21l[0,1](x) k0(x) = 2δx=1/2(x)

First reconstruction idea: use self-similar profile g
to estimate α, γ and k0
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First reconstruction idea: use self-similar dynamics

• For fragmentation equations: Old problem
recover the transition probability of droplet breakage from
experimental measurements of transient drop size distributions in a
stirred liquid-liquid dispersion: using a fragmentation equation
assuming self similarity.
Valentas, K. J., and N. R. Amundson, I.E.C. Fundls., 1966, 1968.
G. Narsimhan, D. Ramkrishna, J. P. Gupta, Chem. Ing. Sci , 1979

• Similar idea as seen above for growth fragmentation equations,
where steady Malthusian behaviours replace self similarity.
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Inverse problem observing g
Estimate all the fragmentation characteristics γ, α, and k0

∂

∂z
(zg(z)) + (1 + αγzγ)g(z) = αγ

∞∫
z

1

y
k0(

z

y
)yγg(y)dy

Mellin transform: M[g ](s) =

∫ ∞
0

x s−1g(x)dx

(2− s)M[g ](s) + αγM[g ](s + γ) = αγM[k0](s)M[g ](s + γ),

Theorem (MD,Escobedo, Tournus, Ann. IHP, 2018)

For any g ∈ L1(R+) such that for all k ≥ 0
∫
xkg(x)dx <∞,

there exists at most one triplet
(γ, α, k0(x)) ∈ R+×R+×M1([0, 1]) such that g is the self-similar
profile of the fragmentation equation.
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Some ideas and comments on the proof
(2− s)M[g ](s) + αγM[g ](s + γ) = αγM[k0](s)M[g ](s + γ)

First step: determine γ

Proposition

Given any constant R > 0:

lim
s→∞, s∈R+

sM[g ](s)

M[g ](s + R)
=


0, ∀R > γ

αγ, if R = γ

∞, ∀R ∈ (0, γ)

Use the asymptotic behaviour of g(x) in 0 and +∞ / of M[g ](s)
for s → +∞
[other result: direct estimates in (Balagué, Cañizo, Gabriel, 2013)]
Second step: determine α : Plug s = 2.

α =
M[g ](1)

γM[g ](1 + γ)
.



131

Some ideas and comments on the proof
(2− s)M[g ](s) + αγM[g ](s + γ) = αγM[k0](s)M[g ](s + γ)

Third step: determine M[k0]. ( k0)

(M[k0](s)− 1) =
M[g ](s)(2− s)

αγM[g ](s + γ)
, s ∈ C.

Cauchy integral to solve this equation ; first prove that the
denominator does not vanish by explicit solution.
(see also Hoang Ngoc Rivoirard Tran, 2020)

Existence: of a reconstruction formula =⇒ invert Mellin

Stability only in a very weak sense: severely ill-posed inverse
problem
+ estimation for α and γ use g(0) or g(+∞) : impossible to
observe
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Some asymptotic profiles in practice...
Tournus, Escobedo, Xue, MD, PLoS Comp Biol, 2021
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Back to biologists... and to experimental data
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Back to biologists... and to experimental data
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What did experimentalists before they met us?
W.F. Xue, S. Radford, PNAS 2008 & Biophys. J., 2013

Question : Determine γ ∈ R, α ∈ R and k0.

I Regularization of the data. Polynomial functions (instead of
kernel regularization).

I Parametrization of the fragmentation kernel k0  The
problem becomes : Determine γ, α, k1, k2, k3, k4 ∈ R6

I Solve the direct problem for the comprehensive set of
admissible parameters γ, α, k1, k2, k3, k4 ∈ R6.

I Total linear least square analysis to determine which set of
parameters fits best.

... and it worked quite well in practice...
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What we proposed them to do
D.M. Beal, M. Tournus,... M. Doumic, W-F. Xue, biorXiv

At different times, a sample of fibril sizes is measured:
f (t, x) := n(t,x)∫

n(t,x)dx
.

Average length: µ(t) =
∫
xf (t, x)dx ∼t→∞ Ct−

1
γ

α ∼t→∞
1

γt

1∫
xγf (t, x)dx

Left: cumulative distribution functions, Right: density functions,
at several time points.
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Estimate γ + First test on the model

For large times, log

(
M[

u∫
udx

](s + 1, t)

)
= − s

γ
log(t) + log(Cs).

γ is the slope of log(t) 7→ − log
(
M[ u∫

udx
](s + 1, t)

)
/s, for

s ∈ [0,+∞].

Here we predict γ ≈ 4.2 : small fibrils more unlikely to break up.
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Estimate γ with µ(t) =
∫
xf (t, x)dx ∼t→∞ Ct−

1
γ

D.M. Beal, M. Tournus,... M. Doumic, W-F. Xue, iScience, 2020
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Back to the data: simulations with (α, γ)
little influence of k0
D.M. Beal, M. Tournus,... M. Doumic, W-F. Xue, biorXiv
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Results: influence of α and γ, small influence of k0...

k0 uniform - Lyzozyme c
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Results: influence of α and γ, small influence of k0...

k0 Delta Dirac in 1/2 - Lyzozyme c
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Then what to do? Some numerical investigation first
Tournus, Escobedo, Xue, MD, PLoS Comp Biol, 2021

When can we distinguish 2 distributions?
Insets: 2 different kernels

Initial condition: Black: peaked gaussian -

Blue: spread gaussian - Red: decreasing exponential

Time evolution of the p-value of a Kolmogorov-Smirnov test
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Then what to do? Some numerical investigation first
Tournus, Escobedo, Xue, MD, PLoS Comp Biol, 2021

N = 200
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Use the short time behaviour
Some heuristics first

If u(0, x) = δ(x − 1), and 0 < t < 1,

∂u

∂t
(t, x) + αxγu(t, x) = α

∫ 1

0

(
x

z
)γu(t,

x

z
)
k0(dz)

z

u(t + ∆t, x)− u(t, x)

∆t
+ αxγu(t, x) ≈ α

∫ 1

0

(
x

z
)γu(t,

x

z
)
k0(dz)

z

u(∆t, x)− δ(x − 1)

∆t
+ αxγδ(x − 1) ≈ α

∫ 1

0

(
x

z
)γδ(

x

z
− 1)

k0(dz)

z

u(∆t, x)− δ(x − 1)

∆t
+ αδ(x − 1) ≈ αk0(x)

k0(x) ≈ kest(x) =
1

α∆t
(u(∆t, x)− (1− α∆t)δ(x − 1)) .
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Use the short time behaviour
A first Total Variation result

Theorem (MD, Escobedo, Tournus, preprint arXiv:2112.10423)

The unique fundamental solution U to the fragmentation equation
with the initial condition u0 = δ(x − 1) satisfies, for t ∈ [0,T ] and
for some K > 0 depending on T and α∥∥∥∥U(t)− e−αtδ(x − 1)

αt
− k0

∥∥∥∥
TV

≤ Kt.

||µ||TV = sup

{∫
[0,∞)

ϕ(x)dµ(x), ϕ ∈ L1(d |µ|) ∩ L∞, ||ϕ||∞ ≤ 1

}
.

BUT: The situation for the experimentalists:
1.- δ(x − 1) as initial data impossible → build something “close”
uq,0
2.- Do not measure uq,0 and its solution uq(t), but uq,0,ε0 and
uq,ε(t).
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Use the short time behaviour
A stability result in a Bounded-Lipshitz norm

Theorem (MD, Escobedo, Tournus, preprint arXiv:2112.10423)
Let uq,0 ∈M(R+) such that Supp(uq,0) ⊂ [m,M] for m,M > 0 and

‖uq,0 − δ(x − 1)‖BL ≤ q.

Let uq the unique solution to the frag eq. with uq(0) = uq,0. Let uq,0,ε0

and uq,ε noisy measurements:

‖uq,0,ε0 − uq,0‖BL ≤ ε0, ‖uq,ε(t)− uq(t)‖BL ≤ ε.

Then, for constants K1 and K2 depending on M and T ,∥∥∥uq,ε(t)− e−αtuq,0,ε0

αt
− k0

∥∥∥
BL
≤ K1t +

K2q + ε0 + ε

αt
,

where ‖µ‖BL = sup

{∫
[0,∞)

ϕ(x)dµ(x), ϕ ∈ L1(d |µ|) ∩W 1,∞, ||ϕ||W 1,∞ ≤ 1

}
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Use the short time behaviour
Numerical illustration
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Plot of u(t, x)− e−αtδ(x − 1) for α = γ = 1 and 4 different k0.
Blue: t = 10−3; Red: t = 3.

A good approximation of the kernel is seen on the curves in blue.
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Conclusion and perspectives
I Method may be adapted to other cases and models

I Coherence and complementarity between PDE, stoch and stat

I a basis for new biological questions: coordination between
growth and division, influence of variability...

I Short-time behaviour well-adapted to estimate the frag kernel;
to test on real data ... and study from a stochastic viewpoint

I A new problem: estimate the mutation rate in bacteria - G.
Garnier’s Ph.D

Many have contributed...

Pierre Gabriel, Thibault Bourgeron, Miguel Escobedo, Magali
Tournus, Benoit Perthame, Jorge Zubelli, Pedro Maia, Marc
Hoffmann, Patricia Reynaud-Bouret, Lydia Robert, Vincent

Rivoirard, Nathalie Krell, Adéläıde Olivier, Adeline Fermanian,
Anäıs Rat, Wei-Feng Xue, Cédric Doucet...

to be continued!
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The fragmentation and growth-fragmentation equations
General form

Recall of the probabilist view: ”our” operator is ”their” adjoint

∂

∂t
n = L∗n + F∗n,

where

I L∗ is the adjoint of the infinitesimal generator L of the càdlàg
strong Markov process (Xt)t≥0. Here X = (0,∞) and L∗ is
taken deterministic: Lf = τ(x)f ′(x) so that L∗n =

(
τn
)′
.

I F∗ is the adjoint of the fragmentation operator

F f (x) := B(x)

∫
X

∑
j≥0

(
jf (y)− f (x)

)
p(j)P(j)(x , dy),

where P(j)(x , dy) is the symetrized fragmentation kernel:
probability of an individual of size x to split in j parts, one of
them of size y .
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Inverse problem for the increment-structured equation /
adder model
Reconstruction formula, deterministic setting - with A. Olivier and L. Robert

If we only measure N (x) =
x∫
0

N(a, x)da, can we estimate B(a)?

Proposition (MD, A. Olivier, L. Robert, 2020, DCDS-B)

We have the following reconstruction formula:

B(a) =
f (a)

∞∫
a
f (s)ds

, f (a) := F−1

(
1 + iξ

F [τx2N (x)](ξ)

F [4xH(2x)](ξ)

)
,

where H(x) is the solution of the dilation equation:

L(x) = κN +
∂

∂x
(κxN ) = 4H(2x)− H(x).

severely ill-posed inverse problem: infinite (”+1”!) degree of
ill-posedness...
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Inverse problem solution with the Mellin transform

Problem.
Without any a priori knowledge on the fragmentation process,
but measuring g identify the parameters γ, α, and k0.

Supplementary hypothesis on k0: no Dirac mass at x = 0 or
x = 1,

∃ε > 0, k0 ∈ C [0, ε] ∩ C [1− ε, ε],

∃ε′ > 0, η2 > η1 > 0; k0(z) ≥ ε′, ∀z ∈ [η1, η2].

Theorem (MD,Escobedo, Tournus, Ann. IHP, 2018)

For any g ∈ L1(R+) such that for all k ≥ 0
∫
xkg(x)dx <∞,

there exists at most one triplet
(γ, α, k0(x)) ∈ R+×R+×M1([0, 1]) such that g is the
self-similar profile of the fragmentation equation.



152

The fragmentation and growth-fragmentation equations

First focus: τ(x) ≡ x

∂

∂t
n(t, x) +

∂

∂x

(
xn(t, x)

)
+ B(x)n(t, x) =

1∫
0

B(
x

z
)n(t,

x

z
)
k0(dz)

z

Linked to the fragmentation equation

∂

∂t
u(t, x) + B(x)u(t, x) =

1∫
0

B(
x

z
)u(t,

x

z
)
k0(dz)

z

by u(t, x) = etn(t, xet)
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Critical fragmentation: first insight in the asymptotics


∂
∂t u(t, x) + u(t, x) =

1∫
0

u(t, xz )k0(dz)
z ,

u(0, x) = uin(x)∈ L1
(
(1 + x)dx

) (10)

Proposition

A solution u ∈ C 1((0,∞); L1((1 + x)dx)) of (10) satisfies

xu(t, x) ⇀ Mδ, as t → +∞, in D′(R+), M =

∫
xuin(x)dx .
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Mellin transform for the fragmentation equation

Mf (s) =

∞∫
0

x s−1f (x)dx

The Mellin transform is the Fourier transform in y = log x

Denote U(t, s) :=Mu(t,·)(s), U0(s) =Mu0(s), K (s) :=Mk0(s).

∂

∂t
U(t, s) + U(t, s) = K (s)U(t, s)

⇒ U(t, s) = U0(s) e(K(s)−1)t

Formally (assumptions on k0, u0 and ν ∈ R required)

u(t, x) =
1

2πi

ν+i∞∫
ν−i∞

U0(s) e(K(s)−1)tx−sds

Nice formula... But asymptotically?...



154

Mellin transform for the fragmentation equation

Mf (s) =

∞∫
0

x s−1f (x)dx

The Mellin transform is the Fourier transform in y = log x

Denote U(t, s) :=Mu(t,·)(s), U0(s) =Mu0(s), K (s) :=Mk0(s).

∂

∂t
U(t, s) + U(t, s) = K (s)U(t, s)

⇒ U(t, s) = U0(s) e(K(s)−1)t

Formally (assumptions on k0, u0 and ν ∈ R required)

u(t, x) =
1

2πi

ν+i∞∫
ν−i∞

U0(s) e(K(s)−1)tx−sds

Nice formula... But asymptotically?...



154

Mellin transform for the fragmentation equation

Mf (s) =

∞∫
0

x s−1f (x)dx

The Mellin transform is the Fourier transform in y = log x

Denote U(t, s) :=Mu(t,·)(s), U0(s) =Mu0(s), K (s) :=Mk0(s).

∂

∂t
U(t, s) + U(t, s) = K (s)U(t, s)

⇒ U(t, s) = U0(s) e(K(s)−1)t

Formally (assumptions on k0, u0 and ν ∈ R required)

u(t, x) =
1

2πi

ν+i∞∫
ν−i∞

U0(s) e(K(s)−1)tx−sds

Nice formula... But asymptotically?...



155

Mellin transform and self-similar profiles

u(t, x) =
1

2πi

ν+i∞∫
ν−i∞

U0(s) e(K(s)−1)tx−sds

(as for the case γ > 0): does there exist Φ s.t.

f (t)Φ
(
xg(t)

)
is a solution to (10) and so that, for any uin,

u(t, x) ≈t→∞ f (t)Φ
(
xg(t)

)
?

Proposition

If we look for Φ ∈ L1
(
(1 + x)dx

)
, no such solution.

But for all s > p1, pointwise self-similar solutions are given by

e(K(s)−1)tx−s = exp((K (s)− 1)t − s log(x)) := exp(φ(s, t, x))
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Mellin transform and self-similar profiles
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First step: integration domain for the Mellin transform

[1, 2] ⊂ I (u0) :=

p ∈ R; U0(p) =

∞∫
0

u0(x)xp−1dx <∞

 := (p0, q0).

p0 := inf I (u0), q0 := sup I (u0), p1 := inf I (k0) < 2.

u0 ≈0 x−p0 , u0 ≈+∞ x−q0

Proposition

For p1 := inf I (k0) < 2, ∃! sol. to (10), ∀ max(p0, p1) < ν < q0:

u(t, x) =
1

2πi

ν+i∞∫
ν−i∞

U0(s) e−s log(x)+t(K(s)−1)ds.

For ν > 2 and x fixed: K (ν)− 1 < 0⇒ exponential decay t →∞.
But which exponential rate? And when t →∞ and x → 0?
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Main idea: study φ(s, t, x)

u(t, x) = 1
2πi

ν+i∞∫
ν−i∞

U0(s) eφ(s,t,x)ds with φ(s, t, x) = −s log(x) + t(K(s)− 1)

s ∈ R→ φ(s, t, x) is convex: define for x < 1

s+(t, x) := arg min
s∈(p0,q0)

φ(s, t, x) = K ′−1(
log(x)

t
)

In the zone s+(t, x) > q0: ⇒ φ(s+, t, x) < φ(q0, t, x)

⇒ Steps for s+ > q0 or s+ < p0 :

I move to the residue q0

I cross it: residue theorem (+ extra regularity assumptions)

I evaluate the rest as small since <(φ(s+, t, x)) < <(φ(q0, t, x))



158

The zones of convergence
Example: mitosis kernel

t
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Figure: Different curves of the form s+ = γ for different values of γ > 0,
so that 2t = −γ2 log x . As t →∞, the function xu(t, x) concentrates in

the interval x ∈
(
e
− 2t

γ2
` , e
− 2t
γ2
r

)
. .
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Numerical Illustration
Example: mitosis kernel

∂

∂t
n(t, y) + n(t, y) = 4n(t, y + log 2), n(0, y) = nin(y).

−60 −50 −40 −30 −20 −10 0
0
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x

t

Figure: solution in a log-scale. Inside the blue and green curves,
u(t, x) ≥ 10%maxxu(t, ·).
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Case x > etK
′(q0)

u(t, x) =
1

2πi

ν+i∞∫
ν−i∞

U0(s) e(K(s)−1)tx−sds.

Theorem
As t →∞ and q0 < s+(t, x) :

u(t, x) = a0x
−q0e(K(q0)−1)t

(
1 +O

(
x−ν

′+q0e(K(ν′)−K(q0))t
))

.

for a ν ′ > q0.

=⇒ Rate of convergence: exponential.
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Case x > etK
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case etK
′(p0) < x < etK

′(q0)

u(t, x) =
1

2πi

ν+i∞∫
ν−i∞

U0(s) eφ(s,t,x)−tds.

⇒ steps:

I Choose ν = s+(t, x)

I Method of the stationary phase to localize the dominant
contribution in the integral
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case etK
′(p0) < x < etK

′(q0)

u(t, x) =
1

2πi

∞∫
−∞

U0(s+ + iv) eφ(s++iv ,t,x)−tdv .

Lemma
<e
(
φ(s+ + iv , t, x)

)
maximal iff

I v = 0 if k0 has an absolutely continuous part,

I for k0(z) = 2δs= 1
2
: v ∈ 2π

log 2 Z

(more complex probability measures also dealt with, but not all...)
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Case etK
′(p0) < x = etK

′(s+) < etK
′(q0)

& v = 0 only max of <e
(
φ
)

Theorem
For any δ > 0, for p0 + δ < s+(t, x) < q0 − δ and t →∞, we have

u(t, x) =
U0(s+)x−s+e(K(s+)−1)t√

2πtK ′′(s+)
+ O(t−

1
2
−α),

for α > 0 well chosen.

⇒ Rate of convergence: at most polynomial.
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Case etK
′(p0) < x = etK

′(s+) < etK
′(q0)

& k0 = 2δz= 1
2

Same analysis around each sk = s+ + 2iπk
log 2 .

Theorem (MD, M. Escobedo)

For any δ > 0, for p0 + δ < s+(t, x) < q0 − δ and t →∞, we have

u(t, x) = x−s+(t,x)e(K(s+(t,x))−1)t

∑
k∈Z U0(sk)x

2iπk
log 2√

2πtK ′′(s+)
+ · · · ,

Poisson summation formula:

u(t, x) ∼ log 2
e(K(s+)−1)t√
2πtK ′′(s+)

∑
n∈Z

u0(2−nx).

⇒ Rate of convergence: at most polynomial.
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Comparison with (Bertoin, 2003)
see also (Bertoin, Watson, 2016)

Stochastic process X = (X (t), t ≥ 0), values in S↓(y) set of all
sequences Y = (yi )i∈N∗ such that

y1 ≥ ... ≥ yi ≥ yi+1 ≥ ... ≥ 0 and y =
∞∑
i=1

yi ≤ 1,

Random measure ρt(dy) defined by

ρt(dy) =
∞∑
i=1

Xi (t)δ 1
t

log Xi (t)(dy)

converges to δ−µ in probability for some µ <∞.
ρ̃t image of ρt by x →

√
t(x + µ)/σ

converges in probability to the standard normal distribution
N (0, 1).
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Comparison with (Bertoin, 2003)
see also (Bertoin, Watson, 2016)

The laws of ρt(dy) and ρ̃t(dy) correspond to rescalings of u:

r(t, y) := tye2tyu(t, ety ), r̃(t, z) := r(t, y0 +
σz√
t

)
σ√
t
,

with y0 := K ′(2) and σ2 := K ′′(2).
Under previous assumptions we prove

r(t, ·) ⇀ δK ′(2)U0(2), r̃(t, ·) ⇀ U0(2)G ,

with G (z) = e−
·2
2√

2π
, in the weak sense of measures.
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Fragmentation + binary fission: oscillations?

with Bruce van Brunt
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Dirac kernel: an explicit formula
with B. van Brunt

Here
k0 = 2δx= 1

2
=⇒ K (s) = 22−s ,

For x = e−tK
′(s+) with −K ′(p0) < K ′(s+) < −K ′(q0):

u(t, x) ∼ log 2
e(K(s+)−1)t√
2πtK ′′(s+)

∑
n∈Z

u0(2nx).

Direct formula:

u(t, x) = e−t
∞∑
k=0

u0(2kx)
(4t)k

k!

”oscillations” in these formulae?



168

Dirac kernel: an explicit formula
with B. van Brunt

Here
k0 = 2δx= 1

2
=⇒ K (s) = 22−s ,

For x = e−tK
′(s+) with −K ′(p0) < K ′(s+) < −K ′(q0):

u(t, x) ∼ log 2
e(K(s+)−1)t√
2πtK ′′(s+)

∑
n∈Z

u0(2nx).

Direct formula:

u(t, x) = e−t
∞∑
k=0

u0(2kx)
(4t)k

k!

”oscillations” in these formulae?



169

Dirac kernel: oscillations?

Recall (Bertoin, 2003):

r(t, y) := tye2tyu(t, ety ), r̃(t, z) := r(t, y0 +
σz√
t

)
σ√
t
,

with y0 := K ′(2) = − log 2 and σ2 := K ′′(2) = (log 2)2.
Under previous assumptions we prove

r(t, ·) ⇀ δK ′(2)U0(2), r̃(t, ·) ⇀ U0(2)G ,

with G (z) = e−
·2
2√

2π
, in the weak sense of measures.

not contradictory with oscillations: weak convergence
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Dirac kernel: oscillations?
with B. van Brunt

r(t, y0)

− log 2
= t2−2tu(t, 2−t) =

√
t

2π

∑
k∈Z

U0(2 +
2ikπ

log 2
)e−2iπkt

(
1 + o(t−β)

)
,

=⇒ oscillations for r√
t

of period 1.

Illustration:
√
tn(t, y) with n(t, y) = e2yu(t, ey ) solution to

∂

∂t
n(t, y) + n(t, y) = n(t, y + log 2), n(0, y) = n0(y)
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Series representation of the solution

The fundamental solution U ∈M(R+) with initial data u0 = δ(x − 1):

U = e−αtδ(x − 1) +
∞∑
n=0

(αt)nan; a0(x) = 0,

an+1(x) =
1

n + 1

(
−xγan(x) +

∫ 1

0

(
x

z
)γan(

x

z
)
k0(dz)

z
+ k0(x)

(−1)n

n!

)
.

The series is convergent in the TV norm for measures: with

||an||TV ≤ un =
1

n!

n−1∑
j=0

3n−j(−1)j , ∀n ≥ 1
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Proof of the TV convergence result

We have

U − eαtδ(x − 1)

αt
− k0 =

∞∑
n=1

(αt)nan

αt
− k0

=
∞∑
n=1

(αt)n−1an − k0 =
∞∑
n=0

(αt)nan+1 − k0

and since a1 = k0, we have

∞∑
n=0

(αt)nan+1 − k0 =
∞∑
n=1

(αt)nan+1 = αt
∞∑
n=0

(αt)nan+2.

Thus ∥∥∥∥U − e−αtδ(x − 1)

αt
− k0

∥∥∥∥
TV

≤ αt
∞∑
n=0

(αt)n‖an+2‖TV .
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Proof of the TV convergence result
The series converges (normal convergence) and thus it is bounded on any
compact set, for instance for t ∈ [0,T ]. Then the result holds for

KT ,α = α max
t∈[0,T ]

∞∑
n=0

(αt)n‖an+2‖TV .

By simple scaling:
Corollary 1 If Uλ is the solution with initial data Uλ(0) = δ(x − λ), for
t ∈ [0,T ] and for some K > 0 depending on T , α, γ∥∥∥∥Uλ(t)− e−αtλ

γ

δ(x − λ)

αtλγ
− 1

λ
k0

(x
λ

)∥∥∥∥
TV

≤ Ktλγ .

Corollary 2 If u is the solution with initial data u0, for t ∈ [0,T ] and for
some K > 0 depending on T , α, γ and ‖u0‖L1(`2γd`)∥∥∥∥u(t)− e−αtx

γ

µ0

αt
− κ ∗ µ0

∥∥∥∥
TV

≤ Kt

Here ∗ denotes the multiplicative/Mellin convolution
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Proof of the stability result in BL norm

Remember the hypothesis:

‖(uq,0 − δ(x − 1))‖BL ≤ q

‖uq,0,ε0 − uq,0‖BL ≤ ε0, ‖uq,ε(t)− uq(t)‖BL ≤ ε

Then,∥∥∥uq,ε(t)− e−αtuq,0,ε0

αt
− k0

∥∥∥
BL
≤ ‖uq,ε(t)− uq(t)‖BL

αt
+

+
‖uq(t)− U(t)‖BL

αt
+
∥∥∥U(t)− e−αtδ(x − 1)

αt
− k0

∥∥∥
BL

+

+e−αt
‖δ(x − 1)− uq,0‖BL

αt
+e−αt

‖uq,0 − uq,0,ε0‖BL
αt

By the TV Theorem:
∥∥∥U(t)− e−αtδ(x − 1)

αt
− k0

∥∥∥
BL
≤ Kt



175

Proof of the stability result in BL norm

For the last remaining term:

‖uq(t)− u(t)‖BL ≤ C‖uq,0 − u0‖BL, ∀γ ∈ (0, 1],

‖uq(t)− u(t)‖BL ≤ C‖uq,0 − u0‖BL, ∀γ ≥ 1

using the following.
Proposition There exists a constant C > 0 such that, for all bounded
measure u0 compactly supported in [0,M], and either Supp(u0) ⊂ [m,M]
with m > 0 or γ ≥ 1, the weak solution u of the fragmentation equation
satisfies, for all t ∈ [0,T ],

‖u(t)‖BL ≤ C (M,T )‖u0‖BL.
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Numerical simulations
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Extensions of the model

Variability:
∂

∂t
n(t, x , v) +

∂

∂x

(
vxn(t, x , v)

)
=

−B(x)n(t, x , v) + 2

∞∫
x

∞∫
0

B(y)k(y , x)ρ(v ′, v)n(t, y , v ′)dy , dv ′

with
∫∞

0 ρ(v ′, v)dv = 1

Age + variability:

∂
∂t n(t, a, x , v) + ∂

∂x

(
vxn(t, a, x , v)

)
= −B(a, x)n(t, a, x , v),

n(t, a = 0, x , v) = 2
∞∫
x

∞∫
0

B(a, y)k(y , x)ρ(v ′, v)n(t, a, y , v ′)dydv ′da

(related (maturity) models: Lebowitz, Rubinow, 1977 - Rotenberg,
1983 - Mischler, Perthame, Ryzhik, 2002,...)
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Incorporating variability

Figure: Effect on the distribution of growth rate variability
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Incorporating variability

Figure: Effect on the distribution of variability in daughter sizes
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Use the short time behaviour
First back to theory...

Hypothesis on k0: contains no Dirac mass at x = 0 or x = 1, and

supp (k0) ⊂ [0, 1],

∫ 1

0
dk0(z) < +∞,

∫ 1

0
zdk0(z) = 1.

Weak solution:
A family (u(t))t≥0 ⊂M(R+) is called a measure solution with
initial data u0 ∈M(R+) if for all ϕ ∈ C0

c (R+) and all t ≥ 0,
t 7→

∫
ϕ(x)u(t, dx) is continuous and∫

R+

ϕ(x)u(t, dx) =

∫
R+

ϕ(x)u0(dx)

+ α

∫ t

0

∫
R+

(
−xγϕ(x)u(s, dx) +

∫ 1

0

ϕ(xz)xγk0(dz)u(s, dx)

)
ds.

Existence and uniqueness (γ > 0) in M+(R+) in Carrillo & al.
2012.


